Advertisement

Apoptosis

, Volume 19, Issue 1, pp 269–284 | Cite as

A high-throughput image-based screen for the identification of Bax/Bak-independent caspase activators against drug-resistant cancer cells

  • Mahendra Seervi
  • Praveen K. Sobhan
  • Krupa Ann Mathew
  • Jeena Joseph
  • Prakash Rajappan Pillai
  • T. R. SanthoshkumarEmail author
Original Paper

Abstract

Despite the use of new generation target specific drugs or combination treatments, drug-resistance caused by defective apoptosis signaling remains a major challenge in cancer treatment. A common apoptotic defect in drug-resistant tumor is the failure of cancer cells to undergo Bax/Bak-dependent mitochondrial permeabilization due to impaired signaling of Bcl-2 family proteins. Therefore, Bax and Bak-independent caspase-activating compounds appear to be effective in killing such tumor cells. An image-based cellular platform of caspase sensors in Bax and Bak deficient background allowed us to identify several potential Bax/Bak-independent caspase-activating compounds from a limited high-throughput compound screening. FRET-based caspase sensor probe targeted at the nucleus enabled accurate and automated segmentation, yielding a Z-value of 0.72. Some of the positive hits showed promising activity against drug-resistant human cancer cells expressing high levels of Bcl-2 or Bcl-xL. Using this approach, we describe thiolutin, CD437 and TPEN as the most potentially valuable drug candidates for addressing drug-resistance caused by aberrant expression of Bcl-2 family proteins in tumor cells. The screen also enables the quantification of multiparameter apoptotic events along with caspase activation in HTS manner in live mode, allowing characterization of non-classical apoptosis signaling.

Keywords

High-throughput screening Drug-resistance Apoptosis Bcl-2 family proteins Caspase 

Abbreviations

HTS

High-throughput screening

DKO

Double knockout

FRET

Fluorescence resonance energy transfer

ECFP

Enhanced cyan fluorescent protein

cyt c

Cytochrome c

ER

Endoplasmic reticulum

MMP

Mitochondrial membrane permeabilization

TMRM

Tetramethyl rhodamine methyl ester

UPR

Unfolded protein response

Notes

Acknowledgments

Immoratalized MEF wild type and Bax/Bak DKO cells were kindly provided by Dr. Stanely J. Korsemeyer (Harvard Medical School, Boston, MA , USA). Caspase-3 specific FRET probe, pcDNA3 DEVD (ECFP-DEVD-EYFP) and nuclear targeted SCAT3-NLS (ECFP-DEVD-Venus) plasmids were kindly provided by Dr. Gavin Welsh (University of Bristol, UK) and Dr. Masayuki Miura (University of Tokyo, Japan) respectively. Expression vectors pCDNA3 Bcl-2-EGFP, Bcl-xL-EGFP and ER localizing pcDNA3 Bcl-2Cb5-EGFP were provided by Dr. Clark Distelhorst (Case Western Reserve University, USA). This study was supported by grant from the Innovative Young Biotechnologist Award, Department of Biotechnology, Government of India and research fellowships from University Grants Commission (UGC) to MS, Council of Scientific and Industrial Research (CSIR) to JJ and Indian Council of Medical Research (ICMR) to PKS and KAM. We sincerely thank Prof. M. Radhakrishna Pillai for helping throughout, Mrs. Indu Ramachandran and Ms. Aparna Asok for FACS analysis.

Conflict of interest

The authors disclose no potential conflicts of interest.

Supplementary material

10495_2013_921_MOESM1_ESM.tif (895 kb)
Supplementary material 1 (TIFF 894 kb)
10495_2013_921_MOESM2_ESM.tif (1.7 mb)
Supplementary material 2 (TIFF 1733 kb)
10495_2013_921_MOESM3_ESM.tif (3.1 mb)
Supplementary material 3 (TIFF 3139 kb)
10495_2013_921_MOESM4_ESM.tif (936 kb)
Supplementary material 4 (TIFF 936 kb)
10495_2013_921_MOESM5_ESM.tif (3.9 mb)
Supplementary material 5 (TIFF 3949 kb)
10495_2013_921_MOESM6_ESM.tif (3.3 mb)
Supplementary material 6 (TIFF 3373 kb)

Supplementary material 7 (MPG 230 kb)

Supplementary material 8 (MPG 340 kb)

Supplementary material 9 (AVI 478 kb)

Supplementary material 10 (AVI 518 kb)

10495_2013_921_MOESM11_ESM.docx (13 kb)
Supplementary material 11 (DOCX 13 kb)

References

  1. 1.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  2. 2.
    Miyashita T, Reed JC (1993) Bcl-2 oncoprotein blocks chemotherapy-induced apoptosis in a human leukemia cell line. Blood 81:151–157PubMedGoogle Scholar
  3. 3.
    Reed JC (1999) Dysregulation of apoptosis in cancer. J Clin Oncol 17:2941–2953PubMedGoogle Scholar
  4. 4.
    Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326PubMedCrossRefGoogle Scholar
  5. 5.
    Kroemer G (1997) The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 3:614–620PubMedCrossRefGoogle Scholar
  6. 6.
    Dubrez-Daloz L, Dupoux A, Cartier J (2008) IAPs: more than just inhibitors of apoptosis proteins. Cell Cycle 7:1036–1046PubMedCrossRefGoogle Scholar
  7. 7.
    Vogler M, Dinsdale D, Dyer MJS, Cohen GM (2008) Bcl-2 inhibitors: small molecules with a big impact on cancer therapy. Cell Death Differ 16:360–367PubMedCrossRefGoogle Scholar
  8. 8.
    van Delft MF, Wei AH, Mason KD et al (2006) The BH3 mimetic ABT-737 targets selective Bcl-2 proteins and efficiently induces apoptosis via Bak/Bax if Mcl-1 is neutralized. Cancer Cell 10:389–399PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Danial NN (2007) BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res 13:7254–7263PubMedCrossRefGoogle Scholar
  10. 10.
    Ruiz-Vela A, Opferman JT, Cheng EHY, Korsmeyer SJ (2005) Proapoptotic BAX and BAK control multiple initiator caspases. EMBO Rep 6:379–385PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW (1993) MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci USA 90:3516–3520PubMedCrossRefGoogle Scholar
  12. 12.
    Wei MC, Zong WX, Cheng EHY et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Adams JM, Cory S (2007) The Bcl-2 apoptotic switch in cancer development and therapy. Oncogene 26:1324–1337PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Lei X, Chen Y, Du G et al (2006) Gossypol induces Bax/Bak-independent activation of apoptosis and cytochrome c release via a conformational change in Bcl-2. FASEB J 20:2147–2149PubMedCrossRefGoogle Scholar
  15. 15.
    Lomonosova E, Ryerse J, Chinnadurai G (2009) BAX/BAK-independent mitoptosis during cell death induced by proteasome inhibition? Mol Cancer Res 7:1268–1284PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Seervi M, Joseph J, Sobhan PK, Bhavya BC, Santhoshkumar TR (2011) Essential requirement of cytochrome c release for caspase activation by procaspase-activating compound defined by cellular models. Cell Death Dis 2:e207PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Lindsten T, Thompson CB (2006) Cell death in the absence of Bax and Bak. Cell Death Differ 13:1272–1276PubMedCrossRefGoogle Scholar
  18. 18.
    Takemoto K, Nagai T, Miyawaki A, Miura M (2003) Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects. J Cell Biol 160:235–243PubMedCrossRefGoogle Scholar
  19. 19.
    Joseph J, Seervi M, Sobhan PK, Retnabai ST (2011) High throughput ratio imaging to profile caspase activity: potential application in multiparameter high content apoptosis analysis and drug-screening. PLoS One 6:e20114PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Sobhan PK, Seervi M, Joseph J et al (2012) Identification of heat shock protein 90 inhibitors to sensitize drug resistant side population tumor cells using a cell based assay platform. Cancer Lett 317:78–88PubMedCrossRefGoogle Scholar
  21. 21.
    Pradelli LA, Beneteau M, Ricci JE (2010) Mitochondrial control of caspase-dependent and-independent cell death. Cell Mol Life Sci 67:1589–1597PubMedCrossRefGoogle Scholar
  22. 22.
    Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163PubMedCrossRefGoogle Scholar
  23. 23.
    Mullauer FB, Kessler JH, Medema JP (2009) Betulinic acid induces cytochrome c release and apoptosis in a Bax/Bak-independent, permeability transition pore dependent fashion. Apoptosis 14:191–202PubMedCrossRefGoogle Scholar
  24. 24.
    Petronilli V, Penzo D, Scorrano L, Bernardi P, Di Lisa F (2001) The mitochondrial permeability transition, release of cytochrome c and cell death. J Biol Chem 276:12030–12034PubMedCrossRefGoogle Scholar
  25. 25.
    Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59PubMedCrossRefGoogle Scholar
  26. 26.
    Ribas J, Yuste VJ, Garrofe-Ochoa X, Meijer L, Esquerda JE, Boix J (2008) 7-Bromoindirubin-3′-oxime uncovers a serine protease-mediated paradigm of necrotic cell death. Biochem Pharmacol 76:39–52PubMedCrossRefGoogle Scholar
  27. 27.
    Tait SWG, Green DR (2008) Caspase-independent cell death: leaving the set without the final cut. Oncogene 27:6452–6461PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Janssen K, Horn S, Niemann MT, Daniel PT, Schulze-Osthoff K, Fischer U (2009) Inhibition of the ER Ca2+ pump forces multidrug-resistant cells deficient in Bak and Bax into necrosis. J Cell Sci 122:4481–4491PubMedCrossRefGoogle Scholar
  29. 29.
    Tischner D, Manzl C, Soratroi C, Villunger A, Krumschnabel G (2012) Necrosis-like death can engage multiple pro-apoptotic Bcl-2 protein family members. Apoptosis 17:1197–1209PubMedCrossRefGoogle Scholar
  30. 30.
    Dixon SJ, Lemberg KM, Lamprecht MR et al (2012) Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149:1060–1072PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13:1423–1433PubMedCrossRefGoogle Scholar
  32. 32.
    Ding Q, Dimayuga E, Markesbery WR, Keller JN (2006) Proteasome inhibition induces reversible impairments in protein synthesis. FASEB J 20:1055–1063PubMedCrossRefGoogle Scholar
  33. 33.
    West DC, Qin Y, Peterson QP et al (2012) Differential effects of procaspase-3 activating compounds in the induction of cancer cell death. Mol Pharm 9:1425–1434PubMedCentralPubMedGoogle Scholar
  34. 34.
    Rozman-Pungercar J, Kopitar-Jerala N, Bogyo M et al (2003) Inhibition of papain-like cysteine proteases and legumain by caspase-specific inhibitors: when reaction mechanism is more important than specificity. Cell Death Differ 10:881–888PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Mahendra Seervi
    • 1
  • Praveen K. Sobhan
    • 1
  • Krupa Ann Mathew
    • 1
  • Jeena Joseph
    • 1
  • Prakash Rajappan Pillai
    • 1
  • T. R. Santhoshkumar
    • 1
    Email author
  1. 1.Cancer Research Program-1Rajiv Gandhi Centre for BiotechnologyThiruvananthapuramIndia

Personalised recommendations