Advertisement

Apoptosis

, Volume 19, Issue 1, pp 76–89 | Cite as

The MEK/ERK pathway is the primary conduit for Borrelia burgdorferi-induced inflammation and P53-mediated apoptosis in oligodendrocytes

  • Geetha Parthasarathy
  • Mario T. Philipp
Original Paper

Abstract

Lyme neuroborreliosis (LNB) affects both the central and peripheral nervous systems. In a rhesus macaque model of LNB we had previously shown that brains of rhesus macaques inoculated with Borrelia burgdorferi release inflammatory mediators, and undergo oligodendrocyte and neuronal cell death. In vitro analysis of this phenomenon indicated that while B. burgdorferi can induce inflammation and apoptosis of oligodendrocytes per se, microglia are required for neuronal apoptosis. We hypothesized that the inflammatory milieu elicited by the bacterium in microglia or oligodendrocytes contributes to the apoptosis of neurons and glial cells, respectively, and that downstream signaling events in NFkB and/or MAPK pathways play a role in these phenotypes. To test these hypotheses in oligodendrocytes, several pathway inhibitors were used to determine their effect on inflammation and apoptosis, as induced by B. burgdorferi. In a human oligodendrocyte cell line (MO3.13), inhibition of the ERK pathway in the presence of B. burgdorferi markedly reduced inflammation, followed by the JNK, p38 and NFkB pathway inhibition. In addition to eliciting inflammation, B. burgdorferi also increased total p53 protein levels, and suppression of the ERK pathway mitigated this effect. While inhibition of p53 had a minimal effect in reducing inflammation, suppression of the ERK pathway or p53 reduced apoptosis as measured by active caspase-3 activity and the TUNEL assay. A similar result was seen in primary human oligodendrocytes wherein suppression of ERK or p53 reduced apoptosis. It is possible that inflammation and apoptosis in oligodendrocytes are divergent arms of MAPK pathways, particularly the MEK/ERK pathway.

Keywords

Borrelia burgdorferi Oligodendrocytes Inflammation Apoptosis MAPK 

Notes

Acknowledgments

This study was supported by the National Institute of Neurologic Disorders and Stroke through Grant NS048952, and by the National Center for Research Resources/Office of Research Infrastructure Programs of the National Institutes of Health through Grant P51RR000164/P51OD011104. We thank the TNPRC Pathogen Detection and Quantification Core Laboratory for help with the multiplex ELISA assays. Ms. Robin Rodriguez of the TNPRC Media Laboratory is gratefully acknowledged for her assistance with graphics.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Jaenson TG (1991) The epidemiology of lyme borreliosis. Parasitol Today 7(2):39–45PubMedCrossRefGoogle Scholar
  2. 2.
    Bacon RM, Kugeler KJ, Mead PS (2008) Surveillance for Lyme disease—United States, 1992–2006. MMWR Surveill Summ 57(10):1–9PubMedGoogle Scholar
  3. 3.
    Steere AC (2001) Lyme disease. N Engl J Med 345(2):115–125. doi: 10.1056/NEJM200107123450207 PubMedCrossRefGoogle Scholar
  4. 4.
    Halperin JJ (1997) Neuroborreliosis: central nervous system involvement. Semin Neurol 17(1):19–24. doi: 10.1055/s-2008-1040908 PubMedCrossRefGoogle Scholar
  5. 5.
    Vallat JM, Hugon J, Lubeau M, Leboutet MJ, Dumas M, Desproges-Gotteron R (1987) Tick-bite meningoradiculoneuritis: clinical, electrophysiologic, and histologic findings in 10 cases. Neurology 37(5):749–753PubMedCrossRefGoogle Scholar
  6. 6.
    Benach JL, Garcia-Monco JC (1992) Aspects of the pathogenesis of neuroborreliosis. In: Schutzer S (ed) Lyme disease: molecular and immunological approaches. Cold Spring Harbor Laboratory Press, Plainview, New York, pp 1–10Google Scholar
  7. 7.
    Philipp MT, Aydintug MK, Bohm RP Jr, Cogswell FB, Dennis VA, Lanners HN, Lowrie RC Jr, Roberts ED, Conway MD, Karacorlu M, Peyman GA, Gubler DJ, Johnson BJ, Piesman J, Gu Y (1993) Early and early disseminated phases of Lyme disease in the rhesus monkey: a model for infection in humans. Infect Immun 61(7):3047–3059PubMedCentralPubMedGoogle Scholar
  8. 8.
    Roberts ED, Bohm RP Jr, Cogswell FB, Lanners HN, Lowrie RC Jr, Povinelli L, Piesman J, Philipp MT (1995) Chronic Lyme disease in the rhesus monkey. Lab Invest 72(2):146–160PubMedGoogle Scholar
  9. 9.
    England JD, Bohm RP Jr, Roberts ED, Philipp MT (1997) Mononeuropathy multiplex in rhesus monkeys with chronic Lyme disease. Ann Neurol 41(3):375–384. doi: 10.1002/ana.410410313 PubMedCrossRefGoogle Scholar
  10. 10.
    Cadavid D, Bai Y, Hodzic E, Narayan K, Barthold SW, Pachner AR (2004) Cardiac involvement in non-human primates infected with the Lyme disease spirochete Borrelia burgdorferi. Lab Invest 84(11):1439–1450. doi: 10.1038/labinvest.3700177 PubMedCrossRefGoogle Scholar
  11. 11.
    Beck G, Habicht GS, Benach JL, Coleman JL, Lysik RM, O’Brien RF (1986) A role for interleukin-1 in the pathogenesis of Lyme disease. Zentralbl Bakteriol Mikrobiol Hyg A 263(1–2):133–136PubMedGoogle Scholar
  12. 12.
    Straubinger RK, Straubinger AF, Harter L, Jacobson RH, Chang YF, Summers BA, Erb HN, Appel MJ (1997) Borrelia burgdorferi migrates into joint capsules and causes an up-regulation of interleukin-8 in synovial membranes of dogs experimentally infected with ticks. Infect Immun 65(4):1273–1285PubMedCentralPubMedGoogle Scholar
  13. 13.
    Burns MJ, Sellati TJ, Teng EI, Furie MB (1997) Production of interleukin-8 (IL-8) by cultured endothelial cells in response to Borrelia burgdorferi occurs independently of secreted [corrected] IL-1 and tumor necrosis factor alpha and is required for subsequent transendothelial migration of neutrophils. Infect Immun 65(4):1217–1222PubMedCentralPubMedGoogle Scholar
  14. 14.
    Pashenkov M, Teleshova N, Kouwenhoven M, Smirnova T, Jin YP, Kostulas V, Huang YM, Pinegin B, Boiko A, Link H (2002) Recruitment of dendritic cells to the cerebrospinal fluid in bacterial neuroinfections. J Neuroimmunol 122(1–2):106–116PubMedCrossRefGoogle Scholar
  15. 15.
    Brown CR, Blaho VA, Loiacono CM (2003) Susceptibility to experimental Lyme arthritis correlates with KC and monocyte chemoattractant protein-1 production in joints and requires neutrophil recruitment via CXCR2. J Immunol 171(2):893–901PubMedGoogle Scholar
  16. 16.
    Kondrusik M, Swierzbinska R, Pancewicz S, Zajkowska J, Grygorczuk S, Hermanowska-Szpakowicz T (2004) Evaluation of proinflammatory cytokine (TNF-alpha, IL-1beta, IL-6, IFN-gamma) concentrations in serum and cerebrospinal fluid of patients with neuroborreliosis. Neurol Neurochir Pol 38(4):265–270PubMedGoogle Scholar
  17. 17.
    Grygorczuk S, Pancewicz S, Zajkowska J, Kondrusik M, Rwierzbinska R, Hermanowska-Szpakowicz T (2004) Concentrations of macrophage inflammatory proteins MIP-1alpha and MIP-1beta and interleukin 8 (il-8) in lyme borreliosis. Infection 32(6):350–355. doi: 10.1007/s15010-004-3110-4 PubMedCrossRefGoogle Scholar
  18. 18.
    Grygorczuk S, Zajkowska J, Swierzbinska R, Pancewicz S, Kondrusik M, Hermanowska-Szpakowicz T (2005) Concentration of interferon-inducible T cell chemoattractant and monocyte chemotactic protein-1 in serum and cerebrospinal fluid of patients with Lyme borreliosis. Rocz Akad Med Bialymst 50:173–178PubMedGoogle Scholar
  19. 19.
    Benveniste EN (1992) Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am J Physiol 263(1 Pt 1):C1–16PubMedGoogle Scholar
  20. 20.
    Merrill JE, Benveniste EN (1996) Cytokines in inflammatory brain lesions: helpful and harmful. Trends Neurosci 19(8):331–338PubMedCrossRefGoogle Scholar
  21. 21.
    Raivich G, Bohatschek M, Kloss CU, Werner A, Jones LL, Kreutzberg GW (1999) Neuroglial activation repertoire in the injured brain: graded response, molecular mechanisms and cues to physiological function. Brain Res Brain Res Rev 30(1):77–105PubMedCrossRefGoogle Scholar
  22. 22.
    Raivich G, Jones LL, Werner A, Bluthmann H, Doetschmann T, Kreutzberg GW (1999) Molecular signals for glial activation: pro- and anti-inflammatory cytokines in the injured brain. Acta Neurochir Suppl 73:21–30PubMedGoogle Scholar
  23. 23.
    Conductier G, Blondeau N, Guyon A, Nahon JL, Rovere C (2010) The role of monocyte chemoattractant protein MCP1/CCL2 in neuroinflammatory diseases. J Neuroimmunol. doi: 10.1016/j.jneuroim.2010.05.010 PubMedGoogle Scholar
  24. 24.
    Ramesh G, Borda JT, Dufour J, Kaushal D, Ramamoorthy R, Lackner AA, Philipp MT (2008) Interaction of the Lyme disease spirochete Borrelia burgdorferi with brain parenchyma elicits inflammatory mediators from glial cells as well as glial and neuronal apoptosis. Am J Pathol 173(5):1415–1427. doi: 10.2353/ajpath.2008.080483 PubMedCrossRefGoogle Scholar
  25. 25.
    Ramesh G, Borda JT, Gill A, Ribka EP, Morici LA, Mottram P, Martin DS, Jacobs MB, Didier PJ, Philipp MT (2009) Possible role of glial cells in the onset and progression of Lyme neuroborreliosis. J Neuroinflammation 6:23. doi: 10.1186/1742-2094-6-23 PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Myers TA, Kaushal D, Philipp MT (2009) Microglia are mediators of Borrelia burgdorferi-induced apoptosis in SH-SY5Y neuronal cells. PLoS Pathog 5(11):e1000659. doi: 10.1371/journal.ppat.1000659 PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Ramesh G, Benge S, Pahar B, Philipp MT (2012) A possible role for inflammation in mediating apoptosis of oligodendrocytes as induced by the Lyme disease spirochete Borrelia burgdorferi. J Neuroinflammation 9:72. doi: 10.1186/1742-2094-9-72 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Baumann N, Pham-Dinh D (2001) Biology of oligodendrocyte and myelin in the mammalian central nervous system. Physiol Rev 81(2):871–927PubMedGoogle Scholar
  29. 29.
    Ebnet K, Brown KD, Siebenlist UK, Simon MM, Shaw S (1997) Borrelia burgdorferi activates nuclear factor-kappa B and is a potent inducer of chemokine and adhesion molecule gene expression in endothelial cells and fibroblasts. J Immunol 158(7):3285–3292PubMedGoogle Scholar
  30. 30.
    Schumann RR, Pfeil D, Freyer D, Buerger W, Lamping N, Kirschning CJ, Goebel UB, Weber JR (1998) Lipopolysaccharide and pneumococcal cell wall components activate the mitogen activated protein kinases (MAPK) erk-1, erk-2, and p38 in astrocytes. Glia 22(3):295–305PubMedCrossRefGoogle Scholar
  31. 31.
    van der Bruggen T, Nijenhuis S, van Raaij E, Verhoef J, van Asbeck BS (1999) Lipopolysaccharide-induced tumor necrosis factor alpha production by human monocytes involves the raf-1/MEK1-MEK2/ERK1-ERK2 pathway. Infect Immun 67(8):3824–3829PubMedCentralPubMedGoogle Scholar
  32. 32.
    Dong C, Davis RJ, Flavell RA (2002) MAP kinases in the immune response. Annu Rev Immunol 20:55–72. doi: 10.1146/annurev.immunol.20.091301.131133 PubMedCrossRefGoogle Scholar
  33. 33.
    Amaral JD, Castro RE, Steer CJ, Rodrigues CM (2009) p53 and the regulation of hepatocyte apoptosis: implications for disease pathogenesis. Trends Mol Med 15(11):531–541. doi: 10.1016/j.molmed.2009.09.005 PubMedCrossRefGoogle Scholar
  34. 34.
    Vousden KH (2009) Functions of p53 in metabolism and invasion. Biochem Soc Trans 37(Pt 3):511–517. doi: 10.1042/BST0370511 PubMedCrossRefGoogle Scholar
  35. 35.
    Vousden KH, Ryan KM (2009) p53 and metabolism. Nat Rev Cancer 9(10):691–700. doi: 10.1038/nrc2715 PubMedCrossRefGoogle Scholar
  36. 36.
    Sadik CD, Hunfeld KP, Bachmann M, Kraiczy P, Eberhardt W, Brade V, Pfeilschifter J, Muhl H (2008) Systematic analysis highlights the key role of TLR2/NF-kappaB/MAP kinase signaling for IL-8 induction by macrophage-like THP-1 cells under influence of Borrelia burgdorferi lysates. Int J Biochem Cell Biol 40(11):2508–2521. doi: 10.1016/j.biocel.2008.04.014 PubMedCrossRefGoogle Scholar
  37. 37.
    Anguita J, Barthold SW, Persinski R, Hedrick MN, Huy CA, Davis RJ, Flavell RA, Fikrig E (2002) Murine Lyme arthritis development mediated by p38 mitogen-activated protein kinase activity. J Immunol 168(12):6352–6357PubMedGoogle Scholar
  38. 38.
    Izadi H, Motameni AT, Bates TC, Olivera ER, Villar-Suarez V, Joshi I, Garg R, Osborne BA, Davis RJ, Rincon M, Anguita J (2007) c-Jun N-terminal kinase 1 is required for Toll-like receptor 1 gene expression in macrophages. Infect Immun 75(10):5027–5034. doi: 10.1128/IAI.00492-07 PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Olson CM, Hedrick MN, Izadi H, Bates TC, Olivera ER, Anguita J (2007) p38 mitogen-activated protein kinase controls NF-kappaB transcriptional activation and tumor necrosis factor alpha production through RelA phosphorylation mediated by mitogen- and stress-activated protein kinase 1 in response to Borrelia burgdorferi antigens. Infect Immun 75(1):270–277. doi: 10.1128/IAI.01412-06 PubMedCentralPubMedCrossRefGoogle Scholar
  40. 40.
    Hawley K, Navasa N, Olson CM Jr, Bates TC, Garg R, Hedrick MN, Conze D, Rincon M, Anguita J (2012) Macrophage p38 mitogen-activated protein kinase activity regulates invariant natural killer T-cell responses during Borrelia burgdorferi infection. J Infect Dis 206(2):283–291. doi: 10.1093/infdis/jis332 PubMedCrossRefGoogle Scholar
  41. 41.
    Takahashi P, Polson A, Reisman D (2011) Elevated transcription of the p53 gene in early S-phase leads to a rapid DNA-damage response during S-phase of the cell cycle. Apoptosis 16(9):950–958. doi: 10.1007/s10495-011-0623-z PubMedCrossRefGoogle Scholar
  42. 42.
    Persons DL, Yazlovitskaya EM, Pelling JC (2000) Effect of extracellular signal-regulated kinase on p53 accumulation in response to cisplatin. J Biol Chem 275(46):35778–35785. doi: 10.1074/jbc.M004267200 PubMedCrossRefGoogle Scholar
  43. 43.
    She QB, Chen N, Dong Z (2000) ERKs and p38 kinase phosphorylate p53 protein at serine 15 in response to UV radiation. J Biol Chem 275(27):20444–20449. doi: 10.1074/jbc.M001020200 PubMedCrossRefGoogle Scholar
  44. 44.
    Yeh PY, Chuang SE, Yeh KH, Song YC, Chang LL, Cheng AL (2004) Phosphorylation of p53 on Thr55 by ERK2 is necessary for doxorubicin-induced p53 activation and cell death. Oncogene 23(20):3580–3588. doi: 10.1038/sj.onc.1207426 PubMedCrossRefGoogle Scholar
  45. 45.
    Sears R, Nuckolls F, Haura E, Taya Y, Tamai K, Nevins JR (2000) Multiple Ras-dependent phosphorylation pathways regulate Myc protein stability. Genes Dev 14(19):2501–2514PubMedCrossRefGoogle Scholar
  46. 46.
    Lavin MF, Gueven N (2006) The complexity of p53 stabilization and activation. Cell Death Differ 13(6):941–950. doi: 10.1038/sj.cdd.4401925 PubMedCrossRefGoogle Scholar
  47. 47.
    Cagnol S, Chambard JC (2010) ERK and cell death: mechanisms of ERK-induced cell death—apoptosis, autophagy and senescence. FEBS J 277(1):2–21. doi: 10.1111/j.1742-4658.2009.07366.x PubMedCrossRefGoogle Scholar
  48. 48.
    Komarov PG, Komarova EA, Kondratov RV, Christov-Tselkov K, Coon JS, Chernov MV, Gudkov AV (1999) A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy. Science 285(5434):1733–1737PubMedCrossRefGoogle Scholar
  49. 49.
    Strom E, Sathe S, Komarov PG, Chernova OB, Pavlovska I, Shyshynova I, Bosykh DA, Burdelya LG, Macklis RM, Skaliter R, Komarova EA, Gudkov AV (2006) Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2(9):474–479. doi: 10.1038/nchembio809 PubMedCrossRefGoogle Scholar
  50. 50.
    Speidel D (2010) Transcription-independent p53 apoptosis: an alternative route to death. Trends Cell Biol 20(1):14–24. doi: 10.1016/j.tcb.2009.10.002 PubMedCrossRefGoogle Scholar
  51. 51.
    Pelaia G, Vatrella A, Cuda G, Maselli R, Marsico SA (2003) Molecular mechanisms of corticosteroid actions in chronic inflammatory airway diseases. Life Sci 72(14):1549–1561PubMedCrossRefGoogle Scholar
  52. 52.
    Pelaia G, Cuda G, Vatrella A, Grembiale RD, De Sarro G, Maselli R, Costanzo FS, Avvedimento VE, Rotiroti D, Marsico SA (2001) Effects of glucocorticoids on activation of c-jun N-terminal, extracellular signal-regulated, and p38 MAP kinases in human pulmonary endothelial cells. Biochem Pharmacol 62(12):1719–1724PubMedCrossRefGoogle Scholar
  53. 53.
    Ayroldi E, Cannarile L, Migliorati G, Nocentini G, Delfino DV, Riccardi C (2012) Mechanisms of the anti-inflammatory effects of glucocorticoids: genomic and nongenomic interference with MAPK signaling pathways. FASEB J 26(12):4805–4820. doi: 10.1096/fj.12-216382 PubMedCrossRefGoogle Scholar
  54. 54.
    Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, Kidd VJ, Mak TW, Ingram AJ (2002) ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem 277(15):12710–12717. doi: 10.1074/jbc.M111598200 PubMedCrossRefGoogle Scholar
  55. 55.
    Xing Z, Cardona CJ, Anunciacion J, Adams S, Dao N (2010) Roles of the ERK MAPK in the regulation of proinflammatory and apoptotic responses in chicken macrophages infected with H9N2 avian influenza virus. J Gen Virol 91(Pt 2):343–351. doi: 10.1099/vir.0.015578-0 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Bacteriology and ParasitologyTulane National Primate Research CenterCovingtonUSA

Personalised recommendations