Advertisement

Apoptosis

, Volume 18, Issue 11, pp 1416–1425 | Cite as

Isocitrate dehydrogenase 1 mutant R132H sensitizes glioma cells to BCNU-induced oxidative stress and cell death

  • Isabelle Vanessa Mohrenz
  • Patrick Antonietti
  • Stefan Pusch
  • David Capper
  • Jörg Balss
  • Sophia Voigt
  • Susanne Weissert
  • Alicia Mukrowsky
  • Jan Frank
  • Christian Senft
  • Volker Seifert
  • Andreas von Deimling
  • Donat Kögel
Original Paper

Abstract

Isocitrate dehydrogenase 1 (IDH1) decarboxylates isocitrate to α-ketoglutarate (α-KG) leading to generation of NADPH, which is required to regenerate reduced glutathione (GSH), the major cellular ROS scavenger. Mutation of R132 of IDH1 abrogates generation of α-KG and leads to conversion of α-KG to 2-hydroxyglutarate. We hypothesized that glioma cells expressing mutant IDH1 have a diminished antioxidative capacity and therefore may encounter an ensuing loss of cytoprotection under conditions of oxidative stress. Our study was performed with LN229 cells stably overexpressing IDH1 R132H and wild type IDH1 or with a lentiviral IDH1 knockdown. Quantification of GSH under basal conditions and following treatment with the glutathione reductase inhibitor BCNU revealed significantly lower GSH levels in IDH1 R132H expressing cells and IDH1 KD cells compared to their respective controls. FACS analysis of cell death and ROS production also demonstrated an increased sensitivity of IDH1-R132H-expressing cells and IDH1 KD cells to BCNU, but not to temozolomide. The sensitivity of IDH1-R132H-expressing cells and IDH1 KD cells to ROS induction and cell death was further enhanced with the transaminase inhibitor aminooxyacetic acid and under glutamine free conditions, indicating that these cells were more addicted to glutaminolysis. Increased sensitivity to BCNU-induced ROS production and cell death was confirmed in HEK293 cells inducibly expressing the IDH1 mutants R132H, R132C and R132L. Based on these findings we propose that in addition to its established pro-tumorigenic effects, mutant IDH1 may also limit the resistance of gliomas to specific death stimuli, therefore opening new perspectives for therapy.

Keywords

Brain tumor Glutaminolysis Cytoprotection Oxidative stress Glutathione 

Notes

Acknowledgments

We thank Gabriele Köpf and Hildegard König for excellent technical assistance.

Funding

This study was supported by the Deutsche Krebshilfe (Grant 108795).

Conflict of interest

The authors declare no conflict of interest.

References

  1. 1.
    Ohgaki H, Kleihues P (2011) Genetic profile of astrocytic and oligodendroglial gliomas. Brain Tumor Pathol 28:177–183PubMedCrossRefGoogle Scholar
  2. 2.
    Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453PubMedCrossRefGoogle Scholar
  3. 3.
    Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466PubMedCrossRefGoogle Scholar
  4. 4.
    Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996PubMedCrossRefGoogle Scholar
  5. 5.
    Ziegler DS, Kung AL, Kieran MW (2008) Anti-apoptosis mechanisms in malignant gliomas. J Clin Oncol 26:493–500PubMedCrossRefGoogle Scholar
  6. 6.
    Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P et al (2008) An integrated genomic analysis of human glioblastoma multiforme. Science 321:1807–1812PubMedCrossRefGoogle Scholar
  7. 7.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W et al (2009) IDH1 and IDH2 mutations in gliomas. N Engl J Med 360:765–773PubMedCrossRefGoogle Scholar
  8. 8.
    Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744PubMedCrossRefGoogle Scholar
  9. 9.
    Paschka P, Schlenk RF, Gaidzik VI, Habdank M, Kronke J, Bullinger L et al (2010) IDH1 and IDH2 mutations are frequent genetic alterations in acute myeloid leukemia and confer adverse prognosis in cytogenetically normal acute myeloid leukemia with NPM1 mutation without FLT3 internal tandem duplication. J Clin Oncol 28:3636–3643PubMedCrossRefGoogle Scholar
  10. 10.
    Amary MF, Bacsi K, Maggiani F, Damato S, Halai D, Berisha F et al (2011) IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol 224:334–343PubMedCrossRefGoogle Scholar
  11. 11.
    Sanson M, Marie Y, Paris S, Idbaih A, Laffaire J, Ducray F et al (2009) Isocitrate dehydrogenase 1 codon 132 mutation is an important prognostic biomarker in gliomas. J Clin Oncol 27:4150–4154PubMedCrossRefGoogle Scholar
  12. 12.
    van den Bent MJ, Dubbink HJ, Marie Y, Brandes AA, Taphoorn MJ, Wesseling P et al (2010) IDH1 and IDH2 mutations are prognostic but not predictive for outcome in anaplastic oligodendroglial tumors: a report of the European Organization for Research and Treatment of Cancer Brain Tumor Group. Clin Cancer Res 16:1597–1604PubMedCrossRefGoogle Scholar
  13. 13.
    Hartmann C, Hentschel B, Wick W, Capper D, Felsberg J, Simon M et al (2010) Patients with IDH1 wild type anaplastic astrocytomas exhibit worse prognosis than IDH1-mutated glioblastomas, and IDH1 mutation status accounts for the unfavorable prognostic effect of higher age: implications for classification of gliomas. Acta Neuropathol 120:707–718PubMedCrossRefGoogle Scholar
  14. 14.
    Zhao S, Lin Y, Xu W, Jiang W, Zha Z, Wang P et al (2009) Glioma-derived mutations in IDH1 dominantly inhibit IDH1 catalytic activity and induce HIF-1alpha. Science 324:261–265PubMedCrossRefGoogle Scholar
  15. 15.
    Sasaki M, Knobbe CB, Itsumi M, Elia AJ, Harris IS, Chio II et al (2012) d-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev 26:2038–2049PubMedCrossRefGoogle Scholar
  16. 16.
    Chowdhury R, Yeoh KK, Tian YM, Hillringhaus L, Bagg EA, Rose NR et al (2011) The oncometabolite 2-hydroxyglutarate inhibits histone lysine demethylases. EMBO Rep 12:463–469PubMedCrossRefGoogle Scholar
  17. 17.
    Xu W, Yang H, Liu Y, Yang Y, Wang P, Kim SH et al (2011) Oncometabolite 2-hydroxyglutarate is a competitive inhibitor of alpha-ketoglutarate-dependent dioxygenases. Cancer Cell 19:17–30PubMedCrossRefGoogle Scholar
  18. 18.
    Jo SH, Lee SH, Chun HS, Lee SM, Koh HJ, Lee SE et al (2002) Cellular defense against UVB-induced phototoxicity by cytosolic NADP(+)-dependent isocitrate dehydrogenase. Biochem Biophys Res Commun 292:542–549PubMedCrossRefGoogle Scholar
  19. 19.
    Kim SY, Lee SM, Tak JK, Choi KS, Kwon TK, Park JW (2007) Regulation of singlet oxygen-induced apoptosis by cytosolic NADP+-dependent isocitrate dehydrogenase. Mol Cell Biochem 302:27–34PubMedCrossRefGoogle Scholar
  20. 20.
    Koh HJ, Lee SM, Son BG, Lee SH, Ryoo ZY, Chang KT et al (2004) Cytosolic NADP+-dependent isocitrate dehydrogenase plays a key role in lipid metabolism. J Biol Chem 279:39968–39974PubMedCrossRefGoogle Scholar
  21. 21.
    Lee SM, Koh HJ, Park DC, Song BJ, Huh TL, Park JW (2002) Cytosolic NADP(+)-dependent isocitrate dehydrogenase status modulates oxidative damage to cells. Free Radic Biol Med 32:1185–1196PubMedCrossRefGoogle Scholar
  22. 22.
    Bleeker FE, Atai NA, Lamba S, Jonker A, Rijkeboer D, Bosch KS et al (2010) The prognostic IDH1(R132) mutation is associated with reduced NADP+-dependent IDH activity in glioblastoma. Acta Neuropathol 119:487–494PubMedCrossRefGoogle Scholar
  23. 23.
    Capper D, Zentgraf H, Balss J, Hartmann C, von Deimling A (2009) Monoclonal antibody specific for IDH1 R132H mutation. Acta Neuropathol 118:599–601PubMedCrossRefGoogle Scholar
  24. 24.
    Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8:579–591PubMedCrossRefGoogle Scholar
  25. 25.
    Seltzer MJ, Bennett BD, Joshi AD, Gao P, Thomas AG, Ferraris DV et al (2010) Inhibition of glutaminase preferentially slows growth of glioma cells with mutant IDH1. Cancer Res 70:8981–8987PubMedCrossRefGoogle Scholar
  26. 26.
    Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35:427–433PubMedCrossRefGoogle Scholar
  27. 27.
    Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, Pfeiffer HK et al (2008) Myc regulates a transcriptional program that stimulates mitochondrial glutaminolysis and leads to glutamine addiction. Proc Natl Acad Sci USA 105:18782–18787PubMedCrossRefGoogle Scholar
  28. 28.
    Reitman ZJ, Yan H (2010) Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst 102:932–941PubMedCrossRefGoogle Scholar
  29. 29.
    Reitman ZJ, Jin G, Karoly ED, Spasojevic I, Yang J, Kinzler KW et al (2011) Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci USA 108:3270–3275PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Isabelle Vanessa Mohrenz
    • 1
  • Patrick Antonietti
    • 1
  • Stefan Pusch
    • 2
  • David Capper
    • 2
    • 3
  • Jörg Balss
    • 3
  • Sophia Voigt
    • 1
  • Susanne Weissert
    • 3
  • Alicia Mukrowsky
    • 1
  • Jan Frank
    • 4
  • Christian Senft
    • 5
  • Volker Seifert
    • 5
  • Andreas von Deimling
    • 2
    • 3
  • Donat Kögel
    • 1
  1. 1.Experimental Neurosurgery, Neuroscience Center, Goethe University HospitalFrankfurtGermany
  2. 2.Clinical Cooperation Unit NeuropathologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
  3. 3.Department of NeuropathologyInstitute of Pathology, Ruprecht-Karls-University HeidelbergHeidelbergGermany
  4. 4.Institute of Biological Chemistry and Nutrition, University of HohenheimStuttgartGermany
  5. 5.Department of NeurosurgeryGoethe University HospitalFrankfurtGermany

Personalised recommendations