Advertisement

Apoptosis

, Volume 18, Issue 8, pp 963–979 | Cite as

Rac1 signaling protects monocytic AML cells expressing the MLL-AF9 oncogene from caspase-mediated apoptotic death

  • C. Hinterleitner
  • J. Huelsenbeck
  • C. Henninger
  • F. Wartlick
  • A. Schorr
  • B. Kaina
  • G. Fritz
Original Paper

Abstract

We investigated the relevance of signaling mechanisms regulated by the Ras-homologous GTPase Rac1 for survival of acute myeloid leukemia (AML) cells harbouring the MLL-AF9 oncogene due to t(9;11)(p21;q23) translocation. Monocytic MLL-AF9 expressing cells (MM6, THP-1) were hypersensitive to both small-molecule inhibitors targeting Rac1 (EHT 1864, NSC 23766) (IC50EHT ~12.5 μM) and lipid lowering drugs (lovastatin, atorvastatin) (IC50Lova ~7.5 μM) as compared to acute myelocytic leukemia (NOMO-1, HL60) and T cell leukemia (Jurkat) cells (IC50EHT >30 μM; IC50Lova >25 μM). Hypersensitivity of monocytic cells following Rac1 inhibition resulted from caspase-driven apoptosis as shown by profound activation of caspase-8,-9,-7,-3 and substantial (~90 %) decrease in protein expression of pro-survival factors (survivin, XIAP, p-Akt). Apoptotic death was preceded by S139-posphorylation of histone H2AX (γH2AX), a prototypical surrogate marker of DNA double-strand breaks (DSBs). Taken together, abrogation of Rac1 signaling causes DSBs in acute monocytic leukemia cells harbouring the MLL-AF9 oncogene, which, together with downregulation of survivin, XIAP and p-Akt, results in massive induction of caspase-driven apoptotic death. Apparently, Rac1 signaling is required for maintaining genetic stability and maintaining survival in specific subtypes of AML. Hence, targeting of Rac1 is considered a promising novel strategy to induce lethality in MLL-AF9 expressing AML.

Keywords

AML t(9;11)(p21;q23) Ras-homologous GTPases HMG-CoA reductase inhibitors (statins) DNA damage Apoptosis 

Abbreviations

Akt

Protein kinase B

ALL

Acute lymphoblastic leukemia

AML

Acute myeloid leukemia

ATM

Ataxia telangiectasia mutated

ATR

ATM and Rad3-related

BER

Base excision repair

BRCA

Breast cancer susceptibility protein

Chk

Checkpoint kinase

CRIB

Cdc42/Rac interactive binding region

DDR

DNA damage response

DSBs

DNA double-strand breaks

GEF

Guanine exchange factor

IC50

Inhibitory concentration 50 %

EMT

Epithelial-to-mesenchymal transition

HMG-CoA

3-Hydroxy-3-methyl-glutaryl coenzyme A

H2AX

Histone H2AX

γH2AX

S139 phosphorylated H2AX

IC50

Inhibitory concentration 50 %

IC50EHT

IC50 after EHT 1864 treatment

IC50Lova

IC50 after lovastatin treatment

MLL

Mixed lineage leukemia

MLLT3 (=AF9)

Mixed lineage leukemia, tanslocated to, 3

PARP

Poly (ADP-ribose) polymerase

Rac1

Ras-related C3 botulinum substrate 1

Rho

Ras-homologous

XIAP

X-linked inhibitor of apoptosis

Notes

Acknowledgments

We would like to thank C. Brachetti for excellent technical assistance. This work was supported by the José Carreras Leukämie Stiftung (SP 10/07) and the Deutsche Krebshilfe (109188).

Conflict of interest

The authors declare no conflicts of interest.

Supplementary material

10495_2013_842_MOESM1_ESM.doc (49 kb)
Supplementary material 1 (DOC 49 kb)

References

  1. 1.
    Bokoch GM (2000) Regulation of cell function by Rho family GTPases. Immunol Res 21:139–148PubMedCrossRefGoogle Scholar
  2. 2.
    Hall A (1998) Rho GTPases and the actin cytoskeleton. Science 279:509–514PubMedCrossRefGoogle Scholar
  3. 3.
    Villalonga P, Ridley AJ (2006) Rho GTPases and cell cycle control. Growth Factors 24(3):159–164PubMedCrossRefGoogle Scholar
  4. 4.
    Coniglio SJ, Jou TS, Symons M (2001) Rac1 protects epithelial cells against anoikis. J Biol Chem 276:28113–28120PubMedCrossRefGoogle Scholar
  5. 5.
    Minden A, Lin A, Claret FX, Abo A, Karin M (1995) Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Cdc42Hs. Cell 81:1147–1157PubMedCrossRefGoogle Scholar
  6. 6.
    Coso OA, Chiariello M, Yu JC, Teramoto H, Crespo P, Xu N et al (1995) The small GTP-binding proteins Rac1 and Cdc42 regulate the activity of the JNK/SAPK signaling pathway. Cell 81:1137–1146PubMedCrossRefGoogle Scholar
  7. 7.
    Canman CE, Kastan MB (1996) Three paths to stress relief. Nature 384:213–214PubMedCrossRefGoogle Scholar
  8. 8.
    Schmitz AA, Govek EE, Bottner B, Van Aelst L (2000) Rho GTPases: signaling, migration, and invasion. Exp Cell Res 261:1–12PubMedCrossRefGoogle Scholar
  9. 9.
    Aznar S, Fernandez-Valeron P, Espina C, Lacal JC (2004) Rho GTPases: potential candidates for anticancer therapy. Cancer Lett 206:181–191PubMedCrossRefGoogle Scholar
  10. 10.
    Ellenbroek SI, Collard JG (2007) Rho GTPases: functions and association with cancer. Clin Exp Metastasis 24:657–672PubMedCrossRefGoogle Scholar
  11. 11.
    Liao JK, Laufs U (2005) Pleiotropic effects of statins. Annu Rev Pharmacol Toxicol 45:89–118PubMedCrossRefGoogle Scholar
  12. 12.
    Zhou Q, Liao JK (2010) Pleiotropic effects of statins—Basic research and clinical perspectives. Circ J 74:818–826PubMedCrossRefGoogle Scholar
  13. 13.
    Rao S, Lowe M, Herliczek TW, Keyomarsi K (1998) Lovastatin mediated G1 arrest in normal and tumor breast cells is through inhibition of CDK2 activity and redistribution of p21 and p27, independent of p53. Oncogene 17:2393–2402PubMedCrossRefGoogle Scholar
  14. 14.
    Matar P, Rozados VR, Binda MM, Roggero EA, Bonfil RD, Scharovsky OG (1999) Inhibitory effect of lovastatin on spontaneous metastases derived from a rat lymphoma. Clin Exp Metastasis 17:19–25PubMedCrossRefGoogle Scholar
  15. 15.
    Cafforio P, Dammacco F, Gernone A, Silvestris F (2005) Statins activate the mitochondrial pathway of apoptosis in human lymphoblasts and myeloma cells. Carcinogenesis 26:883–891PubMedCrossRefGoogle Scholar
  16. 16.
    Agarwal B, Bhendwal S, Halmos B, Moss SF, Ramey WG, Holt PR (1999) Lovastatin augments apoptosis induced by chemotherapeutic agents in colon cancer cells. Clin Cancer Res 5:2223–2229PubMedGoogle Scholar
  17. 17.
    Super HJ, McCabe NR, Thirman MJ, Larson RA, Le Beau MM, Pedersen-Bjergaard J et al (1993) Rearrangements of the MLL gene in therapy-related acute myeloid leukemia in patients previously treated with agents targeting DNA-topoisomerase II. Blood 82:3705–3711PubMedGoogle Scholar
  18. 18.
    Schoch C, Schnittger S, Klaus M, Kern W, Hiddemann W, Haferlach T (2003) AML with 11q23/MLL abnormalities as defined by the WHO classification: incidence, partner chromosomes, FAB subtype, age distribution, and prognostic impact in an unselected series of 1897 cytogenetically analyzed AML cases. Blood 102:2395–2402PubMedCrossRefGoogle Scholar
  19. 19.
    Dobson CL, Warren AJ, Pannell R, Forster A, Lavenir I, Corral J et al (1999) The mll-AF9 gene fusion in mice controls myeloproliferation and specifies acute myeloid leukaemogenesis. EMBO J 18:3564–3574PubMedCrossRefGoogle Scholar
  20. 20.
    Muntean AG, Tan J, Sitwala K, Huang Y, Bronstein J, Connelly JA et al (2010) The PAF complex synergizes with MLL fusion proteins at HOX loci to promote leukemogenesis. Cancer Cell 17:609–621PubMedCrossRefGoogle Scholar
  21. 21.
    Monroe SC, Jo SY, Sanders DS, Basrur V, Elenitoba-Johnson KS, Slany RK et al (2011) MLL-AF9 and MLL-ENL alter the dynamic association of transcriptional regulators with genes critical for leukemia. Exp Hematol 39(77–86):e71–e75Google Scholar
  22. 22.
    Liu H, Takeda S, Kumar R, Westergard TD, Brown EJ, Pandita TK et al (2010) Phosphorylation of MLL by ATR is required for execution of mammalian S-phase checkpoint. Nature 467:343–346PubMedCrossRefGoogle Scholar
  23. 23.
    Paulsen RD, Cimprich KA (2007) The ATR pathway: fine-tuning the fork. DNA Repair (Amst) 6:953–966CrossRefGoogle Scholar
  24. 24.
    Harper JW, Elledge SJ (2007) The DNA damage response: ten years after. Mol Cell 28:739–745PubMedCrossRefGoogle Scholar
  25. 25.
    Cortez D, Guntuku S, Qin J, Elledge SJ (2001) ATR and ATRIP: partners in checkpoint signaling. Science 294:1713–1716PubMedCrossRefGoogle Scholar
  26. 26.
    Shutes A, Onesto C, Picard V, Leblond B, Schweighoffer F, Der CJ (2007) Specificity and mechanism of action of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases. J Biol Chem 282:35666–35678PubMedCrossRefGoogle Scholar
  27. 27.
    Gao Y, Dickerson JB, Guo F, Zheng J, Zheng Y (2004) Rational design and characterization of a Rac GTPase-specific small molecule inhibitor. Proc Natl Acad Sci USA 101:7618–7623PubMedCrossRefGoogle Scholar
  28. 28.
    Onesto C, Shutes A, Picard V, Schweighoffer F, Der CJ (2008) Characterization of EHT 1864, a novel small molecule inhibitor of Rac family small GTPases. Methods Enzymol 439:111–129PubMedCrossRefGoogle Scholar
  29. 29.
    Kinner A, Wu W, Staudt C, Iliakis G (2008) Gamma-H2AX in recognition and signaling of DNA double-strand breaks in the context of chromatin. Nucleic Acids Res 36:5678–5694PubMedCrossRefGoogle Scholar
  30. 30.
    Olive PL (2004) Detection of DNA damage in individual cells by analysis of histone H2AX phosphorylation. Methods Cell Biol 75:355–373PubMedCrossRefGoogle Scholar
  31. 31.
    Wong WW, Dimitroulakos J, Minden MD, Penn LZ (2002) HMG-CoA reductase inhibitors and the malignant cell: the statin family of drugs as triggers of tumor-specific apoptosis. Leukemia 16:508–519PubMedCrossRefGoogle Scholar
  32. 32.
    Roboz GJ (2012) Current treatment of acute myeloid leukemia. Curr Opin Oncol 24:711–719PubMedCrossRefGoogle Scholar
  33. 33.
    Burnett A, Wetzler M, Lowenberg B (2011) Therapeutic advances in acute myeloid leukemia. J Clin Oncol 29:487–494PubMedCrossRefGoogle Scholar
  34. 34.
    Yoshida T, Zhang Y, Rivera Rosado LA, Chen J, Khan T, Moon SY et al (2010) Blockade of Rac1 activity induces G1 cell cycle arrest or apoptosis in breast cancer cells through downregulation of cyclin D1, survivin, and X-linked inhibitor of apoptosis protein. Mol Cancer Ther 9:1657–1668PubMedCrossRefGoogle Scholar
  35. 35.
    Li W, Wang H, Kuang CY, Zhu JK, Yu Y, Qin ZX et al (2012) An essential role for the Id1/PI3K/Akt/NFkB/survivin signalling pathway in promoting the proliferation of endothelial progenitor cells in vitro. Mol Cell Biochem 363:135–145PubMedCrossRefGoogle Scholar
  36. 36.
    Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674PubMedCrossRefGoogle Scholar
  37. 37.
    Stiff T, O’Driscoll M, Rief N, Iwabuchi K, Lobrich M, Jeggo PA (2004) ATM and DNA-PK function redundantly to phosphorylate H2AX after exposure to ionizing radiation. Cancer Res 64:2390–2396PubMedCrossRefGoogle Scholar
  38. 38.
    Rothkamm K, Lobrich M (2003) Evidence for a lack of DNA double-strand break repair in human cells exposed to very low X-ray doses. Proc Natl Acad Sci USA 100:5057–5062PubMedCrossRefGoogle Scholar
  39. 39.
    Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12:440–450PubMedCrossRefGoogle Scholar
  40. 40.
    Graaf MR, Richel DJ, van Noorden CJ, Guchelaar HJ (2004) Effects of statins and farnesyltransferase inhibitors on the development and progression of cancer. Cancer Treat Rev 30:609–641PubMedCrossRefGoogle Scholar
  41. 41.
    Agarwal B, Halmos B, Feoktistov AS, Protiva P, Ramey WG, Chen M et al (2002) Mechanism of lovastatin-induced apoptosis in intestinal epithelial cells. Carcinogenesis 23:521–528PubMedCrossRefGoogle Scholar
  42. 42.
    Xia Z, Tan MM, Wong WW, Dimitroulakos J, Minden MD, Penn LZ (2001) Blocking protein geranylgeranylation is essential for lovastatin-induced apoptosis of human acute myeloid leukemia cells. Leukemia 15:1398–1407PubMedCrossRefGoogle Scholar
  43. 43.
    Dimitroulakos J, Nohynek D, Backway KL, Hedley DW, Yeger H, Freedman MH et al (1999) Increased sensitivity of acute myeloid leukemias to lovastatin-induced apoptosis: a potential therapeutic approach. Blood 93:1308–1318PubMedGoogle Scholar
  44. 44.
    Wu J, Wong WW, Khosravi F, Minden MD, Penn LZ (2004) Blocking the Raf/MEK/ERK pathway sensitizes acute myelogenous leukemia cells to lovastatin-induced apoptosis. Cancer Res 64:6461–6468PubMedCrossRefGoogle Scholar
  45. 45.
    Huelsenbeck J, Henninger C, Schad A, Lackner KJ, Kaina B, Fritz G (2011) Inhibition of Rac1 signaling by lovastatin protects against anthracycline-induced cardiac toxicity. Cell Death Dis 2:e190. doi: 110.1038/cddis.2011.1065 PubMedCrossRefGoogle Scholar
  46. 46.
    Rashid M, Tawara S, Fukumoto Y, Seto M, Yano K, Shimokawa H (2009) Importance of Rac1 signaling pathway inhibition in the pleiotropic effects of HMG-CoA reductase inhibitors. Circ J 73:361–370PubMedCrossRefGoogle Scholar
  47. 47.
    Mizukawa B, Wei J, Shrestha M, Wunderlich M, Chou FS, Griesinger A et al (2011) Inhibition of Rac GTPase signaling and downstream prosurvival Bcl-2 proteins as combination targeted therapy in MLL-AF9 leukemia. Blood 118:5235–5245PubMedCrossRefGoogle Scholar
  48. 48.
    Mulloy JC, Wunderlich M, Zheng Y, Wei J (2008) Transforming human blood stem and progenitor cells: a new way forward in leukemia modeling. Cell Cycle 7:3314–3319PubMedCrossRefGoogle Scholar
  49. 49.
    Wei J, Wunderlich M, Fox C, Alvarez S, Cigudosa JC, Wilhelm JS et al (2008) Microenvironment determines lineage fate in a human model of MLL-AF9 leukemia. Cancer Cell 13:483–495PubMedCrossRefGoogle Scholar
  50. 50.
    Somervaille TC, Cleary ML (2006) Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 10:257–268PubMedCrossRefGoogle Scholar
  51. 51.
    Perona R, Montaner S, Saniger L, Sanchez-Perez I, Bravo R, Lacal JC (1997) Activation of the nuclear factor-kappaB by Rho, CDC42, and Rac-1 proteins. Genes Dev 11:463–475PubMedCrossRefGoogle Scholar
  52. 52.
    Mabuchi S, Ohmichi M, Nishio Y, Hayasaka T, Kimura A, Ohta T et al (2004) Inhibition of NFkappaB increases the efficacy of cisplatin in in vitro and in vivo ovarian cancer models. J Biol Chem 279:23477–23485PubMedCrossRefGoogle Scholar
  53. 53.
    Sandrock K, Bielek H, Schradi K, Schmidt G, Klugbauer N (2010) The nuclear import of the small GTPase Rac1 is mediated by the direct interaction with karyopherin alpha2. Traffic 11:198–209PubMedCrossRefGoogle Scholar
  54. 54.
    Maroto B, Ye MB, von Lohneysen K, Schnelzer A, Knaus UG (2008) P21-activated kinase is required for mitotic progression and regulates Plk1. Oncogene 27:4900–4908PubMedCrossRefGoogle Scholar
  55. 55.
    Halet G, Carroll J (2007) Rac activity is polarized and regulates meiotic spindle stability and anchoring in mammalian oocytes. Dev Cell 12:309–317PubMedCrossRefGoogle Scholar
  56. 56.
    Nieborowska-Skorska M, Kopinski PK, Ray R, Hoser G, Ngaba D, Flis S et al (2012) Rac2-MRC-cIII-generated ROS cause genomic instability in chronic myeloid leukemia stem cells and primitive progenitors. Blood 119:4253–4263PubMedCrossRefGoogle Scholar
  57. 57.
    Patel KJ, Joenje H (2007) Fanconi anemia and DNA replication repair. DNA Repair (Amst) 6:885–890CrossRefGoogle Scholar
  58. 58.
    Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB et al (2005) Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434:917–921PubMedCrossRefGoogle Scholar
  59. 59.
    Helleday T (2011) The underlying mechanism for the PARP and BRCA synthetic lethality: clearing up the misunderstandings. Mol Oncol 5:387–393PubMedCrossRefGoogle Scholar
  60. 60.
    Sallmyr A, Fan J, Datta K, Kim KT, Grosu D, Shapiro P et al (2008) Internal tandem duplication of FLT3 (FLT3/ITD) induces increased ROS production, DNA damage, and misrepair: implications for poor prognosis in AML. Blood 111:3173–3182PubMedCrossRefGoogle Scholar
  61. 61.
    Muller LU, Schore RJ, Zheng Y, Thomas EK, Kim MO, Cancelas JA et al (2008) Rac guanosine triphosphatases represent a potential target in AML. Leukemia 22:1803–1806PubMedCrossRefGoogle Scholar
  62. 62.
    Thomas EK, Cancelas JA, Chae HD, Cox AD, Keller PJ, Perrotti D et al (2007) Rac guanosine triphosphatases represent integrating molecular therapeutic targets for BCR-ABL-induced myeloproliferative disease. Cancer Cell 12:467–478PubMedCrossRefGoogle Scholar
  63. 63.
    Thomas EK, Cancelas JA, Zheng Y, Williams DA (2008) Rac GTPases as key regulators of p210-BCR-ABL-dependent leukemogenesis. Leukemia 22:898–904PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • C. Hinterleitner
    • 2
  • J. Huelsenbeck
    • 2
  • C. Henninger
    • 1
  • F. Wartlick
    • 1
  • A. Schorr
    • 1
  • B. Kaina
    • 2
  • G. Fritz
    • 1
  1. 1.Institute of ToxicologyHeinrich-Heine University DüsseldorfDüsseldorfGermany
  2. 2.Institute of ToxicologyUniversity Medical Center of the Johannes Gutenberg University MainzMainzGermany

Personalised recommendations