, Volume 18, Issue 6, pp 681–688 | Cite as

Anti-caspase-3 preconditioning increases proinsulin secretion and deteriorates posttransplant function of isolated human islets

  • Daniel BrandhorstEmail author
  • Heide Brandhorst
  • Vidya Maataoui
  • Adel Maataoui
  • Paul R. V. Johnson
Original Paper


Human islet isolation is associated with adverse conditions inducing apoptosis and necrosis. The aim of the present study was to assess whether antiapoptotic preconditioning can improve in vitro and posttransplant function of isolated human islets. A dose-finding study demonstrated that 200 μmol/L of the caspase-3 inhibitor Ac-DEVD-CMK was most efficient to reduce the expression of activated caspase-3 in isolated human islets exposed to severe heat shock. Ac-DEVD-CMK-pretreated or sham-treated islets were transplanted into immunocompetent or immunodeficient diabetic mice and subjected to static glucose incubation to measure insulin and proinsulin secretion. Antiapoptotic pretreatment significantly deteriorated graft function resulting in elevated nonfasting serum glucose when compared to sham-treated islets transplanted into diabetic nude mice (p < 0.01) and into immunocompetent mice (p < 0.05). Ac-DEVD-CMK pretreatment did not significantly change basal and glucose-stimulated insulin release compared to sham-treated human islets but increased the proinsulin release at high glucose concentrations (20 mM) thus reducing the insulin-to-proinsulin ratio in preconditioned islets (p < 0.05). This study demonstrates that the caspase-3 inhibitor Ac-DEVD-CMK interferes with proinsulin conversion in preconditioned islets reducing their potency to cure diabetic mice. The mechanism behind this phenomenon is unclear so far but may be related to the ketone CMK linked to the Ac-DEVD molecule. Further studies are required to identify biocompatible caspase inhibitors suitable for islet preconditioning.


Human islet transplantation Apoptosis Caspase-3 inhibitors 


  1. 1.
    Shapiro AM, Ricordi C, Hering BJ et al (2006) International trial of the Edmonton protocol for islet transplantation. N Engl J Med 355:1318–1330PubMedCrossRefGoogle Scholar
  2. 2.
    Vantyghem MC, Kerr-Conte J, Arnalsteen L et al (2009) Primary graft function, metabolic control, and graft survival after islet transplantation. Diabetes Care 32:1473–1478PubMedCrossRefGoogle Scholar
  3. 3.
    Bellin MD, Kandaswamy R, Parkey J et al (2008) Prolonged insulin independence after islet allotransplants in recipients with type 1 diabetes. Am J Transplant 8:2463–2470PubMedCrossRefGoogle Scholar
  4. 4.
    Guignard AP, Oberholzer J, Benhamou PY et al (2004) Cost analysis of human islet transplantation for the treatment of type 1 diabetes in the Swiss-French Consortium GRAGIL. Diabetes Care 27:895–900PubMedCrossRefGoogle Scholar
  5. 5.
    Kempf MC, Andres A, Morel P et al (2005) Logistics and transplant coordination activity in the GRAGIL Swiss-French multicenter network of islet transplantation. Transplantation 79:1200–1205PubMedCrossRefGoogle Scholar
  6. 6.
    Caballero-Corbalan J, Brandhorst H, Malm H et al (2012) Using HTK for prolonged pancreas preservation prior to human islet isolation. J Surg Res 175:163–168PubMedCrossRefGoogle Scholar
  7. 7.
    Johansson H, Lukinius A, Moberg L et al (2005) Tissue factor produced by the endocrine cells of the islets of langerhans is associated with a negative outcome of clinical islet transplantation. Diabetes 54:1755–1762PubMedCrossRefGoogle Scholar
  8. 8.
    Thomas FT, Contreras JL, Bilbao G, Ricordi C, Curiel D, Thomas JM (1999) Anoikis, extracellular matrix, and apoptosis factors in isolated cell transplantation. Surgery 126:299–304PubMedCrossRefGoogle Scholar
  9. 9.
    Puthalakath H, Villunger A, O’Reilly LA et al (2001) Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 293:1829–1832PubMedCrossRefGoogle Scholar
  10. 10.
    Larsen CM, Wadt KA, Juhl LF et al (1998) Interleukin-1beta-induced rat pancreatic islet nitric oxide synthesis requires both the p38 and extracellular signal-regulated kinase 1/2 mitogen-activated protein kinases. J Biol Chem 273:15294–15300PubMedCrossRefGoogle Scholar
  11. 11.
    Schliess F, Haussinger D (2002) The cellular hydration state: a critical determinant for cell death and survival. Biol Chem 383:577–583PubMedCrossRefGoogle Scholar
  12. 12.
    Daoud JT, Petropavlovskaia MS, Patapas JM et al (2011) Long-term in vitro human pancreatic islet culture using three-dimensional microfabricated scaffolds. Biomaterials 32:1536–1542PubMedCrossRefGoogle Scholar
  13. 13.
    Moritz W, Meier F, Stroka DM et al (2002) Apoptosis in hypoxic human pancreatic islets correlates with HIF-1alpha expression. FASEB J 16:745–747PubMedGoogle Scholar
  14. 14.
    Brandhorst H, Brandhorst D, Kumarasamy V, Maataoui A, Brendel MD, Bretzel RG (2003) Pretreatment of isolated islets with caspase-3 inhibitor DEVD increases graft survival after xenotransplantation. Transplant Proc 35:2142PubMedCrossRefGoogle Scholar
  15. 15.
    Brandhorst H, Brandhorst D, Brendel MD, Hering BJ, Bretzel RG (1998) Assessment of intracellular insulin content during all steps of human islet isolation procedure. Cell Transplant 7:489–495PubMedCrossRefGoogle Scholar
  16. 16.
    Ricordi C, Gray DW, Hering BJ et al (1990) Islet isolation assessment in man and large animals. Acta Diabetol Lat 27:185–195PubMedCrossRefGoogle Scholar
  17. 17.
    Brandhorst H, Olbrich M, Neumann A, Jahr H, Brandhorst D (2007) Effect of pretransplant preconditioning by whole body hyperthermia on islet graft survival. Cell Transplant 16:707–715PubMedGoogle Scholar
  18. 18.
    Ris F, Hammar E, Bosco D et al (2002) Impact of integrin-matrix matching and inhibition of apoptosis on the survival of purified human beta-cells in vitro. Diabetologia 45:841–850PubMedCrossRefGoogle Scholar
  19. 19.
    Berney T, Molano RD, Cattan P et al (2001) Endotoxin-mediated delayed islet graft function is associated with increased intra-islet cytokine production and islet cell apoptosis. Transplantation 71:125–132PubMedCrossRefGoogle Scholar
  20. 20.
    Brandhorst D, Brandhorst H, Kumarasamy V et al (2003) Hyperthermic preconditioning protects pig islet grafts from early inflammation but enhances rejection in immunocompetent mice. Cell Transplant 12:859–865PubMedGoogle Scholar
  21. 21.
    Takada M, Nadeau KC, Hancock WW et al (1998) Effects of explosive brain death on cytokine activation of peripheral organs in the rat. Transplantation 65:1533–1542PubMedCrossRefGoogle Scholar
  22. 22.
    Skrabal CA, Thompson LO, Potapov EV et al (2005) Organ-specific regulation of pro-inflammatory molecules in heart, lung, and kidney following brain death. J Surg Res 123:118–125PubMedCrossRefGoogle Scholar
  23. 23.
    Contreras JL, Eckstein C, Smyth CA et al (2003) Brain death significantly reduces isolated pancreatic islet yields and functionality in vitro and in vivo after transplantation in rats. Diabetes 52:2935–2942PubMedCrossRefGoogle Scholar
  24. 24.
    Saldeen J (2000) Cytokines induce both necrosis and apoptosis via a common Bcl-2-inhibitable pathway in rat insulin-producing cells. Endocrinology 141:2003–2010PubMedCrossRefGoogle Scholar
  25. 25.
    Lakey JR, Rajotte RV, Warnock GL, Kneteman NM (1995) Human pancreas preservation prior to islet isolation. Cold ischemic tolerance. Transplantation 59:689–694PubMedCrossRefGoogle Scholar
  26. 26.
    Hoeger S, Petrov K, Reisenbuechler A et al (2009) The additional detrimental effects of cold preservation on transplantation-associated injury in kidneys from living and brain-dead donor rats. Transplantation 87:52–58PubMedCrossRefGoogle Scholar
  27. 27.
    Matsuda T, Suzuki Y, Tanioka Y et al (2003) Pancreas preservation by the 2-layer cold storage method before islet isolation protects isolated islets against apoptosis through the mitochondrial pathway. Surgery 134:437–445PubMedCrossRefGoogle Scholar
  28. 28.
    Thomas D, Yang H, Boffa DJ et al (2002) Proapoptotic Bax is hyperexpressed in isolated human islets compared with antiapoptotic Bcl-2. Transplantation 74:1489–1496PubMedCrossRefGoogle Scholar
  29. 29.
    Wang RN, Paraskevas S, Rosenberg L (1999) Characterization of integrin expression in islets isolated from hamster, canine, porcine, and human pancreas. J Histochem Cytochem 47:499–506PubMedCrossRefGoogle Scholar
  30. 30.
    Stendahl JC, Kaufman DB, Stupp SI (2009) Extracellular matrix in pancreatic islets: relevance to scaffold design and transplantation. Cell Transplant 18:1–12PubMedCrossRefGoogle Scholar
  31. 31.
    Rosenberg L, Wang R, Paraskevas S, Maysinger D (1999) Structural and functional changes resulting from islet isolation lead to islet cell death. Surgery 126:393–398PubMedCrossRefGoogle Scholar
  32. 32.
    Krishnamurthy M, Li J, Fellows GF, Rosenberg L, Goodyer CG, Wang R (2011) Integrin {alpha}3, but not {beta}1, regulates islet cell survival and function via PI3 K/Akt signaling pathways. Endocrinology 152:424–435PubMedCrossRefGoogle Scholar
  33. 33.
    Goto T, Tanioka Y, Sakai T et al (2007) Application of the two-layer method on pancreas digestion results in improved islet yield and maintained viability of isolated islets. Transplantation 83:754–758PubMedCrossRefGoogle Scholar
  34. 34.
    Campbell PD, Weinberg A, Chee J et al (2012) Expression of pro- and antiapoptotic molecules of the bcl-2 family in human islets postisolation. Cell Transplant 21:49–60PubMedCrossRefGoogle Scholar
  35. 35.
    Abdelli S, Ansite J, Roduit R et al (2004) Intracellular stress signaling pathways activated during human islet preparation and following acute cytokine exposure. Diabetes 53:2815–2823PubMedCrossRefGoogle Scholar
  36. 36.
    Lucas-Clerc C, Massart C, Campion JP, Launois B, Nicol M (1993) Long-term culture of human pancreatic islets in an extracellular matrix: morphological and metabolic effects. Mol Cell Endocrinol 94:9–20PubMedCrossRefGoogle Scholar
  37. 37.
    McConkey DJ (1998) Biochemical determinants of apoptosis and necrosis. Toxicol Lett 99:157–168PubMedCrossRefGoogle Scholar
  38. 38.
    Emamaullee JA, Davis J, Pawlick R et al (2008) The caspase selective inhibitor EP1013 augments human islet graft function and longevity in marginal mass islet transplantation in mice. Diabetes 57:1556–1566PubMedCrossRefGoogle Scholar
  39. 39.
    Nakano M, Matsumoto I, Sawada T et al (2004) Caspase-3 inhibitor prevents apoptosis of human islets immediately after isolation and improves islet graft function. Pancreas 29:104–109PubMedCrossRefGoogle Scholar
  40. 40.
    Brandhorst D, Kumarasamy V, Maatoui A, Alt A, Bretzel RG, Brandhorst H (2006) Porcine islet graft function is affected by pretreatment with a caspase-3 inhibitor. Cell Transplant 15:311–317PubMedCrossRefGoogle Scholar
  41. 41.
    Aikin R, Rosenberg L, Paraskevas S, Maysinger D (2004) Inhibition of caspase-mediated PARP-1 cleavage results in increased necrosis in isolated islets of Langerhans. J Mol Med 82:389–397PubMedCrossRefGoogle Scholar
  42. 42.
    Prabhakaran K, Li L, Borowitz JL, Isom GE (2004) Caspase inhibition switches the mode of cell death induced by cyanide by enhancing reactive oxygen species generation and PARP-1 activation. Toxicol Appl Pharmacol 195:194–202PubMedCrossRefGoogle Scholar
  43. 43.
    Piemonti L, Bertuzzi F, Nano R et al (1999) Effects of cryopreservation on in vitro and in vivo long-term function of human islets. Transplantation 68:655–662PubMedCrossRefGoogle Scholar
  44. 44.
    Titus TT, Horton PJ, Badet L et al (2003) Adverse outcome of human islet-allogeneic blood interaction. Transplantation 75:1317–1322PubMedCrossRefGoogle Scholar
  45. 45.
    Litterst CL (1980) Acute and subchronic toxicity of the protease inhibitor N-alpha-tosyl-L-lysyl-chloromethylketone (TLCK) in mice. Drug Chem Toxicol 3:227–235PubMedCrossRefGoogle Scholar
  46. 46.
    Smith HJ (1978) Perspectives in the design of small molecule enzyme inhibitors as useful drugs. J Theor Biol 73:531–538PubMedCrossRefGoogle Scholar
  47. 47.
    Lenzen S, Drinkgern J, Tiedge M (1996) Low antioxidant enzyme gene expression in pancreatic islets compared with various other mouse tissues. Free Radic Biol Med 20:463–466PubMedCrossRefGoogle Scholar
  48. 48.
    Tiedge M, Lortz S, Drinkgern J, Lenzen S (1997) Relation between antioxidant enzyme gene expression and antioxidative defense status of insulin-producing cells. Diabetes 46:1733–1742PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Daniel Brandhorst
    • 1
    • 4
    Email author
  • Heide Brandhorst
    • 1
  • Vidya Maataoui
    • 2
  • Adel Maataoui
    • 3
  • Paul R. V. Johnson
    • 1
  1. 1.Nuffield Department of Surgical Sciences, Oxford Centre for Islet TransplantationUniversity of OxfordOxfordUK
  2. 2.St. Anna HospitalWuppertalGermany
  3. 3.Institute for Diagnostic and Interventional RadiologyJohan Wolfgang von Goethe UniversityFrankfurt am MainGermany
  4. 4.Nuffield Department of Surgical Sciences, Oxford Centre for Diabetes, Endocrinology and MetabolismUniversity of OxfordOxfordUK

Personalised recommendations