Advertisement

Apoptosis

, Volume 17, Issue 12, pp 1340–1358 | Cite as

Apicidin induces endoplasmic reticulum stress- and mitochondrial dysfunction-associated apoptosis via phospholipase Cγ1- and Ca2+-dependent pathway in mouse Neuro-2a neuroblastoma cells

  • Ji Hyun Choi
  • Jung Yeon Lee
  • A-Young Choi
  • Keun-Young Hwang
  • Wonchae Choe
  • Kyung-Sik Yoon
  • Joohun Ha
  • Eui-Ju YeoEmail author
  • Insug KangEmail author
Original Paper

Abstract

Apicidin, a fungal metabolite that functions as a histone deacetylase inhibitor, induces apoptosis in cancer cells. We investigated the molecular mechanisms of the anti-cancer effects of apicidin in mouse Neuro-2a neuroblastoma cells. Apicidin induced apoptotic cell death and activation of caspase-12, -9, and -3. Apicidin induced expression of endoplasmic reticulum (ER) stress-associated proteins, including CCAAT/enhancer binding protein homologous protein (CHOP), cleavage of activating transcription factor 6α, and phosphorylation of eukaryotic initiation factor 2α. Inhibition of ER stress by CHOP knockdown or using the ER stress inhibitors, salubrinal and 4-phenylbutyric acid, reduced apicidin-induced cell death. Apicidin induced reactive oxygen species accumulation and mitochondrial membrane potential loss. An antioxidant, N-acetyl cysteine, reduced apicidin-induced cell death, CHOP expression, and mitochondrial dysfunction. In addition, apicidin increased cytosolic Ca2+, which was blocked by 2-aminoethoxydiphenyl borate, an antagonist of inositol 1,4,5-trisphosphate receptor, and BAPTA-AM, an intracellular Ca2+ chelator. 2-Aminoethoxydiphenyl borate and BAPTA-AM inhibited apicidin-induced cell death and ER stress. Interestingly, apicidin induced phosphorylation of phospholipase Cγ1 (PLCγ1) and epidermal growth factor receptor (EGFR), and inhibition of PLCγ1 and EGFR reduced cell death and ER stress. Finally, apicidin-induced histone H3 hyperacetylation and reduction of histone deacetylase 2 mRNA expression were not affected by either a PLCγ1 inhibitor, U73122, or the antioxidant, N-acetyl cysteine. Taken together, the results suggest that apicidin induces apoptosis by ER stress and mitochondrial dysfunction via PLCγ1 activation, Ca2+ release, and reactive oxygen species accumulation in Neuro-2a neuroblastoma cells.

Keywords

Apicidin Apoptosis Calcium ER stress Mitochondrial dysfunction PLCγ1 

Notes

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grants funded by the Korea government (MEST, No. 2011-0030721).

Conflict of interest

No conflict of interest is declared.

References

  1. 1.
    Kaufman RJ (1999) Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev 13:1211–1233PubMedCrossRefGoogle Scholar
  2. 2.
    Xu C, Bailly-Maitre B, Reed JC (2005) Endoplasmic reticulum stress: cell life and death decisions. J Clin Invest 115:2656–2664PubMedCrossRefGoogle Scholar
  3. 3.
    Boyce M, Bryant KF, Jousse C et al (2005) A selective inhibitor of eIF2alpha dephosphorylation protects cells from ER stress. Science 307:935–939PubMedCrossRefGoogle Scholar
  4. 4.
    Calfon M, Zeng H, Urano F et al (2002) IRE1 couples endoplasmic reticulum load to secretory capacity by processing the XBP-1 mRNA. Nature 415:92–96PubMedCrossRefGoogle Scholar
  5. 5.
    Ye J, Rawson RB, Komuro R et al (2000) ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell 6:1355–1364PubMedCrossRefGoogle Scholar
  6. 6.
    Oyadomari S, Mori M (2004) Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ 11:381–389PubMedCrossRefGoogle Scholar
  7. 7.
    Zinszner H, Kuroda M, Wang X et al (1998) CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 12:982–995PubMedCrossRefGoogle Scholar
  8. 8.
    Szegezdi E, Logue SE, Gorman AM, Samali A (2006) Mediators of endoplasmic reticulum stress-induced apoptosis. EMBO Rep 7:880–885PubMedCrossRefGoogle Scholar
  9. 9.
    Brenner D, Mak TW (2009) Mitochondrial cell death effectors. Curr Opin Cell Biol 21:871–877PubMedCrossRefGoogle Scholar
  10. 10.
    Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59PubMedCrossRefGoogle Scholar
  11. 11.
    Kim R, Emi M, Tanabe K, Murakami S (2006) Role of the unfolded protein response in cell death. Apoptosis 11:5–13PubMedCrossRefGoogle Scholar
  12. 12.
    Guan L, Han B, Li Z et al (2009) Sodium selenite induces apoptosis by ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction in human acute promyelocytic leukemia NB4 cells. Apoptosis 14:218–225PubMedCrossRefGoogle Scholar
  13. 13.
    Lim JH, Lee HJ, Ho Jung M, Song J (2009) Coupling mitochondrial dysfunction to endoplasmic reticulum stress response: a molecular mechanism leading to hepatic insulin resistance. Cell Signal 21:169–177PubMedCrossRefGoogle Scholar
  14. 14.
    Choi AY, Choi JH, Yoon H et al (2011) Luteolin induces apoptosis through endoplasmic reticulum stress and mitochondrial dysfunction in Neuro-2a mouse neuroblastoma cells. Eur J Pharmacol 668:115–126PubMedCrossRefGoogle Scholar
  15. 15.
    Shahbazian MD, Grunstein M (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76:75–100PubMedCrossRefGoogle Scholar
  16. 16.
    Wade PA, Pruss D, Wolffe AP (1997) Histone acetylation: chromatin in action. Trends Biochem Sci 22:128–132PubMedCrossRefGoogle Scholar
  17. 17.
    Narlikar GJ, Fan HY, Kingston RE (2002) Cooperation between complexes that regulate chromatin structure and transcription. Cell 108:475–487PubMedCrossRefGoogle Scholar
  18. 18.
    Smith KT, Workman JL (2009) Histone deacetylase inhibitors: anticancer compounds. Int J Biochem Cell Biol 41:21–25PubMedCrossRefGoogle Scholar
  19. 19.
    Darkin-Rattray SJ, Gurnett AM, Myers RW et al (1996) Apicidin: a novel antiprotozoal agent that inhibits parasite histone deacetylase. Proc Natl Acad Sci USA 93:13143–13147PubMedCrossRefGoogle Scholar
  20. 20.
    Han JW, Ahn SH, Park SH et al (2000) Apicidin, a histone deacetylase inhibitor, inhibits proliferation of tumor cells via induction of p21WAF1/Cip1 and gelsolin. Cancer Res 60:6068–6074PubMedGoogle Scholar
  21. 21.
    Ueda T, Takai N, Nishida M, Nasu K, Narahara H (2007) Apicidin, a novel histone deacetylase inhibitor, has profound anti-growth activity in human endometrial and ovarian cancer cells. Int J Mol Med 19:301–308PubMedGoogle Scholar
  22. 22.
    Kwon SH, Ahn SH, Kim YK et al (2002) Apicidin, a histone deacetylase inhibitor, induces apoptosis and Fas/Fas ligand expression in human acute promyelocytic leukemia cells. J Biol Chem 277:2073–2080PubMedCrossRefGoogle Scholar
  23. 23.
    Cheong JW, Chong SY, Kim JY et al (2003) Induction of apoptosis by apicidin, a histone deacetylase inhibitor, via the activation of mitochondria-dependent caspase cascades in human Bcr-Abl-positive leukemia cells. Clin Cancer Res 9:5018–5027PubMedGoogle Scholar
  24. 24.
    Kim JS, Jeung HK, Cheong JW et al (2004) Apicidin potentiates the imatinib-induced apoptosis of Bcr-Abl-positive human leukaemia cells by enhancing the activation of mitochondria-dependent caspase cascades. Br J Haematol 124:166–178PubMedCrossRefGoogle Scholar
  25. 25.
    Lai JP, Sandhu DS, Moser CD et al (2009) Additive effect of apicidin and doxorubicin in sulfatase 1 expressing hepatocellular carcinoma in vitro and in vivo. J Hepatol 50:1112–1121PubMedCrossRefGoogle Scholar
  26. 26.
    Park SJ, Kim MJ, Kim HB et al (2009) Cotreatment with apicidin overcomes TRAIL resistance via inhibition of Bcr-Abl signaling pathway in K562 leukemia cells. Exp Cell Res 315:1809–1818PubMedCrossRefGoogle Scholar
  27. 27.
    Aires V, Hichami A, Filomenko R et al (2007) Docosahexaenoic acid induces increases in [Ca2+]i via inositol 1,4,5-triphosphate production and activates protein kinase C gamma and -delta via phosphatidylserine binding site: implication in apoptosis in U937 cells. Mol Pharmacol 72:1545–1556PubMedCrossRefGoogle Scholar
  28. 28.
    Nakagawa T, Zhu H, Morishima N et al (2000) Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature 403:98–103PubMedCrossRefGoogle Scholar
  29. 29.
    Thastrup O, Cullen PJ, Drobak BK, Hanley MR, Dawson AP (1990) Thapsigargin, a tumor promoter, discharges intracellular Ca2+ stores by specific inhibition of the endoplasmic reticulum Ca2(+)-ATPase. Proc Natl Acad Sci USA 87:2466–2470PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang Y, Ren J (2011) Thapsigargin triggers cardiac contractile dysfunction via NADPH oxidase-mediated mitochondrial dysfunction: role of Akt dephosphorylation. Free Radic Biol Med 51:2172–2184PubMedCrossRefGoogle Scholar
  31. 31.
    Meusser B, Hirsch C, Jarosch E, Sommer T (2005) ERAD: the long road to destruction. Nat Cell Biol 7:766–772PubMedCrossRefGoogle Scholar
  32. 32.
    Choi JH, Choi AY, Yoon H et al (2010) Baicalein protects HT22 murine hippocampal neuronal cells against endoplasmic reticulum stress-induced apoptosis through inhibition of reactive oxygen species production and CHOP induction. Exp Mol Med 42:811–822PubMedCrossRefGoogle Scholar
  33. 33.
    Park IJ, Kim MJ, Park OJ et al (2012) Cryptotanshinone induces ER stress-mediated apoptosis in HepG2 and MCF7 cells. Apoptosis 17:248–257PubMedCrossRefGoogle Scholar
  34. 34.
    Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565PubMedCrossRefGoogle Scholar
  35. 35.
    Gordeeva AV, Zvyagilskaya RA, Labas YA (2003) Cross-talk between reactive oxygen species and calcium in living cells. Biochemistry (Mosc) 68:1077–1080CrossRefGoogle Scholar
  36. 36.
    Patterson RL, van Rossum DB, Nikolaidis N, Gill DL, Snyder SH (2005) Phospholipase C-gamma: diverse roles in receptor-mediated calcium signaling. Trends Biochem Sci 30:688–697PubMedCrossRefGoogle Scholar
  37. 37.
    Noh DY, Shin SH, Rhee SG (1995) Phosphoinositide-specific phospholipase C and mitogenic signaling. Biochim Biophys Acta 1242:99–113PubMedGoogle Scholar
  38. 38.
    Ahn MY, Chung HY, Choi WS, Lee BM, Yoon S, Kim HS (2010) Anti-tumor effect of apicidin on Ishikawa human endometrial cancer cells both in vitro and in vivo by blocking histone deacetylase 3 and 4. Int J Oncol 36:125–131PubMedGoogle Scholar
  39. 39.
    Boya P, Cohen I, Zamzami N, Vieira HL, Kroemer G (2002) Endoplasmic reticulum stress-induced cell death requires mitochondrial membrane permeabilization. Cell Death Differ 9:465–467PubMedCrossRefGoogle Scholar
  40. 40.
    Loughlin DT, Artlett CM (2010) Precursor of advanced glycation end products mediates ER-stress-induced caspase-3 activation of human dermal fibroblasts through NAD(P)H oxidase 4. PLoS ONE 5:e11093PubMedCrossRefGoogle Scholar
  41. 41.
    Pelicano H, Carney D, Huang P (2004) ROS stress in cancer cells and therapeutic implications. Drug Resist Updat 7:97–110PubMedCrossRefGoogle Scholar
  42. 42.
    Ashby MC, Tepikin AV (2001) ER calcium and the functions of intracellular organelles. Semin Cell Dev Biol 12:11–17PubMedCrossRefGoogle Scholar
  43. 43.
    Vangheluwe P, Raeymaekers L, Dode L, Wuytack F (2005) Modulating sarco(endo)plasmic reticulum Ca2+ ATPase 2 (SERCA2) activity: cell biological implications. Cell Calcium 38:291–302PubMedCrossRefGoogle Scholar
  44. 44.
    Kroemer G, Reed JC (2000) Mitochondrial control of cell death. Nat Med 6:513–519PubMedCrossRefGoogle Scholar
  45. 45.
    Santos CX, Tanaka LY, Wosniak J, Laurindo FR (2009) Mechanisms and implications of reactive oxygen species generation during the unfolded protein response: roles of endoplasmic reticulum oxidoreductases, mitochondrial electron transport, and NADPH oxidase. Antioxid Redox Signal 11:2409–2427PubMedCrossRefGoogle Scholar
  46. 46.
    Ayilavarapu S, Kantarci A, Fredman G et al (2010) Diabetes-induced oxidative stress is mediated by Ca2+-independent phospholipase A2 in neutrophils. J Immunol 184:1507–1515PubMedCrossRefGoogle Scholar
  47. 47.
    Hooks SB, Cummings BS (2008) Role of Ca2+-independent phospholipase A2 in cell growth and signaling. Biochem Pharmacol 76:1059–1067PubMedCrossRefGoogle Scholar
  48. 48.
    Li G, Scull C, Ozcan L, Tabas I (2010) NADPH oxidase links endoplasmic reticulum stress, oxidative stress, and PKR activation to induce apoptosis. J Cell Biol 191:1113–1125PubMedCrossRefGoogle Scholar
  49. 49.
    Balasubramanian S, Ramos J, Luo W, Sirisawad M, Verner E, Buggy JJ (2008) A novel histone deacetylase 8 (HDAC8)-specific inhibitor PCI-34051 induces apoptosis in T-cell lymphomas. Leukemia 22:1026–1034PubMedCrossRefGoogle Scholar
  50. 50.
    Mutoh T, Kumano T, Nakagawa H, Kuriyama M (1999) Role of tyrosine phosphorylation of phospholipase C gamma1 in the signaling pathway of HMG-CoA reductase inhibitor-induced cell death of L6 myoblasts. FEBS Lett 446:91–94PubMedCrossRefGoogle Scholar
  51. 51.
    Baumann S, Fas SC, Giaisi M et al (2008) Wogonin preferentially kills malignant lymphocytes and suppresses T-cell tumor growth by inducing PLCgamma1- and Ca2+-dependent apoptosis. Blood 111:2354–2363PubMedCrossRefGoogle Scholar
  52. 52.
    Hackel PO, Zwick E, Prenzel N, Ullrich A (1999) Epidermal growth factor receptors: critical mediators of multiple receptor pathways. Curr Opin Cell Biol 11:184–189PubMedCrossRefGoogle Scholar
  53. 53.
    Cuadrado A, Garcia-Fernandez LF, Gonzalez L et al (2003) Aplidin induces apoptosis in human cancer cells via glutathione depletion and sustained activation of the epidermal growth factor receptor, Src, JNK, and p38 MAPK. J Biol Chem 278:241–250PubMedCrossRefGoogle Scholar
  54. 54.
    Tikhomirov O, Carpenter G (2004) Ligand-induced, p38-dependent apoptosis in cells expressing high levels of epidermal growth factor receptor and ErbB-2. J Biol Chem 279:12988–12996PubMedCrossRefGoogle Scholar
  55. 55.
    Choi J, Moon SY, Hong JP, Song JY, Oh KT, Lee SW (2010) Epidermal growth factor induces cell death in the absence of overexpressed epidermal growth factor receptor and ErbB2 in various human cancer cell lines. Cancer Invest 28:505–514PubMedCrossRefGoogle Scholar
  56. 56.
    Rao R, Nalluri S, Fiskus W et al (2010) Role of CAAT/enhancer binding protein homologous protein in panobinostat-mediated potentiation of bortezomib-induced lethal endoplasmic reticulum stress in mantle cell lymphoma cells. Clin Cancer Res 16:4742–4754PubMedCrossRefGoogle Scholar
  57. 57.
    Vega QC, Cochet C, Filhol O, Chang CP, Rhee SG, Gill GN (1992) A site of tyrosine phosphorylation in the C terminus of the epidermal growth factor receptor is required to activate phospholipase C. Mol Cell Biol 12:128–135PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ji Hyun Choi
    • 1
  • Jung Yeon Lee
    • 1
  • A-Young Choi
    • 1
  • Keun-Young Hwang
    • 1
  • Wonchae Choe
    • 1
  • Kyung-Sik Yoon
    • 1
  • Joohun Ha
    • 1
  • Eui-Ju Yeo
    • 2
    Email author
  • Insug Kang
    • 1
    Email author
  1. 1.Department of Biochemistry and Molecular Biology, School of Medicine, Medical Research Center for Bioreaction to Reactive Oxygen Species, Biomedical Science InstituteKyung Hee UniversitySeoulRepublic of Korea
  2. 2.Department of Biochemistry, School of MedicineGachon UniversityIncheonRepublic of Korea

Personalised recommendations