Apoptosis

, Volume 17, Issue 9, pp 1019–1026 | Cite as

β-Arrestin prevents cell apoptosis through pro-apoptotic ERK1/2 and p38 MAPKs and anti-apoptotic Akt pathways

Original Paper

Abstract

Our previous studies have shown that β-arrestin 2 plays an anti-apoptotic effect. However, the mechanisms by which β-arrestin contribute to anti-apoptotic role remain unclear. In this study, we show that a deficiency of either β-arrestin 1 or β-arrestin 2 significantly increases serum deprivation (SD)-induced percentage of apoptotic cells. β-arrestin 2 deficient-induced apoptosis was inhibited by transfection with β-arrestin 2 full-length plasmid, revealing that SD-induced apoptosis is dependent on β-arrestin 2. Furthermore, in the absence of either β-arrestin 1 or β-arrestin 2 significantly enhances SD-induced the level of pro-apoptotic proteins, including cleaved caspase-3, extracellular-signal regulated kinase 1/2 (ERK1/2) and p38, members of mitogen-activated protein kinases (MAPKs). In addition, a deficiency of either β-arrestin 1 or β-arrestin 2 inhibits phosphorylation of Akt. The SD-induced changes in cleaved caspase-3, ERK1/2 and p38 MAPKs, Akt, and apoptotic cell numbers could be blocked by double knockout of β-arrestin 1/2. Our study thus demonstrates that β-arrestin inhibits cell apoptosis through pro-apoptotic ERK1/2 and p38 MAPKs and anti-apoptotic Akt signaling pathways.

Keywords

β-Arrestin Caspase-3 ERK1/2 p38 Akt Apoptosis 

Abbreviations

KO

Knockout

DKO

Double knockout

SD

Serum deprivation

TUNEL

Terminal deoxynucleotidyl transferase biotin dUTP nick end labeling

ERK1/2

Extracellular-signal regulated kinase 1/2

MAPKs

Mitogen-activated protein kinases

References

  1. 1.
    Kovacs JJ, Hara MR, Davenport CL, Kim J, Lefkowitz RJ (2009) Arrestin development: emerging roles for beta-arrestins in developmental signaling pathways. Dev Cell 17:443–458PubMedCrossRefGoogle Scholar
  2. 2.
    Wang P, Gao H, Ni Y, Wang B, Wu Y, Ji L, Qin L, Ma L, Pei G (2003) Beta-arrestin 2 functions as a G-protein-coupled receptor-activated regulator of oncoprotein Mdm2. J Biol Chem 278:6363–6370PubMedCrossRefGoogle Scholar
  3. 3.
    Reiter E, Lefkowitz RJ (2006) GRKs and beta-arrestins: roles in receptor silencing, trafficking and signaling. Trends Endocrinol Metab 17:159–165PubMedCrossRefGoogle Scholar
  4. 4.
    Lymperopoulos A, Bathgate A (2012) Pharmacogenomics of the heptahelical receptor regulators G-protein-coupled receptor kinases and arrestins: the known and the unknown. Pharmacogenomics 13:323–341PubMedCrossRefGoogle Scholar
  5. 5.
    Ma L, Pei G (2007) Beta-arrestin signaling and regulation of transcription. J Cell Sci 120:213–218PubMedCrossRefGoogle Scholar
  6. 6.
    Lymperopoulos A (2012) Beta-arrestin biased agonism/antagonism at cardiovascular seven transmembrane-spanning receptors. Curr Pharm Des 18:192–198PubMedCrossRefGoogle Scholar
  7. 7.
    Lefkowitz RJ, Shenoy SK (2005) Transduction of receptor signals by beta-arrestins. Science 308:512–517PubMedCrossRefGoogle Scholar
  8. 8.
    Revankar CM, Vines CM, Cimino DF, Prossnitz ER (2004) Arrestins block G protein-coupled receptor-mediated apoptosis. J Biol Chem 279:24578–24584PubMedCrossRefGoogle Scholar
  9. 9.
    Povsic TJ, Kohout TA, Lefkowitz RJ (2003) Beta-arrestin1 mediates insulin-like growth factor 1 (IGF-1) activation of phosphatidylinositol 3-kinase (PI3K) and anti-apoptosis. J Biol Chem 278:51334–51339PubMedCrossRefGoogle Scholar
  10. 10.
    Luan B, Zhang Z, Wu Y, Kang J, Pei G (2005) Beta-arrestin2 functions as a phosphorylation-regulated suppressor of UV-induced NF-kappaB activation. EMBO J 24:4237–4246PubMedCrossRefGoogle Scholar
  11. 11.
    Sun X, Zhang Y, Wang J, Wei L, Li H, Hanley G, Zhao M, Li Y, Yin D (2010) Beta-arrestin 2 modulates resveratrol-induced apoptosis and regulation of Akt/GSK3β pathways. Biochim Biophys Acta 1800:912–918PubMedCrossRefGoogle Scholar
  12. 12.
    Xie N, Li H, Wei D, LeSage G, Chen L, Wang S, Zhang Y, Chi L, Ferslew K, He L, Chi Z, Yin D (2010) Glycogen synthase kinase-3 and p38 MAPK are required for opioid-induced microglia apoptosis. Neuropharmacology 59:444–451PubMedCrossRefGoogle Scholar
  13. 13.
    Yin D, Woodruff M, Zhang Y, Whaley S, Miao J, Ferslew K, Zhao J, Stuart C (2006) Morphine promotes jurkat cell apoptosis through pro-apoptotic FADD/P53 and anti-apoptotic PI3K/Akt/NF-kappaB pathways. J Neuroimmunol 174:101–107PubMedCrossRefGoogle Scholar
  14. 14.
    Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410:37–40PubMedCrossRefGoogle Scholar
  15. 15.
    Ichijo H (1999) From receptors to stress-activated MAP kinases. Oncogene 18:6087–6093PubMedCrossRefGoogle Scholar
  16. 16.
    Tegeder I, Geisslinger G (2004) Opioids as modulators of cell death and survival—unraveling mechanisms and revealing new indications. Pharmacol Rev 56:351–369PubMedCrossRefGoogle Scholar
  17. 17.
    Porras A, Zuluaga S, Black E, Valladares A, Alvarez AM, Ambrosino C, Benito M, Nebreda AR (2004) P38 alpha mitogen-activated protein kinase sensitizes cells to apoptosis induced by different stimuli. Mol Biol Cell 15:922–933PubMedCrossRefGoogle Scholar
  18. 18.
    Cagnol S, Chambard JC (2010) ERK and cell death: mechanisms of ERK-induced cell death—apoptosis, autophagy and senescence. FEBS J 277:2–21PubMedCrossRefGoogle Scholar
  19. 19.
    Murphy LO, Blenis J (2006) MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31:268–275PubMedCrossRefGoogle Scholar
  20. 20.
    Li Y, Sun X, Zhang Y, Huang J, Hanley G, Ferslew KE, Peng Y, Yin D (2009) Morphine promotes apoptosis via TLR2, and this is negatively regulated by beta-arrestin 2. Biochem Biophys Res Commun 378:857–861PubMedCrossRefGoogle Scholar
  21. 21.
    Hetman M, Cavanaugh JE, Kimelman D, Xia Z (2000) Role of glycogen synthase kinase-3 beta in neuronal apoptosis induced by trophic withdrawal. J Neurosci 20:2567–2574PubMedGoogle Scholar
  22. 22.
    Eom TY, Roth KA, Jope RS (2007) Neural precursor cells are protected from apoptosis induced by trophic factor withdrawal or genotoxic stress by inhibitors of glycogen synthase kinase 3. J Biol Chem 282:22856–22864PubMedCrossRefGoogle Scholar
  23. 23.
    Li Y, Li H, Zhang Y, Sun X, Hanley GA, LeSage G, Sun S, Peng Y, Yin D (2010) Toll-like receptor 2 is required for opioids-induced neuronal apoptosis. Biochem Biophys Res Commun 391:426–430PubMedCrossRefGoogle Scholar
  24. 24.
    He L, Li H, Chen L, Miao J, Jiang Y, Zhang Y, Xiao Z, Hanley G, Li Y, Zhang X, LeSage G, Peng Y, Yin D (2011) Toll-like receptor 9 is required for opioid-induced microglia apoptosis. PLoS One 6:e18190PubMedCrossRefGoogle Scholar
  25. 25.
    Mazumder S, Plesca D, Almasan A (2008) Caspase-3 activation is a critical determinant of genotoxic stress-induced apoptosis. Methods Mol Biol 414:13–21PubMedGoogle Scholar
  26. 26.
    Beaulieu JM, Gainetdinov RR, Caron MG (2007) The Akt-GSK-3 signaling cascade in the actions of dopamine. Trends Pharmacol Sci 28:166–172PubMedCrossRefGoogle Scholar
  27. 27.
    Beaulieu JM, Sotnikova TD, Marion S, Lefkowitz RJ, Gainetdinov RR, Caron MG (2005) An Akt/beta-arrestin 2/PP2A signaling complex mediates dopaminergic neurotransmission and behavior. Cell 122:261–273PubMedCrossRefGoogle Scholar
  28. 28.
    Scheid MP, Woodgett JR (2001) PKB/AKT: functional insights from genetic models. Nat Rev Mol Cell Biol 2:760–768PubMedCrossRefGoogle Scholar
  29. 29.
    Moore CA, Milano SK, Benovic JL (2007) Regulation of receptor trafficking by GRKs and arrestins. Annu Rev Physiol 69:451–482PubMedCrossRefGoogle Scholar
  30. 30.
    Buchanan FG, DuBois RN (2006) Emerging roles of beta-arrestins. Cell Cycle 5:2060–2063PubMedCrossRefGoogle Scholar
  31. 31.
    Wang X, Martindale JL, Liu Y, Holbrook NJ (1998) The cellular response to oxidative stress: influences of mitogen-activated protein kinase signalling pathways on cell survival. Biochem J 333(Pt 2):291–300PubMedGoogle Scholar
  32. 32.
    Huot J, Houle F, Rousseau S, Deschesnes RG, Shah GM, Landry J (1998) SAPK2/p38-dependent F-actin reorganization regulates early membrane blebbing during stress-induced apoptosis. J Cell Biol 143:1361–1373PubMedCrossRefGoogle Scholar
  33. 33.
    De Zutter GS, Davis RJ (2001) Pro-apoptotic gene expression mediated by the p38 mitogen-activated protein kinase signal transduction pathway. Proc Natl Acad Sci USA 98:6168–6173PubMedCrossRefGoogle Scholar
  34. 34.
    Aoki H, Kang PM, Hampe J, Yoshimura K, Noma T, Matsuzaki M, Izumo S (2002) Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J Biol Chem 277:10244–10250PubMedCrossRefGoogle Scholar
  35. 35.
    Tang D, Wu D, Hirao A, Lahti JM, Liu L, Mazza B, Kidd VJ, Mak TW, Ingram AJ (2002) ERK activation mediates cell cycle arrest and apoptosis after DNA damage independently of p53. J Biol Chem 277:12710–12717PubMedCrossRefGoogle Scholar
  36. 36.
    Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, Cobb MH (2001) Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–183PubMedCrossRefGoogle Scholar
  37. 37.
    Liu X, Li Q, Dowdell K, Fischer ER, Cohen JI (2012) Varicella-zoster virus ORF12 protein triggers phosphorylation of ERK1/2 and inhibits apoptosis. J Virol 86:3143–3151PubMedCrossRefGoogle Scholar
  38. 38.
    Ahn S, Kim J, Hara MR, Ren XR, Lefkowitz RJ (2009) {Beta}-arrestin-2 mediates anti-apoptotic signaling through regulation of BAD phosphorylation. J Biol Chem 284:8855–8865PubMedCrossRefGoogle Scholar
  39. 39.
    Osaki M, Oshimura M, Ito H (2004) PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9:667–676PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Xiaohua Yang
    • 1
    • 2
  • Gengyin Zhou
    • 3
  • Tao Ren
    • 4
  • Hui Li
    • 2
  • Yanjun Zhang
    • 5
  • Deling Yin
    • 2
  • Haixin Qian
    • 1
  • Qinchuan Li
    • 4
  1. 1.Department of General SurgeryThe First Affiliated Hospital of Soochow UniversitySuzhouChina
  2. 2.Department of Internal Medicine, College of MedicineEast Tennessee State UniversityJohnson CityUSA
  3. 3.Department of PathologyShandong University School of MedicineJinanChina
  4. 4.Department of Cardiovascular and Thoracic SurgeryShanghai East Hospital, Tongji University School of MedicineShanghaiChina
  5. 5.Institute of Developmental Biology, School of Life ScienceShandong UniversityJinanChina

Personalised recommendations