, Volume 17, Issue 9, pp 950–963 | Cite as

Increased acetylation of lysine 317/320 of p53 caused by BCR-ABL protects from cytoplasmic translocation of p53 and mitochondria-dependent apoptosis in response to DNA damage

  • Monika Kusio-Kobialka
  • Kamila Wolanin
  • Paulina Podszywalow-Bartnicka
  • Ewa Sikora
  • Krzysztof Skowronek
  • Sharon L. McKenna
  • Massimo Ghizzoni
  • Frank J. Dekker
  • Katarzyna PiwockaEmail author
Original Paper


Chronic myeloid leukemia (CML) is a disorder of hematopoietic stem cells caused by the expression of BCR-ABL. Loss of p53 has not been implicated as important for the development of CML. Mutations in p53 protein are infrequent, however they correlate with the disease progression. The absence of p53 mutations does not exclude the possibility that other dysfunctions play an important role in CML pathology. Acetylation represents a very potent posttranslational mechanism regulating p53 stability, transcriptional activity and localization. In this study we have investigated whether the expression of BCR-ABL could influence the acetylation of p53, specifically at lysine 317/320 (K317/K320), which has been shown to regulate nuclear export and transcription-independent apoptotic activity of p53. We found that BCR-ABL expression increases K317 acetylation of p53 and is able to prevent a drop in acetylation observed upon DNA damage, followed by translocation of p53 to the cytoplasm and by Bax activation. We have shown that this site plays a crucial role in the regulation of p53 localization and p53-dependent, Bax-mediated apoptosis. Our study presents a novel BCR-ABL-dependent mechanism protecting from DNA-damage-induced cell death. It can, in addition to already known mechanisms, explain the resistance to p53-dependent apoptosis observed in CML cells expressing wt p53. We propose that the acetyltransferases regulating the p53 acetylation could be an interesting and potent target for therapeutic intervention.


BCR-ABL p53 Acetylation Apoptosis DNA damage PCAF 



This study was supported by a grant from Ministry of Science and Higher Education in Poland 2P04A 05729 (to K. P.). We thank the COST action Epigenetics: from bench to bedside. (TD0905) for financial support. We would like to thank Dr. E. Appella from NCI, NIH, Bethesda, for kindly providing a portion of Anti-Mouse/Human p53 Acetylated Lys317 Polyclonal Antibody (PC-050, Trevigen, Inc.).

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10495_2012_739_MOESM1_ESM.tif (18.9 mb)
Supplementary material 1 (TIFF 19346 kb)
10495_2012_739_MOESM2_ESM.tif (18.9 mb)
Supplementary material 2 (TIFF 19344 kb)


  1. 1.
    Halazonetis TD, Gorgoulis VG, Bartek J (2008) An oncogene-induced DNA damage model for cancer development. Science 319:1352–1355PubMedCrossRefGoogle Scholar
  2. 2.
    Hoeijmakers JH (2007) Genome maintenance mechanisms are critical for preventing cancer as well as other aging-associated diseases. Mech Ageing Dev 128:460–462PubMedCrossRefGoogle Scholar
  3. 3.
    Jeggo PA (2005) Genomic instability in cancer development. Adv Exp Med Biol 570:175–197PubMedCrossRefGoogle Scholar
  4. 4.
    Meek DW (2009) Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer 9:714–723PubMedGoogle Scholar
  5. 5.
    Melo JV, Barnes DJ (2007) Chronic myeloid leukaemia as a model of disease evolution in human cancer. Nat Rev Cancer 7:441–453PubMedCrossRefGoogle Scholar
  6. 6.
    Di Bacco A, Keeshan K, McKenna SL, Cotter TG (2000) Molecular abnormalities in chronic myeloid leukemia: deregulation of cell growth and apoptosis. Oncologist 5:405–415PubMedCrossRefGoogle Scholar
  7. 7.
    Fridman JS, Lowe SW (2003) Control of apoptosis by p53. Oncogene 22:9030–9040PubMedCrossRefGoogle Scholar
  8. 8.
    Galluzzi L, Morselli E, Kepp O, Tajeddine N, Kroemer G (2008) Targeting p53 to mitochondria for cancer therapy. Cell Cycle 7:1949–1955PubMedCrossRefGoogle Scholar
  9. 9.
    Pietrzak M, Puzianowska-Kuznicka M (2008) p53-Dependent repression of the human MCL-1 gene encoding an anti-apoptotic member of the BCL-2 family: the role of Sp1 and of basic transcription factor binding sites in the MCL-1 promoter. Biol Chem 389:383–393PubMedCrossRefGoogle Scholar
  10. 10.
    Speidel D (2010) Transcription-independent p53 apoptosis: an alternative route to death. Trends Cell Biol 20:14–24PubMedCrossRefGoogle Scholar
  11. 11.
    Chipuk JE, Maurer U, Green DR, Schuler M (2003) Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 4:371–381PubMedCrossRefGoogle Scholar
  12. 12.
    Toledo F, Wahl GM (2006) Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer 6:909–923PubMedCrossRefGoogle Scholar
  13. 13.
    Ferecatu I, Rincheval V, Mignotte B, Vayssiere JL (2009) Tickets for p53 journey among organelles. Front Biosci 14:4214–4228PubMedCrossRefGoogle Scholar
  14. 14.
    Yamaguchi H, Woods NT, Piluso LG, Lee HH, Chen J, Bhalla KN, Monteiro A, Liu X, Hung MC, Wang HG (2009) p53 Acetylation is crucial for its transcription-independent proapoptotic functions. J Biol Chem 284:11171–11183PubMedCrossRefGoogle Scholar
  15. 15.
    Ogryzko VV, Schiltz RL, Russanova V, Howard BH, Nakatani Y (1996) The transcription coactivators p300 and CBP are histone acetyltransferases. Cell 87(5):953–959PubMedCrossRefGoogle Scholar
  16. 16.
    Liu L, Scolnick DM, Trievel RC, Zhang HB, Marmorstein R, Halazonetis TD, Berger SL (1999) p53 Sites acetylated in vitro by PCAF and p300 are acetylated in vivo in response to DNA damage. Mol Cell Biol 19(2):1202–1209PubMedGoogle Scholar
  17. 17.
    Sakaguchi K, Herrera JE, Saito S, Miki T, Bustin M, Vassilev A, Anderson CW, Appella E (1998) DNA damage activates p53 through a phosphorylation–acetylation cascade. Genes Dev 12:2831–2841PubMedCrossRefGoogle Scholar
  18. 18.
    Lee SM, Bae JH, Kim MJ, Lee HS, Lee MK, Chung BS, Kim DW, Kang CD, Kim SH (2007) Bcr-Abl-independent imatinib-resistant K562 cells show aberrant protein acetylation and increased sensitivity to histone deacetylase inhibitors. J Pharmacol Exp Ther 322:1084–1092PubMedCrossRefGoogle Scholar
  19. 19.
    Skorski T (2008) BCR/ABL, DNA damage and DNA repair: implications for new treatment concepts. Leuk Lymphoma 49:610–614PubMedCrossRefGoogle Scholar
  20. 20.
    Stoklosa T, Poplawski T, Koptyra M, Nieborowska-Skorska M, Basak G, Slupianek A, Rayevskaya M, Seferynska I, Herrera L, Blasiak J, Skorska T (2008) BCR/ABL inhibits mismatch repair to protect from apoptosis and induce point mutations. Cancer Res 68:2576–2580PubMedCrossRefGoogle Scholar
  21. 21.
    Keeshan K, Mills KI, Cotter TG, McKenna SL (2001) Elevated Bcr-Abl expression levels are sufficient for a haematopoietic cell line to acquire a drug-resistant phenotype. Leukemia 15:1823–1833PubMedCrossRefGoogle Scholar
  22. 22.
    Keeshan K, Cotter TG, McKenna SL (2002) High Bcr-Abl expression prevents the translocation of Bax and Bad to the mitochondrion. Leukemia 16:1725–1734PubMedCrossRefGoogle Scholar
  23. 23.
    Ghizzoni M, Boltjes A, Graaf C, Haisma HJ, Dekker FJ (2010) Improved inhibition of the histone acetyltransferase PCAF by an anacardic acid derivative. Bioorg Med Chem 18(16):5826–5834PubMedCrossRefGoogle Scholar
  24. 24.
    Moll UM, Wolff S, Speidel D, Deppert W (2005) Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17:631–636PubMedCrossRefGoogle Scholar
  25. 25.
    Chipiuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303(5660):1010–1014CrossRefGoogle Scholar
  26. 26.
    Strom E, Sahte S, Komaroy PG, Chernova OB, Pavlovska I, Shynhynova I, Bosykh DA, Burdelya LG, Macklis RM, Skaliter R, Komarova EA, Gudkov AV (2006) Small-molecule inhibitor of p53 binding to mitochondria protects mice from gamma radiation. Nat Chem Biol 2(9):474–479PubMedCrossRefGoogle Scholar
  27. 27.
    Hagn F, Klein C, Demmer O, Marchenko N, Vaseya A, Moll UM, Kessler H (2010) BclxL changes conformation upon binding to wild-type but not mutant p53 DNA binding domain. J Biol Chem 285(5):3439–3450PubMedCrossRefGoogle Scholar
  28. 28.
    Liang SH, Clarke MF (2001) Regulation of p53 localization. Eur J Biochem 268:2779–2783PubMedCrossRefGoogle Scholar
  29. 29.
    Dekker FJ, Ghizzoni M, van der Meer N, Wisastra R, Haisma HJ (2009) Inhibition of the PCAF histone acetyl transferase and cell proliferation by isothiazolones. Bioorg Med Chem 17(2):460–466PubMedCrossRefGoogle Scholar
  30. 30.
    Green DR, Kroemer G (2009) Cytoplasmic functions of the tumour suppressor p53. Nature 458(7242):1127–1130PubMedCrossRefGoogle Scholar
  31. 31.
    Schuler M, Green DR (2005) Transcription, apoptosis and p53: catch-22. Trends Genet 21:182–187PubMedCrossRefGoogle Scholar
  32. 32.
    Speidel D, Helmbold H, Deppert W (2006) Dissection of transcriptional and non-transcriptional p53 activities in the response to genotoxic stress. Oncogene 25:940–953PubMedCrossRefGoogle Scholar
  33. 33.
    Chipuk JE, Green DR (2004) Cytoplasmic p53: Bax and forward. Cell Cycle 3:429–431PubMedCrossRefGoogle Scholar
  34. 34.
    Gavathiotis E, Reyna DE, Davis ML, Bird GH, Walensky LD (2010) BH3-triggered structural reorganization drives the activation of proapoptotic BAX. Moll Cell 40(3):481–492CrossRefGoogle Scholar
  35. 35.
    Knudson AG (2001) Two genetic hits (more or less) to cancer. Nat Rev Cancer 1(2):157–162PubMedCrossRefGoogle Scholar
  36. 36.
    Callus BA, Moujallad DM, Silke J, Gerl R, Jabbour AM, Ekert PG, Vaux DL (2008) Triggering apoptosis by Puma is determined by the he threshold set by prosurvival Bcl-2 family proteins. J Mol Biol 384(2):313–323PubMedCrossRefGoogle Scholar
  37. 37.
    Degenhart K, Chen G, Lindsten T, White E (2002) BAX and BAK mediate p53-independent suppression of tumorigenesis. Cancer Cell 2(3):193–203CrossRefGoogle Scholar
  38. 38.
    Chao C, Wu Z, Mazur SJ, Borges H, Rossi M, Lin T, Wang J, Anderson CW, Appella E, Xu Y (2006) Acetylation of mouse p53 at lysine 317 negatively regulates p53 apoptotic activities after DNA damage. Mol Cell Biol 26:6859–6869PubMedCrossRefGoogle Scholar
  39. 39.
    Knights CD, Catania J, Di Giovanni S, Muratoglu S, Perez R, Swartzbeck A, Quong AA, Zhang X, Beerman T, Pestell RG, Avantaggiati ML (2006) Distinct p53 acetylation cassettes differentially influence gene-expression patterns and cell fate. J Cell Biol 173:533–544PubMedCrossRefGoogle Scholar
  40. 40.
    Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM (2003) p53 Has a direct apoptogenic role at the mitochondria. Mol Cell 11(3):577–590PubMedCrossRefGoogle Scholar
  41. 41.
    Horita M, Andreu EJ, Benito A, Arbona C, Sanz C, Benet I, Prosper F, Fernandez-Luna JL (2000) Blockade of the Bcr-Abl kinase activity induces apoptosis of chronic myelogenous leukemia cells by suppressing signal transducer and activator of transcription 5-dependent expression of Bcl-xL. J Exp Med 191(6):977–984PubMedCrossRefGoogle Scholar
  42. 42.
    Bai L, Zhu W-G (2006) p53: structure, function and therapeutic applications. J Cancer Mol 2(4):141–153Google Scholar
  43. 43.
    Li M, Luo J, Brooks CL, Gu W (2002) Acetylation of p53 inhibits its ubiquitination by Mdm2. J Biol Chem 277(52):50607–50611PubMedCrossRefGoogle Scholar
  44. 44.
    Le Cam L, Linares LK, Paul C, Julien E, Lacroix M, Hatchi E, Triboulet R, Bossis G, Shmueli A, Rodriguez MS, Coux O, Sardet C (2006) E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation. Cell 127(4):775–788PubMedCrossRefGoogle Scholar
  45. 45.
    Marchenko ND, Wolff S, Erster S, Becker K, Moll UM (2007) Monoubiquitylation promotes mitochondrial p53 translocation. EMBO J 26(4):923–934PubMedCrossRefGoogle Scholar
  46. 46.
    Palacios G, Moll UM (2006) Mitochondrially targeted wild-type p53 suppresses growth of mutant p53 lymphomas in vivo. Oncogene 25(45):6133–6139PubMedCrossRefGoogle Scholar
  47. 47.
    Chipuk JE, Bouchier-Hayes L, Kuwana T, Newmeyer DD, Green DR (2005) PUMA couples the nuclear and cytoplasmic proapoptotic function of p53. Science 309(5741):1732–1735PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Monika Kusio-Kobialka
    • 1
  • Kamila Wolanin
    • 2
  • Paulina Podszywalow-Bartnicka
    • 1
  • Ewa Sikora
    • 2
  • Krzysztof Skowronek
    • 3
    • 4
  • Sharon L. McKenna
    • 5
  • Massimo Ghizzoni
    • 6
  • Frank J. Dekker
    • 6
  • Katarzyna Piwocka
    • 1
    Email author
  1. 1.Laboratory of CytometryNencki Institute of Experimental BiologyWarsawPoland
  2. 2.Laboratory of Molecular Bases of Aging, Department of BiochemistryNencki Institute of Experimental BiologyWarsawPoland
  3. 3.Laboratory of Biochemistry of Lipids, Department of BiochemistryNencki Institute of Experimental BiologyWarsawPoland
  4. 4.International Institute of Molecular and Cell BiologyWarsawPoland
  5. 5.Leslie C. Quick Laboratory, Cork Cancer Research Centre, BioSciences InstituteUniversity College CorkCorkIreland
  6. 6.Department of Pharmaceutical Gene ModulationGroningen Research Institute of PharmacyGroningenThe Netherlands

Personalised recommendations