Advertisement

Apoptosis

, Volume 17, Issue 8, pp 749–761 | Cite as

TSSC3 overexpression reduces stemness and induces apoptosis of osteosarcoma tumor-initiating cells

  • Yusheng Huang
  • Huanzi Dai
  • Qiao-Nan Guo
Original Paper

Abstract

Osteosarcoma (OS) is the most common primary bone tumor in children and adolescents, typically presenting with poor prognosis. Recent studies suggested that tumor initiating cells (T-ICs) drive tumor formation and relapse or metastasis and are relatively resistant to cell death induced by conventional chemo- and radiotherapies. Therefore, the poor prognosis of OS appears to be associated with T-ICs. Here, we enriched T-ICs in OS cell lines and evaluated whether the imprinted gene TSSC3 (tumor-suppressing STF cDNA 3) associated with apoptosis could affect T-ICs in OS. Sarcosphere selection and serial clone-forming unit assays were successfully used to enrich T-ICs from OS cell lines. Enrichment of T-ICs from a malignantly transformed hFOB1.19 osteoblast cell line (MThFOB1.19) indicated that OS T-ICs could originate from differentiated cells, and most of these MThFOB1.19 cells showed stem-like features. TSSC3 was expressed at a low level in T-ICs, while overexpression of TSSC3 could efficiently downregulate the expression of stem cell markers Nanog, Oct4 and Sox2 in T-ICs and decrease the clone formation rate, as well as downregulate tumorigenesis in MThFOB1.19 cells, supporting a suppressive role for TSSC3 in OS T-ICs. Furthermore, overexpression of TSSC3 was found to induce apoptosis of OS T-ICs through increasing cleaved caspase-3 (active form), increasing the release of Cyt c and decreasing pro-caspase-9 (pro-enzyme form), as well as disruption of the mitochondrial membrane potential (ΔΨ). Taken together, our findings provide preliminary evidence that TSSC3 inhibits OS tumorigenicity through reducing stemness and promoting apoptosis of T-ICs. Thus, targeting TSSC3 may be a promising approach to suppressing tumorigenicity in OS.

Keywords

Tumor-initiating cell Apoptosis TSSC3 Osteosarcoma 

Abbreviations

ΔΨ

Membrane potential (mitochondrial)

DMEM

Dulbecco’s minimal essential medium

FBS

Fetal bovine serum

OS

Osteosarcoma

PI

Propidium iodide

T-ICs

Tumor initiating cells

TSCs

Tumor stem cells

TSSC3

Tumor-suppressing STF cDNA 3

Notes

Acknowledgments

This study was supported by the National Basic Research Program of China (973 Program, No. 2010CB529402) and the National Natural Science Foundation of China (No. 30971139 and No. 81172554). We thank Professor Cheng Qian (Institute for Pathology and Cancer Research, Southwest Hospital, Chongqing, China) for kindly providing the GeneSwitch™ system (Invitrogen, USA).

Conflict of interest

None declared.

References

  1. 1.
    Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737PubMedCrossRefGoogle Scholar
  2. 2.
    Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci U S A 100(7):3983–3988. doi: 10.1073/pnas.0530291100 PubMedCrossRefGoogle Scholar
  3. 3.
    Pardal R, Clarke MF, Morrison SJ (2003) Applying the principles of stem-cell biology to cancer. Nat Rev Cancer 3(12):895–902. doi: 10.1038/nrc1232 PubMedCrossRefGoogle Scholar
  4. 4.
    Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, Dirks PB (2003) Identification of a cancer stem cell in human brain tumors. Cancer Res 63(18):5821–5828PubMedGoogle Scholar
  5. 5.
    Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111. doi: 10.1038/35102167 PubMedCrossRefGoogle Scholar
  6. 6.
    Davies EJ, Marsh V, Clarke AR (2011) Origin and maintenance of the intestinal cancer stem cell. Mol Carcinog 50(4):254–263. doi: 10.1002/mc.20631 PubMedCrossRefGoogle Scholar
  7. 7.
    Tang N, Song WX, Luo J, Haydon RC, He TC (2008) Osteosarcoma development and stem cell differentiation. Clin Orthop Relat Res 466(9):2114–2130. doi: 10.1007/s11999-008-0335-z PubMedCrossRefGoogle Scholar
  8. 8.
    Signore M, Ricci-Vitiani L, De Maria R (2011) Targeting apoptosis pathways in cancer stem cells. Cancer Lett. doi:  10.1016/j.canlet.2011.01.013
  9. 9.
    Gibbs CP, Kukekov VG, Reith JD, Tchigrinova O, Suslov ON, Scott EW, Ghivizzani SC, Ignatova TN, Steindler DA (2005) Stem-like cells in bone sarcomas: implications for tumorigenesis. Neoplasia 7(11):967–976PubMedCrossRefGoogle Scholar
  10. 10.
    Tirino V, Desiderio V, d’Aquino R, De Francesco F, Pirozzi G, Graziano A, Galderisi U, Cavaliere C, De Rosa A, Papaccio G, Giordano A (2008) Detection and characterization of CD133+ cancer stem cells in human solid tumours. PLoS ONE 3(10):e3469. doi: 10.1371/journal.pone.0003469 PubMedCrossRefGoogle Scholar
  11. 11.
    Veselska R, Hermanova M, Loja T, Chlapek P, Zambo I, Vesely K, Zitterbart K, Sterba J (2008) Nestin expression in osteosarcomas and derivation of nestin/CD133 positive osteosarcoma cell lines. BMC Cancer 8:300. doi: 10.1186/1471-2407-8-300 PubMedCrossRefGoogle Scholar
  12. 12.
    Wilson H, Huelsmeyer M, Chun R, Young KM, Friedrichs K, Argyle DJ (2008) Isolation and characterisation of cancer stem cells from canine osteosarcoma. Vet J 175(1):69–75. doi: 10.1016/j.tvjl.2007.07.025 PubMedCrossRefGoogle Scholar
  13. 13.
    Di Fiore R, Santulli A, Ferrante RD, Giuliano M, De Blasio A, Messina C, Pirozzi G, Tirino V, Tesoriere G, Vento R (2009) Identification and expansion of human osteosarcoma-cancer-stem cells by long-term 3-aminobenzamide treatment. J Cell Physiol 219(2):301–313. doi: 10.1002/jcp21667 PubMedCrossRefGoogle Scholar
  14. 14.
    Cheng L, Sung MT, Cossu-Rocca P, Jones TD, MacLennan GT, De Jong J, Lopez-Beltran A, Montironi R, Looijenga LH (2007) OCT4: biological functions and clinical applications as a marker of germ cell neoplasia. J Pathol 211(1):1–9. doi: 10.1002/path.2105 PubMedCrossRefGoogle Scholar
  15. 15.
    Tang QL, Zhao ZQ, Li JC, Liang Y, Yin JQ, Zou CY, Xie XB, Zeng YX, Shen JN, Kang T, Wang J (2011) Salinomycin inhibits osteosarcoma by targeting its tumor stem cells. Cancer Lett 311(1):113–121. doi:  10.1016/j.canlet.2011.07.016 Google Scholar
  16. 16.
    Pece S, Tosoni D, Confalonieri S, Mazzarol G, Vecchi M, Ronzoni S, Bernard L, Viale G, Pelicci PG, Di Fiore PP (2010) Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. Cell 140(1):62–73. doi: 10.1016/j.cell.2009.12.007 PubMedCrossRefGoogle Scholar
  17. 17.
    Li Y, Meng G, Guo QN (2008) Changes in genomic imprinting and gene expression associated with transformation in a model of human osteosarcoma. Exp Mol Pathol 84(3):234–239. doi: 10.1016/j.yexmp.200803013 PubMedCrossRefGoogle Scholar
  18. 18.
    Lee MP, Feinberg AP (1998) Genomic imprinting of a human apoptosis gene homologue, TSSC3. Cancer Res 58(5):1052–1056PubMedGoogle Scholar
  19. 19.
    Dai H, Huang Y, Li Y, Meng G, Wang Y, Guo QN (2012) TSSC3 overexpression associates with growth inhibition, apoptosis induction and enhances chemotherapeutic effects in human osteosarcoma. Carcinogenesis 33(1):30–40. doi: 10.1093/carcin/bgr232 PubMedCrossRefGoogle Scholar
  20. 20.
    Silva J, Nichols J, Theunissen TW, Guo G, van Oosten AL, Barrandon O, Wray J, Yamanaka S, Chambers I, Smith A (2009) Nanog is the gateway to the pluripotent ground state. Cell 138(4):722–737. doi: 10.1016/j.cell.2009.07.039 PubMedCrossRefGoogle Scholar
  21. 21.
    Zheng X, Shen G, Yang X, Liu W (2007) Most C6 cells are cancer stem cells: evidence from clonal and population analyses. Cancer Res 67(8):3691–3697. doi: 10.1158/0008-5472.can-06-3912 PubMedCrossRefGoogle Scholar
  22. 22.
    Meissner A, Wernig M, Jaenisch R (2007) Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol 25(10):1177–1181. doi: 10.1038/nbt1335 PubMedCrossRefGoogle Scholar
  23. 23.
    Okita K, Ichisaka T, Yamanaka S (2007) Generation of germline-competent induced pluripotent stem cells. Nature 448(7151):313–317. doi: 10.1038/nature05934 PubMedCrossRefGoogle Scholar
  24. 24.
    Pei D (2009) Regulation of pluripotency and reprogramming by transcription factors. J Biol Chem 284(6):3365–3369. doi: 10.1074/jbc.R800063200 PubMedCrossRefGoogle Scholar
  25. 25.
    Su X, Zheng X, Ni J (2009) Lanthanum citrate induces anoikis of Hela cells. Cancer Lett 285(2):200–209. doi: 10.1016/j.canlet.2009.05.018 PubMedCrossRefGoogle Scholar
  26. 26.
    Zhu XJ, Shi Y, Peng J, Guo CS, Shan NN, Qin P, Ji XB, Hou M (2009) The effects of BAFF and BAFF-R-Fc fusion protein in immune thrombocytopenia. Blood 114(26):5362–5367. doi: 10.1182/blood-2009-05-217513 PubMedCrossRefGoogle Scholar
  27. 27.
    Visvader JE, Lindeman GJ (2008) Cancer stem cells in solid tumours: accumulating evidence and unresolved questions. Nat Rev Cancer 8(10):755–768. doi: 10.1038/nrc2499 PubMedCrossRefGoogle Scholar
  28. 28.
    Moon JH, Kwon S, Jun EK, Kim A, Whang KY, Kim H, Oh S, Yoon BS, You S (2011) Nanog-induced dedifferentiation of p53-deficient mouse astrocytes into brain cancer stem-like cells. Biochem Biophys Res Commun 412(1):175–181. doi: 10.1016/j.bbrc.2011.07.070 PubMedGoogle Scholar
  29. 29.
    Scaffidi P, Misteli T (2011) In vitro generation of human cells with cancer stem cell properties. Nat Cell Biol 13(9):1051–1061. doi: 10.1038/ncb2308 PubMedCrossRefGoogle Scholar
  30. 30.
    Trosko JE (2009) Review paper: cancer stem cells and cancer nonstem cells: from adult stem cells or from reprogramming of differentiated somatic cells. Vet Pathol 46(2):176–193. doi: 10.1354/vp.462176 PubMedGoogle Scholar
  31. 31.
    Li F (2009) Every single cell clones from cancer cell lines growing tumors in vivo may not invalidate the cancer stem cell concept. Mol Cells 27(4):491–492. doi: 10.1007/s10059-009-0056-5 PubMedCrossRefGoogle Scholar
  32. 32.
    Kern SE, Shibata D (2007) The fuzzy math of solid tumor stem cells: a perspective. Cancer Res 67(19):8985–8988. doi: 10.1158/0008-5472.can-07-1971 PubMedCrossRefGoogle Scholar
  33. 33.
    Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–598. doi: 10.1038/nature07567 PubMedCrossRefGoogle Scholar
  34. 34.
    Oliver TG, Wechsler-Reya RJ (2004) Getting at the root and stem of brain tumors. Neuron 42(6):885–888. doi: 10.1016/j.neuron.2004.06.011 PubMedCrossRefGoogle Scholar
  35. 35.
    Hu RJ, Lee MP, Connors TD, Johnson LA, Burn TC, Su K, Landes GM, Feinberg AP (1997) A 2.5-Mb transcript map of a tumor-suppressing subchromosomal transferable fragment from 11p15.5, and isolation and sequence analysis of three novel genes. Genomics 46(1):9–17. doi: 10.1006/geno.1997.4981 PubMedCrossRefGoogle Scholar
  36. 36.
    Qian N, Frank D, O’Keefe D, Dao D, Zhao L, Yuan L, Wang Q, Keating M, Walsh C, Tycko B (1997) The IPL gene on chromosome 11p15.5 is imprinted in humans and mice and is similar to TDAG51, implicated in Fas expression and apoptosis. Hum Mol Genet 6(12):2021–2029PubMedCrossRefGoogle Scholar
  37. 37.
    Keane MM, Ettenberg SA, Lowrey GA, Russell EK, Lipkowitz S (1996) Fas expression and function in normal and malignant breast cell lines. Cancer Res 56(20):4791–4798PubMedGoogle Scholar
  38. 38.
    Nagai MA, Fregnani JH, Netto MM, Brentani MM, Soares FA (2007) Down-regulation of PHLDA1 gene expression is associated with breast cancer progression. Breast Cancer Res Treat 106(1):49–56. doi: 10.1007/s10549-006-9475-6 PubMedCrossRefGoogle Scholar
  39. 39.
    Muller S, van den Boom D, Zirkel D, Koster H, Berthold F, Schwab M, Westphal M, Zumkeller W (2000) Retention of imprinting of the human apoptosis-related gene TSSC3 in human brain tumors. Hum Mol Genet 9(5):757–763PubMedCrossRefGoogle Scholar
  40. 40.
    Schwienbacher C, Angioni A, Scelfo R, Veronese A, Calin GA, Massazza G, Hatada I, Barbanti-Brodano G, Negrini M (2000) Abnormal RNA expression of 11p15 imprinted genes and kidney developmental genes in Wilms’ tumor. Cancer Res 60(6):1521–1525PubMedGoogle Scholar
  41. 41.
    Frank NY, Schatton T, Frank MH (2010) The therapeutic promise of the cancer stem cell concept. J Clin Invest 120(1):41–50. doi: 10.1172/jci41004 PubMedCrossRefGoogle Scholar
  42. 42.
    Clarke MF, Dick JE, Dirks PB, Eaves CJ, Jamieson CH, Jones DL, Visvader J, Weissman IL, Wahl GM (2006) Cancer stem cells—perspectives on current status and future directions: AACR workshop on cancer stem cells. Cancer Res 66(19):9339–9344. doi: 10.1158/0008-5472.can-06-3126 PubMedCrossRefGoogle Scholar
  43. 43.
    Peng S, Maihle NJ, Huang Y (2010) Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene 29(14):2153–2159. doi: 10.1038/onc.2009.500 PubMedCrossRefGoogle Scholar
  44. 44.
    Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K, Maruyama M, Maeda M, Yamanaka S (2003) The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113(5):631–642PubMedCrossRefGoogle Scholar
  45. 45.
    Sell S (2004) Stem cell origin of cancer and differentiation therapy. Crit Rev Oncol Hematol 51(1):1–28. doi: 10.1016/j.critrevonc.2004.04.007 PubMedCrossRefGoogle Scholar
  46. 46.
    Hu T, Liu S, Breiter DR, Wang F, Tang Y, Sun S (2008) Octamer 4 small interfering RNA results in cancer stem cell-like cell apoptosis. Cancer Res 68(16):6533–6540. doi: 10.1158/0008-5472.can-07-6642 PubMedCrossRefGoogle Scholar
  47. 47.
    Chang CC, Shieh GS, Wu P, Lin CC, Shiau AL, Wu CL (2008) Oct-3/4 expression reflects tumor progression and regulates motility of bladder cancer cells. Cancer Res 68(15):6281–6291. doi: 10.1158/0008-5472.can-08-0094 PubMedCrossRefGoogle Scholar
  48. 48.
    Jia X, Li X, Xu Y, Zhang S, Mou W, Liu Y, Lv D, Liu CH, Tan X, Xiang R, Li N (2011) SOX2 promotes tumorigenesis and increases the anti-apoptotic property of human prostate cancer cell. J Mol Cell Biol 3(4):230–238. doi: 10.1093/jmcb/mjr002 PubMedCrossRefGoogle Scholar
  49. 49.
    Mimeault M, Batra SK (2006) Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 24(11):2319–2345. doi: 10.1634/stemcells.2006-0066 PubMedCrossRefGoogle Scholar
  50. 50.
    Mimeault M, Hauke R, Mehta PP, Batra SK (2007) Recent advances in cancer stem/progenitor cell research: therapeutic implications for overcoming resistance to the most aggressive cancers. J Cell Mol Med 11(5):981–1011. doi: 10.1111/j.1582-4934.2007.00088.x PubMedCrossRefGoogle Scholar
  51. 51.
    Simpson CD, Anyiwe K, Schimmer AD (2008) Anoikis resistance and tumor metastasis. Cancer Lett 272(2):177–185. doi: 10.1016/j.canlet.2008.05.029 PubMedCrossRefGoogle Scholar
  52. 52.
    Mawji IA, Simpson CD, Hurren R, Gronda M, Williams MA, Filmus J, Jonkman J, Da Costa RS, Wilson BC, Thomas MP, Reed JC, Glinsky GV, Schimmer AD (2007) Critical role for Fas-associated death domain-like interleukin-1-converting enzyme-like inhibitory protein in anoikis resistance and distant tumor formation. J Natl Cancer Inst 99(10):811–822. doi: 10.1093/jnci/djk182 PubMedCrossRefGoogle Scholar
  53. 53.
    Green DR (2010) Cancer: a wolf in wolf’s clothing. Nature 465(7297):433. doi: 10.1038/465433a PubMedCrossRefGoogle Scholar
  54. 54.
    Chen L, Park SM, Tumanov AV, Hau A, Sawada K, Feig C, Turner JR, Fu YX, Romero IL, Lengyel E, Peter ME (2010) CD95 promotes tumour growth. Nature 465(7297):492–496. doi: 10.1038/nature09075 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Institute of Pathology and Southwest Cancer CenterSouthwest Hospital, Third Military Medical UniversityChongqingChina

Personalised recommendations