, Volume 17, Issue 6, pp 539–550

Apoptosis, necrosis and autophagy are influenced by metabolic energy sources in cultured rat spermatocytes

  • Ximena Bustamante-Marín
  • Clara Quiroga
  • Sergio Lavandero
  • Juan G. Reyes
  • Ricardo D. Moreno
Original Paper


Apoptosis, necrosis and autophagy are mechanistically related processes that control tissue homeostasis and cell survival. In the testis, germ cell death is important for controlling sperm output, but it is unknown whether or not germ cells can switch from apoptosis to necrosis, as has been reported in other tissues. Furthermore, autophagy has not been reported in spermatogenesis. Spermatocytes (meiotic cells) and spermatids (haploid cells) use lactate rather than glucose as their primary substrate for producing ATP. The metabolism of glucose, but not lactate, reduces ATP levels and increases intracellular [H+] and [Ca2+], both of which are associated with apoptosis and/or necrosis in somatic cells. In this work, we evaluated whether different energy sources, such as lactate or glucose, can influence spermatocyte death type and/or survival in primary cultures. Spermatocytes cultured for 12 h without an energy source died by necrosis, while spermatocytes cultured with 5 mM glucose showed a significant increase in apoptosis, as evidenced by caspase activity, TUNEL assay and phosphatidylserine exposure. Apoptosis was not observed in spermatocytes cultured with 5 mM lactate or deoxyglucose. Authophagy markers, such as LC3-II and autophagosomes, were detected after 12 h of culture, regardless the culture conditions. These results suggest that the availability of glucose and/or lactate affect the type of death or the survival of primary spermatocytes, where glucose can induce apoptosis, while lactate is a protective factor.


Spermatogenesis Energetic metabolism Cell death Caspase Calcium 

Supplementary material

10495_2012_709_MOESM1_ESM.doc (214 kb)
Supplementary material 1 (DOC 214 kb)


  1. 1.
    Feng HL, Sandlow JI, Sparks AE, Sandra A, Zheng LJ (1999) Decreased expression of the c-kit receptor is associated with increased apoptosis in subfertile human testes. Fertil Steril 71:85–89PubMedCrossRefGoogle Scholar
  2. 2.
    Francavilla S, D’Abrizio P, Cordeschi G et al (2002) Fas expression correlates with human germ cell degeneration in meiotic and post-meiotic arrest of spermatogenesis. Mol Hum Reprod 8:213–220PubMedCrossRefGoogle Scholar
  3. 3.
    Moreno RD, Urriola-Muñoz P, Lagos-Cabré R (2011) The emerging role of matrix metalloproteases of the ADAM family in male germ cell apoptosis. Spermatogenesis 1:195–208PubMedCrossRefGoogle Scholar
  4. 4.
    Weikert S, Schrader M, Muller M, Schulze W, Krause H, Miller K (2005) Expression levels of the inhibitor of apoptosis survivin in testes of patients with normal spermatogenesis and spermatogenic failure. Fertil Steril 83(Suppl 1):1100–1105PubMedCrossRefGoogle Scholar
  5. 5.
    Knudson CM, Tung KS, Tourtellotte WG, Brown GA, Korsmeyer SJ (1995) Bax-deficient mice with lymphoid hyperplasia and male germ cell death. Science 270:96–99PubMedCrossRefGoogle Scholar
  6. 6.
    Bao Q, Shi Y (2007) Apoptosome: a platform for the activation of initiator caspases. Cell Death Differ 14:56–65PubMedCrossRefGoogle Scholar
  7. 7.
    Degterev A, Yuan J (2008) Expansion and evolution of cell death programmes. Nat Rev Mol Cell Biol 9:378–390PubMedCrossRefGoogle Scholar
  8. 8.
    Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6:463–477PubMedCrossRefGoogle Scholar
  9. 9.
    Duriez PJ, Shah GM (1997) Cleavage of poly(ADP-ribose) polymerase: a sensitive parameter to study cell death. Biochem Cell Biol 75:337–349PubMedCrossRefGoogle Scholar
  10. 10.
    Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5:897–907PubMedCrossRefGoogle Scholar
  11. 11.
    Salvesen GS, Riedl SJ (2008) Caspase mechanisms. Adv Exp Med Biol 615:13–23PubMedCrossRefGoogle Scholar
  12. 12.
    Galluzzi L, Maiuri MC, Vitale I et al (2007) Cell death modalities: classification and pathophysiological implications. Cell Death Differ 14:1237–1243PubMedCrossRefGoogle Scholar
  13. 13.
    Golstein P, Kroemer G (2007) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32:37–43PubMedCrossRefGoogle Scholar
  14. 14.
    Wang AL, Boulton ME, Dunn WA Jr et al (2009) Using LC3 to monitor autophagy flux in the retinal pigment epithelium. Autophagy 5:1190–1193PubMedCrossRefGoogle Scholar
  15. 15.
    Maiuri MC, Zalckvar E, Kimchi A, Kroemer G (2007) Self-eating and self-killing: crosstalk between autophagy and apoptosis. Nat Rev Mol Cell Biol 8:741–752PubMedCrossRefGoogle Scholar
  16. 16.
    Harr MW, Distelhorst CW (2010) Apoptosis and autophagy: decoding calcium signals that mediate life or death. Cold Spring Harb Perspect Biol 2:a005579PubMedCrossRefGoogle Scholar
  17. 17.
    Nakamura M, Fujiwara A, Yasumasu I, Okinaga S, Arai K (1982) Regulation of glucose metabolism by adenine nucleotides in round spermatids from rat testes. J Biol Chem 257:13945–13950PubMedGoogle Scholar
  18. 18.
    Nakamura M, Okinaga S, Arai K (1984) Metabolism of round spermatids: evidence that lactate is preferred substrate. Am J Physiol 247:E234–E242PubMedGoogle Scholar
  19. 19.
    Herrera E, Salas K, Lagos N, Benos DJ, Reyes JG (2000) Energy metabolism and its linkage to intracellular Ca2+ and pH regulation in rat spermatogenic cells. Biol Cell 92:429–440PubMedCrossRefGoogle Scholar
  20. 20.
    Reyes JG, Herrera E, Lobos L et al (2002) Dynamics of intracellular calcium induced by lactate and glucose in rat pachytene spermatocytes and round spermatids. Reproduction 123:701–710PubMedCrossRefGoogle Scholar
  21. 21.
    Chami M, Oules B, Szabadkai G, Tacine R, Rizzuto R, Paterlini-Brechot P (2008) Role of SERCA1 truncated isoform in the proapoptotic calcium transfer from ER to mitochondria during ER stress. Mol Cell 32:641–651PubMedCrossRefGoogle Scholar
  22. 22.
    Lizama C, Alfaro I, Reyes JG, Moreno RD (2007) Up-regulation of CD95 (Apo-1/Fas) is associated with spermatocyte apoptosis during the first round of spermatogenesis in the rat. Apoptosis 12:499–512PubMedCrossRefGoogle Scholar
  23. 23.
    Mishra DP, Pal R, Shaha C (2006) Changes in cytosolic Ca2+ levels regulate Bcl-xS and Bcl-xL expression in spermatogenic cells during apoptotic death. J Biol Chem 281:2133–2143PubMedCrossRefGoogle Scholar
  24. 24.
    Pinton P, Giorgi C, Siviero R, Zecchini E, Rizzuto R (2008) Calcium and apoptosis: ER-mitochondria Ca2+ transfer in the control of apoptosis. Oncogene 27:6407–6418PubMedCrossRefGoogle Scholar
  25. 25.
    Vicencio JM, Ortiz C, Criollo A et al (2009) The inositol 1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1. Cell Death Differ 16:1006–1017PubMedCrossRefGoogle Scholar
  26. 26.
    Wegierski T, Steffl D, Kopp C et al (2009) TRPP2 channels regulate apoptosis through the Ca2+ concentration in the endoplasmic reticulum. EMBO J 28:490–499PubMedCrossRefGoogle Scholar
  27. 27.
    Moreno RD, Lizama C, Urzua N, Vergara SP, Reyes JG (2006) Caspase activation throughout the first wave of spermatogenesis in the rat. Cell Tissue Res 325:533–540PubMedCrossRefGoogle Scholar
  28. 28.
    Van Pelt AM, De Rooij DG (1990) The origin of the synchronization of the seminiferous epithelium in vitamin A-deficient rats after vitamin A replacement. Biol Reprod 42:677–682PubMedCrossRefGoogle Scholar
  29. 29.
    Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212PubMedCrossRefGoogle Scholar
  30. 30.
    Grynkiewicz G, Poenie M, Tsien RY (1985) A new generation of Ca2+ indicators with greatly improved fluorescence properties. J Biol Chem 260:3440–3450PubMedGoogle Scholar
  31. 31.
    Larsson D, Larsson B, Lundgren T, Sundell K (1999) The effect of pH and temperature on the dissociation constant for fura-2 and their effects on [Ca(2+)](i) in enterocytes from a poikilothermic animal, Atlantic cod (Gadus morhua). Anal Biochem 273:60–65PubMedCrossRefGoogle Scholar
  32. 32.
    Zar JH (2009) Biostatiscal analysis. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  33. 33.
    Wehrens XH, Lehnart SE, Marks AR (2005) Intracellular calcium release and cardiac disease. Annu Rev Physiol 67:69–98PubMedCrossRefGoogle Scholar
  34. 34.
    Erkkila K, Aito H, Aalto K, Pentikainen V, Dunkel L (2002) Lactate inhibits germ cell apoptosis in the human testis. Mol Hum Reprod 8:109–117PubMedCrossRefGoogle Scholar
  35. 35.
    Chandrasekaran K, Swaminathan K, Chatterjee S, Dey A (2009) Apoptosis in HepG2 cells exposed to high glucose. Toxicol In Vitro 24:387–396PubMedCrossRefGoogle Scholar
  36. 36.
    Maedler K, Spinas GA, Lehmann R et al (2001) Glucose induces beta-cell apoptosis via upregulation of the Fas receptor in human islets. Diabetes 50:1683–1690PubMedCrossRefGoogle Scholar
  37. 37.
    Santiago AR, Cristovao AJ, Santos PF, Carvalho CM, Ambrosio AF (2007) High glucose induces caspase-independent cell death in retinal neural cells. Neurobiol Dis 25:464–472PubMedCrossRefGoogle Scholar
  38. 38.
    Bojunga J, Nowak D, Mitrou PS, Hoelzer D, Zeuzem S, Chow KU (2004) Antioxidative treatment prevents activation of death-receptor- and mitochondrion-dependent apoptosis in the hearts of diabetic rats. Diabetologia 47:2072–2080PubMedCrossRefGoogle Scholar
  39. 39.
    Codelia VA, Cisternas P, Moreno RD (2008) Relevance of caspase activity during apoptosis in pubertal rat spermatogenesis. Mol Reprod Dev 75:881–889PubMedCrossRefGoogle Scholar
  40. 40.
    Herceg Z, Wang ZQ (1999) Failure of poly(ADP-ribose) polymerase cleavage by caspases leads to induction of necrosis and enhanced apoptosis. Mol Cell Biol 19:5124–5133PubMedGoogle Scholar
  41. 41.
    Li L, Prevette D, Oppenheim RW, Milligan CE (1998) Involvement of specific caspases in motoneuron cell death in vivo and in vitro following trophic factor deprivation. Mol Cell Neurosci 12:157–167PubMedCrossRefGoogle Scholar
  42. 42.
    Rodrigues P, Limback D, McGinnis LK, Plancha CE, Albertini DF (2009) Multiple mechanisms of germ cell loss in the perinatal mouse ovary. Reproduction 137:709–720PubMedCrossRefGoogle Scholar
  43. 43.
    Pizzo P, Pozzan T (2007) Mitochondria-endoplasmic reticulum choreography: structure and signaling dynamics. Trends Cell Biol 17:511–517PubMedCrossRefGoogle Scholar
  44. 44.
    Hinton BT, Howards SS (1982) Rat testis and epididymis can transport [3H] 3-O-methyl-d-glucose, [3H] inositol and [3H] alpha-aminoisobutyric acid across its epithelia in vivo. Biol Reprod 27:1181–1189PubMedCrossRefGoogle Scholar
  45. 45.
    Mita M, Hall PF (1982) Metabolism of round spermatids from rats: lactate as the preferred substrate. Biol Reprod 26:445–455PubMedCrossRefGoogle Scholar
  46. 46.
    Mita M, Price JM, Hall PF (1982) Stimulation by follicle-stimulating hormone of synthesis of lactate by Sertoli cells from rat testis. Endocrinology 110:1535–1541PubMedCrossRefGoogle Scholar
  47. 47.
    Morales A, Mohamed F, Cavicchia JC (2007) Apoptosis and blood-testis barrier during the first spermatogenic wave in the pubertal rat. Anat Rec (Hoboken) 290:206–214CrossRefGoogle Scholar
  48. 48.
    Silva D, Lizama C, Tapia V, Moreno RD (2011) Propylthiouracil-induced hypothyroidism delays apoptosis during the first wave of spermatogenesis. Biol Res 44:181–188PubMedCrossRefGoogle Scholar
  49. 49.
    Pareek TK, Joshi AR, Sanyal A, Dighe RR (2007) Insights into male germ cell apoptosis due to depletion of gonadotropins caused by GnRH antagonists. Apoptosis 12:1085–1100PubMedCrossRefGoogle Scholar
  50. 50.
    Billig H, Furuta I, Rivier C, Tapanainen J, Parvinen M, Hsueh AJ (1995) Apoptosis in testis germ cells: developmental changes in gonadotropin dependence and localization to selective tubule stages. Endocrinology 136:5–12PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Ximena Bustamante-Marín
    • 1
    • 5
  • Clara Quiroga
    • 2
    • 3
  • Sergio Lavandero
    • 2
    • 3
  • Juan G. Reyes
    • 4
  • Ricardo D. Moreno
    • 1
  1. 1.Departamento de Fisiología, Facultad de Ciencias BiológicasPontificia Universidad Católica de ChileSantiagoChile
  2. 2.Centro Estudios Moleculares de la Celula, Facultad Ciencias Quimicas y Farmaceuticas/Facultad MedicinaUniversidad de ChileSantiagoChile
  3. 3.Department of Internal Medicine (Cardiology Division)University of Texas Southwestern Medical CenterDallasUSA
  4. 4.Instituto de Química, Pontificia Universidad Católica de ValparaísoValparaísoChile
  5. 5.Departamento Biomédico, Facultad de Ciencias de la SaludUniversidad de AntofagastaAntofagastaChile

Personalised recommendations