Apoptosis

, Volume 17, Issue 8, pp 852–870

Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2)

Original Paper

Abstract

The wide scale use of Zinc oxide (ZnO) nanoparticles in the world consumer market makes human beings more prone to the exposure to ZnO nanoparticles and its adverse effects. The liver, which is the primary organ of metabolism, might act as a major target organ for ZnO nanoparticles after they gain entry into the body through any of the possible routes. Therefore, the aim of the present study was to assess the apoptotic and genotoxic potential of ZnO nanoparticles in human liver cells (HepG2) and the underlying molecular mechanism of its cellular toxicity. The role of dissolution in the toxicity of ZnO nanoparticles was also investigated. Our results demonstrate that HepG2 cells exposed to 14–20 μg/ml ZnO nanoparticles for 12 h showed a decrease in cell viability and the mode of cell death induced by ZnO nanoparticles was apoptosis. They also induced DNA damage which was mediated by oxidative stress as evidenced by an increase in Fpg sensitive sites. Reactive oxygen species triggered a decrease in mitochondria membrane potential and an increase in the ratio of Bax/Bcl2 leading to mitochondria mediated pathway involved in apoptosis. In addition, ZnO nanoparticles activated JNK, p38 and induced p53Ser15 phosphorylation. However, apoptosis was found to be independent of JNK and p38 pathways. This study investigating the effects of ZnO nanoparticles in human liver cells has provided valuable insights into the mechanism of toxicity induced by ZnO nanoparticles.

Keywords

Zinc oxide nanoparticles Human liver cells Mechanism of toxicity DNA damage Apoptosis MAPK Oxidative stress 

References

  1. 1.
    Schilling K, Bradford B, Castelli D, Dufour E, Nash JF, Pape W et al (2010) Human safety review of “nano” titanium dioxide and zinc oxide. Photochem Photobiol Sci 9(4):495–509. doi:10.1039/b9pp00180h PubMedCrossRefGoogle Scholar
  2. 2.
    Gerloff K, Albrecht C, Boots AW, Förster I, Schins RPF (2009) Cytotoxicity and oxidative DNA damage by nanoparticles in human intestinal Caco-2 cells. Nanotoxicology 3(4):355–364CrossRefGoogle Scholar
  3. 3.
    Jin T, Sun D, Su JY, Zhang H, Sue HJ (2009) Antimicrobial efficacy of zinc oxide quantum dots against Listeria monocytogenes, Salmonella Enteritidis, and Escherichia coli O157:H7. J Food Sci 74(1):M46–M52. doi:10.1111/j.1750-3841.2008.01013.x PubMedCrossRefGoogle Scholar
  4. 4.
    He L, Liu Y, Mustapha A, Lin M (2010) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res. doi:10.1016/j.micres.2010.03.003 PubMedGoogle Scholar
  5. 5.
    Rasmussen JW, Martinez E, Louka P, Wingett DG (2010) Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv 7(9):1063–1077. doi:10.1517/17425247.2010.502560 PubMedCrossRefGoogle Scholar
  6. 6.
    John S, Marpu S, Li J, Omary M, Hu Z, Fujita Y et al (2010) Hybrid zinc oxide nanoparticles for biophotonics. J Nanosci Nanotechnol 10(3):1707–1712PubMedCrossRefGoogle Scholar
  7. 7.
    Miller RJ, Lenihan HS, Muller EB, Tseng N, Hanna SK, Keller AA (2003) Impacts of metal oxide nanoparticles on marine phytoplankton. Environ Sci Technol 44(19):7329–7334. doi:10.1021/es100247x CrossRefGoogle Scholar
  8. 8.
    Sinha R, Karan R, Sinha A, Khare SK (2010) Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol. doi:10.1016/j.biortech.2010.07.117 Google Scholar
  9. 9.
    Wang HJ, Growcock AC, Tang TH, O’Hara J, Huang YW, Aronstam RS (2010) Zinc oxide nanoparticle disruption of store-operated calcium entry in a muscarinic receptor signaling pathway. Toxicol In Vitro 24(7):1953–1961. doi:10.1016/j.tiv.2010.08.005 PubMedCrossRefGoogle Scholar
  10. 10.
    Wang B, Feng W, Wang M, Wang T, Gu T, Zhu M et al (2008) Acute toxicological impact of nano- and submicro-scaled zinc oxide powder on healthy adult mice. J Nanopart Res 10:263–276. doi:10.1007/s11051-007-9245-3 CrossRefGoogle Scholar
  11. 11.
    Gojova A, Guo B, Kota RS, Rutledge JC, Kennedy IM, Barakat AI (2007) Induction of inflammation in vascular endothelial cells by metal oxide nanoparticles: effect of particle composition. Environ Health Perspect 115(3):403–409. doi:10.1289/ehp8497 PubMedCrossRefGoogle Scholar
  12. 12.
    Yang H, Liu C, Yang D, Zhang H, Xi Z (2009) Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: the role of particle size, shape and composition. J Appl Toxicol 29(1):69–78. doi:10.1002/jat.1385 PubMedCrossRefGoogle Scholar
  13. 13.
    Osman IF, Baumgartner A, Cemeli E, Fletcher JN, Anderson D (2010) Genotoxicity and cytotoxicity of zinc oxide and titanium dioxide in HEp-2 cells. Nanomedicine (Lond) 5(8):1193–1203. doi:10.2217/nnm.10.52 CrossRefGoogle Scholar
  14. 14.
    George S, Pokhrel S, Xia T, Gilbert B, Ji Z, Schowalter M et al (2009) Use of a rapid cytotoxicity screening approach to engineer a safer zinc oxide nanoparticle through iron doping. ACS Nano 4(1):15–29. doi:10.1021/nn901503q CrossRefGoogle Scholar
  15. 15.
    Franklin NM, Rogers NJ, Apte SC, Batley GE, Gadd GE, Casey PS (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41(24):8484–8490PubMedCrossRefGoogle Scholar
  16. 16.
    Moos PJ, Chung K, Woessner D, Honeggar M, Cutler NS, Veranth JM (2010) ZnO particulate matter requires cell contact for toxicity in human colon cancer cells. Chem Res Toxicol 23(4):733–739. doi:10.1021/tx900203v PubMedCrossRefGoogle Scholar
  17. 17.
    Cadet J, Douki T, Ravanat JL (2010) Oxidatively generated base damage to cellular DNA. Free Radic Biol Med 49(1):9–21. doi:10.1016/j.freeradbiomed.2010.03.025 PubMedCrossRefGoogle Scholar
  18. 18.
    Neuzil J, Wang XF, Dong LF, Low P, Ralph SJ (2006) Molecular mechanism of ‘mitocan’-induced apoptosis in cancer cells epitomizes the multiple roles of reactive oxygen species and Bcl-2 family proteins. FEBS Lett 580(22):5125–5129. doi:10.1016/j.febslet.2006.05.072 PubMedCrossRefGoogle Scholar
  19. 19.
    Navarro R, Busnadiego I, Ruiz-Larrea MB, Ruiz-Sanz JI (2006) Superoxide anions are involved in doxorubicin-induced ERK activation in hepatocyte cultures. Ann N Y Acad Sci 1090:419–428. doi:10.1196/annals.1378.045 PubMedCrossRefGoogle Scholar
  20. 20.
    Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113(7):823–839. doi:10.1289/ehp7339 PubMedCrossRefGoogle Scholar
  21. 21.
    Chen Z, Meng H, Yuan H, Xing G, Chen C, Zhao F et al (2007) Identification of target organs of copper nanoparticles with ICP-MS technique. J Radioanal Nucl Chem 272(3):599–603CrossRefGoogle Scholar
  22. 22.
    Yamago S, Tokuyama H, Nakamura E, Kikuchi K, Kananishi S, Sueki K et al (1995) In vivo biological behavior of a water-miscible fullerene: 14C labeling, absorption, distribution, excretion and acute toxicity. Chem Biol 2(6):385–389PubMedCrossRefGoogle Scholar
  23. 23.
    Suzuki H, Toyooka T, Ibuki Y (2007) Simple and easy method to evaluate uptake potential of nanoparticles in mammalian cells using a flow cytometric light scatter analysis. Environ Sci Technol 41(8):3018–3024PubMedCrossRefGoogle Scholar
  24. 24.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63. doi:10.1016/0022-1759(83)90303-4 PubMedCrossRefGoogle Scholar
  25. 25.
    Reed LJ, Muench H (1938) A simple method of estimating fifty percent endpoints. Am J Hy 27:493–497Google Scholar
  26. 26.
    Borenfreund E, Puerner JA (1985) Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett 24(2–3):119–124PubMedCrossRefGoogle Scholar
  27. 27.
    Wan CP, Myung E, Lau BH (1993) An automated micro-fluorometric assay for monitoring oxidative burst activity of phagocytes. J Immunol Methods 159(1–2):131–138. doi:10.1016/0022-1759(93)90150-6 PubMedCrossRefGoogle Scholar
  28. 28.
    Bajpayee M, Pandey AK, Parmar D, Mathur N, Seth PK, Dhawan A (2005) Comet assay responses in human lymphocytes are not influenced by the menstrual cycle: a study in healthy Indian females. Mutat Res 565(2):163–172. doi:10.1016/j.mrgentox.2004.10.008 PubMedGoogle Scholar
  29. 29.
    Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H et al (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206–221. doi:10.1002/(SICI)1098-2280(2000)35:3 PubMedCrossRefGoogle Scholar
  30. 30.
    Smith CC, O’Donovan MR, Martin EA (2006) hOGG1 recognizes oxidative damage using the comet assay with greater specificity than FPG or ENDOIII. Mutagenesis 21(3):185–190. doi:10.1093/mutage/gel019 PubMedCrossRefGoogle Scholar
  31. 31.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254. doi:10.1016/0003-2697(76)90527-3 PubMedCrossRefGoogle Scholar
  32. 32.
    Sharma V, Shukla RK, Saxena N, Parmar D, Das M, Dhawan A (2009) DNA damaging potential of zinc oxide nanoparticles in human epidermal cells. Toxicol Lett 185(3):211–218. doi:10.1016/j.toxlet.2009.01.008 PubMedCrossRefGoogle Scholar
  33. 33.
    Dhawan A, Sharma V (2010) Toxicity assessment of nanomaterials: methods and challenges. Anal Bioanal Chem 398(2):589–605. doi:10.1007/s00216-010-3996-x PubMedCrossRefGoogle Scholar
  34. 34.
    Monteiro-Riviere NA, Inman AO, Zhang LW (2009) Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol Appl Pharmacol 234(2):222–235. doi:10.1016/j.taap.2008.09.030 PubMedCrossRefGoogle Scholar
  35. 35.
    Xia T, Kovochich M, Brant J, Hotze M, Sempf J, Oberley T et al (2006) Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett 6(8):1794–1807. doi:10.1021/nl061025k PubMedCrossRefGoogle Scholar
  36. 36.
    Yin H, Casey PS, McCall MJ, Fenech M (2010) Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles. Langmuir 26(19):15399–15408. doi:10.1021/la101033n PubMedCrossRefGoogle Scholar
  37. 37.
    Song W, Zhang J, Guo J, Ding F, Li L, Sun Z (2009) Role of the dissolved zinc ion and reactive oxygen species in cytotoxicity of ZnO nanoparticles. Toxicol Lett 199(3):389–397CrossRefGoogle Scholar
  38. 38.
    Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311(5761):622–627PubMedCrossRefGoogle Scholar
  39. 39.
    Sharma SK, Pujari PK, Sudarshan K, Dutta D, Mahapatra M, Godbole SV et al (2009) Positron annihilation studies in ZnO nanoparticles. Solid State Commun 149:550–554CrossRefGoogle Scholar
  40. 40.
    Chen M, von Mikecz A (2005) Formation of nucleoplasmic protein aggregates impairs nuclear function in response to SiO2 nanoparticles. Exp Cell Res 305(1):51–62. doi:10.1016/j.yexcr.2004.12.021 PubMedCrossRefGoogle Scholar
  41. 41.
    Sharma V, Singh SK, Anderson D, Tobin DJ, Dhawan A (2011) Zinc oxide nanoparticle induced genotoxicity in primary human epidermal keratinocytes. J Nanosci Nanotechnol 11(5):3782–3788PubMedCrossRefGoogle Scholar
  42. 42.
    Shukla RK, Sharma V, Pandey AK, Singh S, Sultana S, Dhawan A (2010) ROS-mediated genotoxicity induced by titanium dioxide nanoparticles in human epidermal cells. Toxicol In Vitro 25:231–241PubMedCrossRefGoogle Scholar
  43. 43.
    Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26(3):249–261. doi:10.1385/MB:26:3:249 PubMedCrossRefGoogle Scholar
  44. 44.
    Gopalan RC, Osman IF, Amani A, De Matas M, Anderson D (2009) The effect of zinc oxide and titanium dioxide nanoparticles in the Comet assay with UVA photoactivation of human sperm and lymphocytes. Nanotoxicology 3(1):33–39. doi:10.1080/17435390802596456 CrossRefGoogle Scholar
  45. 45.
    Martinez GR, Loureiro AP, Marques SA, Miyamoto S, Yamaguchi LF, Onuki J et al (2003) Oxidative and alkylating damage in DNA. Mutat Res 544(2–3):115–127. doi:10.1016/j.mrrev.2003.05.005 PubMedGoogle Scholar
  46. 46.
    Karlsson HL, Cronholm P, Gustafsson J, Moller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21(9):1726–1732. doi:10.1021/tx800064j PubMedCrossRefGoogle Scholar
  47. 47.
    Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35(4):495–516. doi:10.1080/01926230701320337 PubMedCrossRefGoogle Scholar
  48. 48.
    Chang L, Karin M (2001) Mammalian MAP kinase signalling cascades. Nature 410(6824):37–40. doi:10.1038/35065000 PubMedCrossRefGoogle Scholar
  49. 49.
    Aoki H, Kang PM, Hampe J, Yoshimura K, Noma T, Matsuzaki M et al (2002) Direct activation of mitochondrial apoptosis machinery by c-Jun N-terminal kinase in adult cardiac myocytes. J Biol Chem 277(12):10244–10250. doi:10.1074/jbc.M112355200 PubMedCrossRefGoogle Scholar
  50. 50.
    El-Najjar N, Chatila M, Moukadem H, Vuorela H, Ocker M, Gandesiri M et al (2010) Reactive oxygen species mediate thymoquinone-induced apoptosis and activate ERK and JNK signaling. Apoptosis 15(2):183–195. doi:10.1007/s10495-009-0421-z PubMedCrossRefGoogle Scholar
  51. 51.
    Gilmore TD (1999) The Rel/NF-kappaB signal transduction pathway: introduction. Oncogene 18(49):6842–6844. doi:10.1038/sj.onc.1203237 PubMedCrossRefGoogle Scholar
  52. 52.
    Heng BC, Zhao X, Xiong S, Ng KW, Boey FY, Loo JS (2010) Toxicity of zinc oxide (ZnO) nanoparticles on human bronchial epithelial cells (BEAS-2B) is accentuated by oxidative stress. Food Chem Toxicol 48(6):1762–1766. doi:10.1016/j.fct.2010.04.023 PubMedCrossRefGoogle Scholar
  53. 53.
    Afeseh Ngwa H, Kanthasamy A, Gu Y, Fang N, Anantharam V, Kanthasamy AG (2011) Manganese nanoparticle activates mitochondrial dependent apoptotic signaling and autophagy in dopaminergic neuronal cells. Toxicol Appl Pharmacol 256(3):227–240. doi:10.1016/j.taap.2011.07.018 PubMedCrossRefGoogle Scholar
  54. 54.
    Khan MI, Mohammad A, Patil G, Naqvi SA, Chauhan LK, Ahmad I (2012) Induction of ROS, mitochondrial damage and autophagy in lung epithelial cancer cells by iron oxide nanoparticles. Biomaterials 33(5):1477–1488. doi:10.1016/j.biomaterials.2011.10.080 PubMedCrossRefGoogle Scholar
  55. 55.
    Li JJ, Hartono D, Ong CN, Bay BH, Yung LY (2010) Autophagy and oxidative stress associated with gold nanoparticles. Biomaterials 31(23):5996–6003. doi:10.1016/j.biomaterials.2010.04.014 PubMedCrossRefGoogle Scholar
  56. 56.
    Scherz-Shouval R, Elazar Z (2011) Regulation of autophagy by ROS: physiology and pathology. Trends Biochem Sci 36(1):30–38. doi:10.1016/j.tibs.2010.07.007 PubMedCrossRefGoogle Scholar
  57. 57.
    Morselli E, Galluzzi L, Kepp O, Marino G, Michaud M, Vitale I et al (2011) Oncosuppressive functions of autophagy. Antioxid Redox Signal 14(11):2251–2269. doi:10.1089/ars.2010.3478 PubMedCrossRefGoogle Scholar
  58. 58.
    Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK et al (2006) In vitro cytotoxicity of oxide nanoparticles: comparison to asbestos, silica, and the effect of particle solubility. Environ Sci Technol 40(14):4374–4381PubMedCrossRefGoogle Scholar
  59. 59.
    Lin W, Xu Y, Huang C, Ma Y, Shannon KB, Chen D et al (2009) Toxicity of nano- and micro-sized ZnO particles in human lung epithelial cells. J Nanopart Res 11:25–39. doi:10.1007/s11051-008-9419-7 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Nanomaterial Toxicology GroupCSIR-Indian Institute of Toxicology ResearchLucknowIndia
  2. 2.Division of Medical Sciences, School of Life SciencesUniversity of BradfordBradfordUK
  3. 3.Gillings School of Global Public HealthUniversity of North CarolinaChapel HillUSA
  4. 4.Institute of Life SciencesAhmedabad UniversityAhmedabadIndia

Personalised recommendations