, Volume 17, Issue 1, pp 25–36

Pterostilbene protects vascular endothelial cells against oxidized low-density lipoprotein-induced apoptosis in vitro and in vivo

  • Lu Zhang
  • GuangZhou Zhou
  • Wei Song
  • XiaoRong Tan
  • YuQi Guo
  • Bo Zhou
  • Hongjuan Jing
  • SuJuan Zhao
  • LiangKe Chen
Original Paper


Vascular endothelial cell (VEC) apoptosis is the main event occurring during the development of atherosclerosis. Pterostilbene (PT), a natural dimethylated analog of resveratrol, has been the subject of intense research in cancer and inflammation. However, the protective effects of PT against oxidized low-density lipoprotein (oxLDL)-induced apoptosis in VECs have not been clarified. We investigated the anti-apoptotic effects of PT in vitro and in vivo in mice. PT at 0.1–5 μM possessed antioxidant properties comparable to that of trolox in a cell-free system. Exposure of human umbilical vein VECs (HUVECs) to oxLDL (200 μg/ml) induced cell shrinkage, chromatin condensation, nuclear fragmentation, and cell apoptosis, but PT protected against such injuries. In addition, PT injection strongly decreased the number of TUNEL-positive cells in the endothelium of atherosclerotic plaque from apoE−/− mice. OxLDL increased reactive oxygen species (ROS) levels, NF-κB activation, p53 accumulation, apoptotic protein levels and caspases-9 and -3 activities and decreased mitochondrial membrane potential (MMP) and cytochrome c release in HUVECs. These alterations were attenuated by pretreatment with PT. PT inhibited the expression of lectin-like oxLDL receptor-1 (LOX-1) expression in vitro and in vivo. Cotreatment with PT and siRNA of LOX-1 synergistically reduced oxLDL-induced apoptosis in HUVECs. Overexpression of LOX-1 attenuated the protection by PT and suppressed the effects of PT on oxLDL-induced oxidative stress. PT may protect HUVECs against oxLDL-induced apoptosis by downregulating LOX-1-mediated activation through a pathway involving oxidative stress, p53, mitochondria, cytochrome c and caspase protease. PT might be a potential natural anti-apoptotic agent for the treatment of atherosclerosis.


Apoptosis Atherosclerosis Lectin-like oxLDL receptor-1 Oxidized low density lipoprotein Pterostilbene Vascular endothelial cell 


  1. 1.
    Libby P (2002) Inflammation in atherosclerosis. Nature 420:868–874PubMedCrossRefGoogle Scholar
  2. 2.
    Rajagopalan S, Somers EC, Brook RD, Kehrer C, Pfenninger D, Lewis E, Chakrabarti A, Richardson BC, Shelden E, McCune WJ, Kaplan MJ (2004) Endothelial cell apoptosis in systemic lupus erythematosus: a common pathway for abnormal vascular function and thrombosis propensity. Blood 103:3677–3683PubMedCrossRefGoogle Scholar
  3. 3.
    Durand E, Scoazec A, Lafont A, Boddaert J, Al Hajzen A, Addad F, Mirshahi M, Desnos M, Tedgui A, Mallat Z (2004) In vivo induction of endothelial apoptosis leads to vessel thrombosis and endothelial denudation: a clue to the understanding of the mechanisms of thrombotic plaque erosion. Circulation 109:2503–2506PubMedCrossRefGoogle Scholar
  4. 4.
    Liu S, Shen H, Xu M, Liu O, Zhao L, Liu S, Guo Z, Du J (2010) FRP inhibits ox-LDL-induced endothelial cell apoptosis through an Akt-NF-{kappa}B-Bcl-2 pathway and inhibits endothelial cell apoptosis in an apoE-knockout mouse model. Am J Physiol Endocrinol Metab 299:E351–E363PubMedCrossRefGoogle Scholar
  5. 5.
    Ross R (1993) The pathogenesis of atherosclerosis: a perspective for the 1990 s. Nature 362:801–809PubMedCrossRefGoogle Scholar
  6. 6.
    Chen J, Mehta JL, Haider N, Zhang X, Narula J, Li D (2004) Role of caspases in Ox-LDL-induced apoptotic cascade in human coronary artery endothelial cells. Circ Res 94:370–376PubMedCrossRefGoogle Scholar
  7. 7.
    Kume N, Kita T (2001) Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) in atherogenesis. Trends Cardiovasc Med 11:22–25PubMedCrossRefGoogle Scholar
  8. 8.
    Chen XP, Xun KL, Wu Q, Zhang TT, Shi JS, Du GH (2007) Oxidized low density lipoprotein receptor-1 mediates oxidized low density lipoprotein-induced apoptosis in human umbilical vein endothelial cells: role of reactive oxygen species. Vascul Pharmacol 47:1–9PubMedCrossRefGoogle Scholar
  9. 9.
    Li D, Mehta JL (2009) Intracellular signaling of LOX-1 in endothelial cell apoptosis. Circ Res 104:566–568PubMedCrossRefGoogle Scholar
  10. 10.
    Mannal PW, Alosi JA, Schneider JG, McDonald DE, McFadden DW (2010) Pterostilbene inhibits pancreatic cancer in vitro. J Gastrointest Surg 14:873–879PubMedCrossRefGoogle Scholar
  11. 11.
    Remsberg CM, Yáñez JA, Roupe KA, Davies NM (2007) High-performance liquid chromatographic analysis of pterostilbene in biological fluids using fluorescence detection. J Pharm Biomed Anal 43:250–254PubMedCrossRefGoogle Scholar
  12. 12.
    Chen RJ, Ho CT, Wang YJ (2010) Pterostilbene induces autophagy and apoptosis in sensitive and chemoresistant human bladder cancer cells. Mol Nutr Food Res 54:1819–1832PubMedCrossRefGoogle Scholar
  13. 13.
    Remsberg CM, Yáñez JA, Ohgami Y, Vega-Villa KR, Rimando AM, Davies NM (2008) Pharmacometrics of pterostilbene: preclinical pharmacokinetics and metabolism, anticancer, antiinflammatory, antioxidant and analgesic activity. Phytother Res 22:169–179PubMedCrossRefGoogle Scholar
  14. 14.
    Pari L, Satheesh MA (2006) Effect of pterostilbene on hepatic key enzymes of glucose metabolism in streptozotocin- and nicotinamide-induced diabetic rats. Life Sci 79:641–645PubMedCrossRefGoogle Scholar
  15. 15.
    Park ES, Lim Y, Hong JT, Yoo HS, Lee CK, Pyo MY, Yun YP (2010) Pterostilbene, a natural dimethylated analog of resveratrol, inhibits rat aortic vascular smooth muscle cell proliferation by blocking Akt-dependent pathway. Vascul Pharmacol 53(1–2):61–67PubMedCrossRefGoogle Scholar
  16. 16.
    Cichocki M, Paluszczak J, Szaefer H, Piechowiak A, Rimando AM, Baer-Dubowska W (2008) Pterostilbene is equally potent as resveratrol in inhibiting 12-O-tetradecanoylphorbol-13-acetate activated NFkappaB, AP-1, COX-2, and iNOS in mouse epidermis. Mol Nutr Food Res 52(Suppl 1):S62–S70PubMedGoogle Scholar
  17. 17.
    Chang HC, Chen TG, Tai YT, Chen TL, Chiu WT, Chen RM (2011) Resveratrol attenuates oxidized LDL-evoked Lox-1 signaling and consequently protects against apoptotic insults to cerebrovascular endothelial cells. J Cereb Blood Flow Metab 31:842–854PubMedCrossRefGoogle Scholar
  18. 18.
    Lin YL, Chang HC, Chen TL, Chang JH, Chiu WT, Lin JW, Chen RM (2010) Resveratrol protects against oxidized LDL-induced breakage of the blood-brain barrier by lessening disruption of tight junctions and apoptotic insults to mouse cerebrovascular endothelial cells. J Nutr 140:2187–2192PubMedCrossRefGoogle Scholar
  19. 19.
    Asensi M, Medina I, Ortega A, Carretero J, Baño MC, Obrador E, Estrela JM (2002) Inhibition of cancer growth by resveratrol is related to its low bioavailability. Free Radic Biol Med 33:387–398PubMedCrossRefGoogle Scholar
  20. 20.
    Lin HS, Yue BD, Ho PC (2009) Determination of pterostilbene in rat plasma by a simple HPLC-UV method and its application in pre-clinical pharmacokinetic study. Biomed Chromatogr 23:1308–1315PubMedCrossRefGoogle Scholar
  21. 21.
    Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756PubMedCrossRefGoogle Scholar
  22. 22.
    Hessler JR, Morel DW, Lewis LJ, Chisolm GM (1983) Lipoprotein oxidation and lipoprotein-induced cytotoxicity. Arteriosclerosis 3:215–222PubMedCrossRefGoogle Scholar
  23. 23.
    Price P, McMillan TJ (1990) Use of the tetrazolium assay in measuring the response of human tumor cells to ionizing radiation. Cancer Res 50:1392–1396PubMedGoogle Scholar
  24. 24.
    Suematsu N, Tsutsui H, Wen J, Kang D, Ikeuchi M, Ide T, Hayashidani S, Shiomi T, Kubota T, Hamasaki N, Takeshita A (2003) Oxidative stress mediates tumor necrosis factor-alpha-induced mitochondrial DNA damage and dysfunction in cardiac myocytes. Circulation 107:1418–1423PubMedCrossRefGoogle Scholar
  25. 25.
    Bedner E, Li X, Gorczyca W, Melamed MR, Darzynkiewicz Z (1999) Analysis of apoptosis by laser scanning cytometry. Cytometry 35:181–195PubMedCrossRefGoogle Scholar
  26. 26.
    Liu X, Sun J (2010) Endothelial cells dysfunction induced by silica nanoparticles through oxidative stress via JNK/P53 and NF-kappaB pathways. Biomaterials 31:8198–8209PubMedCrossRefGoogle Scholar
  27. 27.
    Aoki M, Nata T, Morishita R, Matsushita H, Nakagami H, Yamamoto K, Yamazaki K, Nakabayashi M, Ogihara T, Kaneda Y (2001) Endothelial apoptosis induced by oxidative stress through activation of NF-kappaB: antiapoptotic effect of antioxidant agents on endothelial cells. Hypertension 38:48–55PubMedGoogle Scholar
  28. 28.
    Ou HC, Lee WJ, Lee SD, Huang CY, Chiu TH, Tsai KL, Hsu WC, Sheu WH (2010) Ellagic acid protects endothelial cells from oxidized low-density lipoprotein-induced apoptosis by modulating the PI3 K/Akt/eNOS pathway. Toxicol Appl Pharmacol 248:134–143PubMedCrossRefGoogle Scholar
  29. 29.
    Marsden VS, O’Connor L, O’Reilly LA, Silke J, Metcalf D, Ekert PG, Huang DC, Cecconi F, Kuida K, Tomaselli KJ, Roy S, Nicholson DW, Vaux DL, Bouillet P, Adams JM, Strasser A (2002) Apoptosis initiated by Bcl-2-regulated caspase activation independently of the cytochrome C/Apaf-1/caspase-9 apoptosome. Nature 419:634–637PubMedCrossRefGoogle Scholar
  30. 30.
    Zhang L, Zhao J, Su L, Huang B, Wang L, Su H, Zhang Y, Zhang S, Miao J (2010) D609 inhibits progression of preexisting atheroma and promotes lesion stability in apolipoprotein e-/- mice: a role of phosphatidylcholine-specific phospholipase in atherosclerosis. Arterioscler Thromb Vasc Biol 30:411–418PubMedCrossRefGoogle Scholar
  31. 31.
    Kushi LH, Meyer KA, Jacobs DR Jr (1999) Cereals, legumes, and chronic disease risk reduction: evidence from epidemiologic studies. Am J Clin Nutr 70:451S–458SPubMedGoogle Scholar
  32. 32.
    Dauchet L, Amouyel P, Dallongeville J, Medscape (2009) Fruits, vegetables and coronary heart disease. Nat Rev Cardiol 6:599–608PubMedCrossRefGoogle Scholar
  33. 33.
    Petrovski G, Gurusamy N, Das DK (2011) Resveratrol in cardiovascular health and disease. Ann N Y Acad Sci 1215:22–33PubMedCrossRefGoogle Scholar
  34. 34.
    de la Lastra CA, Villegas I (2005) Resveratrol as an anti-inflammatory and anti-aging agent: mechanisms and clinical implications. Mol Nutr Food Res 49:405–430CrossRefGoogle Scholar
  35. 35.
    Salvayre R, Auge N, Benoist H, Negre-Salvayre A (2002) Oxidized low-density lipoprotein-induced apoptosis. Biochim Biophys Acta 1585:213–221PubMedGoogle Scholar
  36. 36.
    Pendurthi UR, Williams JT, Rao LV (1999) Resveratrol, a polyphenolic compound found in wine, inhibits tissue factor expression in vascular cells: A possible mechanism for the cardiovascular benefits associated with moderate consumption of wine. Arterioscler Thromb Vasc Biol 19:419–426PubMedCrossRefGoogle Scholar
  37. 37.
    Chiou YS, Tsai ML, Nagabhushanam K, Wang YJ, Wu CH, Ho CT, Pan MH (2011) Pterostilbene Is More Potent than Resveratrol in Preventing Azoxymethane (AOM)-Induced Colon Tumorigenesis via Activation of the NF-E2-Related Factor 2 (Nrf2)-Mediated Antioxidant Signaling Pathway. J Agric Food Chem 59:2725–2733PubMedCrossRefGoogle Scholar
  38. 38.
    Ou HC, Chou FP, Sheen HM, Lin TM, Yang CH, Huey-Herng Sheu W (2006) Resveratrol, a polyphenolic compound in red wine, protects against oxidized LDL-induced cytotoxicity in endothelial cells. Clin Chim Acta 364:196–204PubMedCrossRefGoogle Scholar
  39. 39.
    Yang Z, von Ballmoos MW, Faessler D, Voelzmann J, Ortmann J, Diehm N, Kalka-Moll W, Baumgartner I, Di Santo S, Kalka C (2010) Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells. Atherosclerosis 211:103–109PubMedCrossRefGoogle Scholar
  40. 40.
    Irani K (2000) Oxidant signaling in vascular cell growth, death, and survival: a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling. Circ Res 87:179–183PubMedGoogle Scholar
  41. 41.
    Lee WJ, Ou HC, Hsu WC, Chou MM, Tseng JJ, Hsu SL, Tsai KL, Sheu WH (2010) Ellagic acid inhibits oxidized LDL-mediated LOX-1 expression, ROS generation, and inflammation in human endothelial cells. J Vasc Surg 52:1290–1300PubMedCrossRefGoogle Scholar
  42. 42.
    Ou HC, Chou FP, Sheu WH, Hsu SL, Lee WJ (2007) Protective effects of magnolol against oxidized LDL-induced apoptosis in endothelial cells. Arch Toxicol 81:421–432PubMedCrossRefGoogle Scholar
  43. 43.
    Lu J, Yang JH, Burns AR, Chen HH, Tang D, Walterscheid JP, Suzuki S, Yang CY, Sawamura T, Chen CH (2009) Mediation of electronegative low-density lipoprotein signaling by LOX-1: a possible mechanism of endothelial apoptosis. Circ Res 104:619–627PubMedCrossRefGoogle Scholar
  44. 44.
    Mattaliano MD, Huard C, Cao W, Hill AA, Zhong W, Martinez RV, Harnish DC, Paulsen JE, Shih HH (2009) LOX-1-dependent transcriptional regulation in response to oxidized LDL treatment of human aortic endothelial cells. Am J Physiol Cell Physiol 296:C1329–C1337PubMedCrossRefGoogle Scholar
  45. 45.
    Cominacini L, Pasini AF, Garbin U, Davoli A, Tosetti ML, Campagnola M, Rigoni A, Pastorino AM, Lo Cascio V, Sawamura T (2000) Oxidized low density lipoprotein (ox-LDL) binding to ox-LDL receptor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J Biol Chem 275:12633–12638PubMedCrossRefGoogle Scholar
  46. 46.
    Ruiz MJ, Fernández M, Picó Y, Mañes J, Asensi M, Carda C, Asensio G, Estrela JM (2009) Dietary administration of high doses of pterostilbene and quercetin to mice is not toxic. J Agric Food Chem 57:3180–3186PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Lu Zhang
    • 1
  • GuangZhou Zhou
    • 1
  • Wei Song
    • 1
  • XiaoRong Tan
    • 1
  • YuQi Guo
    • 2
  • Bo Zhou
    • 3
  • Hongjuan Jing
    • 1
  • SuJuan Zhao
    • 1
  • LiangKe Chen
    • 1
  1. 1.College of BioengineeringHenan University of TechnologyZhengzhouChina
  2. 2.Department of Obstetrics and GynecologyThe Third Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
  3. 3.State Key Laboratory of Applied Organic ChemistryLanzhou UniversityLanzhouChina

Personalised recommendations