Apoptosis

, 16:1268 | Cite as

Regulation of apoptosis in human melanoma and neuroblastoma cells by statins, sodium arsenite and TRAIL: a role of combined treatment versus monotherapy

Original Paper

Abstract

Treatment of melanoma cells by sodium arsenite or statins (simvastatin and lovastatin) dramatically modified activities of the main cell signaling pathways resulting in the induction of heme oxygenase-1 (HO-1) and in a downregulation of cyclooxygenase-2 (COX-2) protein levels. Through heme degradation and the production of carbon monoxide and biliverdin, HO-1 plays a protective role in different scenario of oxidative stress followed by mitochondrial apoptosis. Both sodium arsenite and statins could be efficient inducers of apoptosis in some melanoma cell lines, but often exhibited only modest proapoptotic activity in others, due to numerous protective mechanisms. We demonstrated in the present study that treatment by sodium arsenite or statins with an additional inhibition of HO-1 expression (or activation) caused a substantial upregulation of apoptosis in melanoma cells. Sodium arsenite- or statin-induced apoptosis was independent of BRAF status (wild type versus V600E) in melanoma lines. Monotreatment required high doses of statins (20–40 μM) for effective induction of apoptosis. As an alternative approach, pretreatment of melanoma cells with statin at decreased doses (5–20 μM) dramatically enhanced TRAIL-induced apoptosis, due to suppression of the NF-κB and STAT3-transcriptional targets (including COX-2) and downregulation of cFLIP-L (a caspase-8 inhibitor) protein levels. Furthermore, combined treatment with sodium arsenite and TRAIL or simvastatin and TRAIL efficiently induced apoptotic commitment in human neuroblastoma cells. In summary, our findings on enhancing effects of combined treatment of cancer cells using statin and TRAIL provide the rationale for further preclinical evaluation.

Keywords

Apoptosis TRAIL Statin Sodium arsenite Melanoma Neuroblastoma 

Abbreviations

COX-2

Cyclooxygenase-2

DR4

Death receptor-4

DR5

Death receptor-5

ERK

Extracellular signal-regulated kinase

FACS

Fluorescence-activated cell sorter

HO-1

Heme oxygenase-1

IETD

N-acetyl-Ile-Glu-Thr-Asp-CHO (aldehyde)

IL1β

Interleukin1β

IL6

Interleukin-6

IκB

Inhibitor of NF-κB

IKK

Inhibitor of nuclear factor kappa B kinase

LEHD

N-acetyl-Leu-Glu-His-Asp-CHO (aldehyde)

MAPK

Mitogen-activated protein kinase

MFI

Medium fluorescence intensity

NF-κB

Nuclear factor kappa B

PI

Propidium iodide

PI3K

Phosphoinositide 3-kinase

PARP-1

Poly (ADP-ribose) polymerase-1

PTGS2

Prostaglandin-endoperoxide synthase 2

ROS

Reactive oxygen species

TNFα

Tumor necrosis factor alpha

TRAIL

TNF-related apoptosis inducing ligand

TRAIL-R

TRAIL-Receptor

zVAD

Carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone

Notes

Acknowledgments

We would like to thank Dr. S. Snyder for HO-1 Null fibroblasts, Drs. M. Herlyn and Z. Ronai for melanoma cell lines, Dr. Y. Chai for ELISA detections of cytokines, Drs. H. B. Lieberman and J. A. Meador for a critical reading of the manuscript and discussion. This research was supported by Superfund Grant ES 10349.

Conflicts of interest

No potential conflicts of interest were disclosed.

Supplementary material

10495_2011_649_MOESM1_ESM.ppt (367 kb)
Supplementary material 1 (PPT 367 kb)
10495_2011_649_MOESM2_ESM.ppt (90 kb)
Supplementary material 2 (PPT 90 kb)

References

  1. 1.
    Alam J, Cook JL (2003) Transcriptional regulation of the heme oxygenase-1 gene via the stress response element pathway. Curr Pharm Des 9:2499–2511PubMedCrossRefGoogle Scholar
  2. 2.
    Paine A, Eiz-Vesper B, Blasczyk R, Immenschuh S (2010) Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem Pharmacol 80:1895–1903PubMedCrossRefGoogle Scholar
  3. 3.
    Zhang X, Shan P, Jiang D, Noble PW, Abraham NG, Kappas A, Lee PJ (2004) Small interfering RNA targeting heme oxygenase-1 enhances ischemia-reperfusion-induced lung apoptosis. J Biol Chem 279:10677–10684PubMedCrossRefGoogle Scholar
  4. 4.
    Martin D, Rojo AI, Salinas M, Diaz R, Gallardo G, Alam J, De Galarreta CM, Cuadrado A (2004) Regulation of heme oxygenase-1 expression through the phosphatidylinositol 3-kinase/Akt pathway and the Nrf2 transcription factor in response to the antioxidant phytochemical carnosol. J Biol Chem 279:8919–8929PubMedCrossRefGoogle Scholar
  5. 5.
    Gozzelino R, Jeney V, Soares MP (2010) Mechanisms of cell protection by heme oxygenase-1. Annu Rev Pharmacol Toxicol 50:323–354PubMedCrossRefGoogle Scholar
  6. 6.
    Durante W (2003) Heme oxygenase-1 in growth control and its clinical application to vascular disease. J Cell Physiol 195:373–382PubMedCrossRefGoogle Scholar
  7. 7.
    Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899PubMedCrossRefGoogle Scholar
  8. 8.
    Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7 MicroRNA, and IL6 links inflammation to cell transformation. Cell 139:693–706PubMedCrossRefGoogle Scholar
  9. 9.
    Ivanov VN, Partridge MA, Huang SX, Hei TK (2011) Suppression of the proinflammatory response of metastatic melanoma cells increases TRAIL-induced apoptosis. J Cell Biochem 112:463–475PubMedCrossRefGoogle Scholar
  10. 10.
    Ivanov VN, Hei TK (2004) Arsenite sensitizes human melanomas to apoptosis via tumor necrosis factor alpha-mediated pathway. J Biol Chem 279:22747–22758PubMedCrossRefGoogle Scholar
  11. 11.
    Ivanov VN, Hei TK (2005) Combined treatment with EGFR inhibitors and arsenite upregulated apoptosis in human EGFR-positive melanomas: a role of suppression of the PI3K-AKT pathway. Oncogene 24:616–626PubMedCrossRefGoogle Scholar
  12. 12.
    Soignet SL, Maslak P, Wang Z-G, Jhanwar S, Calleja E, Dardashti LJ, Corso D, DeBlasio A, Gabrilove J, Scheinberg DA, Pandolfi PP, Warrell RP (1998) Complete remission after treatment of acute promyelocytic leukemia with arsenic trioxide. N Engl J Med 339:1341–1348PubMedCrossRefGoogle Scholar
  13. 13.
    Hayashi T, Hideshima T, Akiyama M, Richardson P, Schlossman RL, Chauhan D, Munshi NC, Waxman S, Anderson KC (2002) Arsenic trioxide inhibits growth of human multiple myeloma cells in the bone marrow microenvironment. Mol Cancer Ther 1:851–860PubMedGoogle Scholar
  14. 14.
    Ali F, Zakkar M, Karu K, Lidington EA, Hamdulay SS, Boyle JJ, Zloh M, Bauer A, Haskard DO, Evans PC, Mason JC (2009) Induction of the cytoprotective enzyme heme oxygenase-1 by statins is enhanced in vascular endothelium exposed to laminar shear stress and impaired by disturbed flow. J Biol Chem 284:18882–18892PubMedCrossRefGoogle Scholar
  15. 15.
    Dai Y-L, Luk T-H, Siu C-W, Yiu K-H, Chan H-T, Lee S, Li S-W, Tam S, Fong B, Lau C-P, Tse H-F (2010) Mitochondrial dysfunction induced by statin contributes to endothelial dysfunction in patients with coronary artery disease. Cardiovasc Toxicol 10:130–138PubMedCrossRefGoogle Scholar
  16. 16.
    Ivanov VN, Hei TK (2006) Sodium arsenite accelerates TRAIL-mediated apoptosis in melanoma cells through upregulation of TRAIL-R1/R2 surface levels and downregulation of cFLIP expression. Exp Cell Res 312:4120–4138PubMedCrossRefGoogle Scholar
  17. 17.
    Perlis C, Herlyn M (2004) Recent advances in melanoma biology. Oncologist 9:182–187PubMedCrossRefGoogle Scholar
  18. 18.
    Vultur A, Villanueva J, Herlyn M (2011) Targeting BRAF in advanced melanoma: a first step toward manageable disease. Clin Cancer Res 17:1658–1663PubMedCrossRefGoogle Scholar
  19. 19.
    Bollag G, Hirth P, Tsai J, Zhang J, Ibrahim PN, Cho H, Spevak W, Zhang C, Zhang Y, Habets G, Burton EA, Wong B, Tsang G, West BL, Powell B, Shellooe R, Marimuthu A, Nguyen H, Zhang KY, Artis DR, Schlessinger J, Su F, Higgins B, Iyer R, D’Andrea K, Koehler A, Stumm M, Lin PS, Lee RJ, Grippo J, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, Chapman PB, Flaherty KT, Xu X, Nathanson KL, Nolop K (2010) Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma. Nature 467:596–599PubMedCrossRefGoogle Scholar
  20. 20.
    Chapman PB, Hauschild A, Robert C, Haanen JB, Ascierto P, Larkin J, Dummer R, Garbe C, Testori A, Maio M, Hogg D, Lorigan P, Lebbe C, Jouary T, Schadendorf D, Ribas A, O’Day SJ, Sosman JA, Kirkwood JM, Eggermont AM, Dreno B, Nolop K, Li J, Nelson B, Hou J, Lee RJ, Flaherty KT, McArthur AG (2011) Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 364:2507–2516PubMedCrossRefGoogle Scholar
  21. 21.
    Poulikakos PI, Zhang C, Bollag G, Shokat KM, Rosen N (2010) RAF inhibitors transactivate RAF dimers and ERK signalling in cells with wild-type BRAF. Nature 464:427–430PubMedCrossRefGoogle Scholar
  22. 22.
    Ferris CD, Jaffrey SR, Sawa A, Takahashi M, Brady SD, Barrow RK, Tysoe SA, Wolosker H, Baranano DE, Dore S, Poss KD, Snyder SH (1999) Haem oxygenase-1 prevents cell death by regulating cellular iron. Nat Cell Biol 1:152–157PubMedCrossRefGoogle Scholar
  23. 23.
    Larochette N, Decaudin D, Jacotot E, Brenner C, Marzo I, Susin SA, Zamzami N, Xie Z, Reed J, Kroemer G (1999) Arsenite induces apoptosis via a direct effect on the mitochondrial permeability transition pore. Exp Cell Res 249:413–421PubMedCrossRefGoogle Scholar
  24. 24.
    Powell BL, Moser B, Stock W, Gallagher RE, Willman CL, Stone RM, Rowe JM, Coutre S, Feusner JH, Gregory J, Couban S, Appelbaum FR, Tallman MS, Larson RA (2010) Arsenic trioxide improves event-free and overall survival for adults with acute promyelocytic leukemia: North American Leukemia Intergroup Study C9710. Blood 116:3751–3757PubMedCrossRefGoogle Scholar
  25. 25.
    Zheng XH, Watts GS, Vaught S, Gandolfi AJ (2003) Low-level arsenite induced gene expression in HEK293 cells. Toxicology 187:39–48PubMedCrossRefGoogle Scholar
  26. 26.
    Ashkenazi A, Holland P, Eckhardt SG (2008) Ligand-based targeting of apoptosis in cancer: the potential of recombinant human apoptosis ligand 2/tumor necrosis factor-related apoptosis-inducing ligand (rhApo2L/TRAIL). J Clin Oncol 26:3621–3630PubMedCrossRefGoogle Scholar
  27. 27.
    Brown AJ (2007) Cholesterol, statins and cancer. Clin Exp Pharmacol Physiol 34:135–141PubMedCrossRefGoogle Scholar
  28. 28.
    Fritz G (2009) Targeting the mevalonate pathway for improved anticancer therapy. Curr Cancer Drug Targets 9:626–638PubMedCrossRefGoogle Scholar
  29. 29.
    Jain MK, Ridker PM (2005) Anti-inflammatory effects of statins: clinical evidence and basic mechanisms. Nat Rev Drug Discov 4:977–987PubMedCrossRefGoogle Scholar
  30. 30.
    Ivanov VN, Hei TK (2006) Dual treatment with COX-2 inhibitor and sodium arsenite leads to induction of surface Fas Ligand expression and Fas-Ligand-mediated apoptosis in human melanoma cells. Exp Cell Res 312:1401–1417PubMedCrossRefGoogle Scholar
  31. 31.
    Li B, Mahmood A, Lu D, Wu H, Xiong Y, Qu C, Chopp M (2009) Simvastatin attenuates microglial cells and astrocyte activation and decreases interleukin-1beta level after traumatic brain injury. Neurosurgery 65:179–185PubMedCrossRefGoogle Scholar
  32. 32.
    Krasilnikov M, Ivanov VN, Dong J, Ronai Z (2003) ERK and PI3K negatively regulate STAT-transcriptional activities in human melanoma cells: implications towards sensitization to apoptosis. Oncogene 22:4092–4101PubMedCrossRefGoogle Scholar
  33. 33.
    Ivanov VN, Partridge MA, Johnson GE, Huang SX, Zhou H, Hei TK (2008) Resveratrol sensitizes melanomas to TRAIL through modulation of antiapoptotic gene expression. Exp Cell Res 314:1163–1176PubMedCrossRefGoogle Scholar
  34. 34.
    Karasic TB, Hei TK, Ivanov VN (2010) Disruption of IGF-1R signaling increases TRAIL-induced apoptosis: a new potential therapy for the treatment of melanoma. Exp Cell Res 316:1994–2007PubMedCrossRefGoogle Scholar
  35. 35.
    Schaefer U, Voloshanenko O, Willen D, Walczak H (2007) TRAIL: a multifunctional cytokine. Front Biosci 12:3813–3824PubMedCrossRefGoogle Scholar
  36. 36.
    Sviderskaya EV, Easty DJ, Lawrence MA, Sanchez DP, Negulyaev YA, Patel RH, Anand P, Korchev YE, Bennett DC (2009) Functional neurons and melanocytes induced from immortal lines of postnatal neural crest-like stem cells. FASEB J 23:3179–3192PubMedCrossRefGoogle Scholar
  37. 37.
    Ibrahim N, Haluska FG (2009) Molecular pathogenesis of cutaneous melanocytic neoplasms. Ann Rev Pathol Mech Dis 4:551–579CrossRefGoogle Scholar
  38. 38.
    Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, Chen Z, Lee M-K, Attar N, Sazegar H, Chodon T, Nelson SF, McArthur G, Sosman JA, Ribas A, Lo RS (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977PubMedCrossRefGoogle Scholar
  39. 39.
    Solit D, Sawyers CL (2010) Drug discovery: how melanomas bypass new therapy. Nature 468:902–903PubMedCrossRefGoogle Scholar
  40. 40.
    Kapahi P, Takahashi T, Natoli G, Adams SR, Chen Y, Tsien RY, Karin M (2000) Inhibition of NF-kappa B activation by arsenite through reaction with a critical cysteine in the activation loop of Ikappa B kinase. J Biol Chem 275:36062–36066PubMedCrossRefGoogle Scholar
  41. 41.
    Habib Ad, Shamseddeen I, Nasrallah MS, Antoun TA, Nemer G, Bertoglio J, Badreddine R, Badr KF (2007) Modulation of COX-2 expression by statins in human monocytic cells. FASEB J 21:1665–1674PubMedCrossRefGoogle Scholar
  42. 42.
    Ferraro E, Pulicati A, Cencioni MT, Cozzolino M, Navoni F, di Martino S, Nardacci R, Carri MT, Cecconi F (2008) Apoptosome-deficient cells lose cytochrome c through proteasomal degradation but survive by autophagy-dependent glycolysis. Mol Biol Cell 19:3576–3588PubMedCrossRefGoogle Scholar
  43. 43.
    Reed JC (2006) Drug insight: cancer therapy strategies based on restoration of endogenous cell death mechanisms. Nat Clin Pract Oncol 3:388–398PubMedCrossRefGoogle Scholar
  44. 44.
    Saito A, Saito N, Mol W, Furukawa H, Tsutsumida A, Oyama A, Sekido M, Sasaki S, Yamamoto Y (2008) Simvastatin inhibits growth via apoptosis and the induction of cell cycle arrest in human melanoma cells. Melanoma Res 18:85–94PubMedCrossRefGoogle Scholar
  45. 45.
    Favero GM, Otuki MF, Oliveira KA, Bohatch MS Jr, Borelli P, Barros FE, Maria DA, Fernandes D, Bydlowski SP (2010) Simvastatin impairs murine melanoma growth. Lipids Health Dis 9:142–149PubMedCrossRefGoogle Scholar
  46. 46.
    Bonovas S, Nikolopoulos G, Filioussi K, Peponi E, Bagos P, Sitaras NM (2010) Can statin therapy reduce the risk of melanoma? A meta-analysis of randomized controlled trials. Eur J Epidemiol 25:29–35PubMedCrossRefGoogle Scholar
  47. 47.
    Curiel-Lewandrowski C, Nijsten T, Gomez ML, Hollestein LM, Atkins MB, Stern RS (2011) Long-term use of nonsteroidal anti-inflammatory drugs decreases the risk of cutaneous melanoma: results of a United States case-control study. J Invest Dermatol 131:1460–1468PubMedCrossRefGoogle Scholar
  48. 48.
    Ballantyne CM, Corsini A, Davidson MH, Holdaas H, Jacobson TA, Leitersdorf E, Marz W, Reckless JP, Stein EA (2003) Risk for myopathy with statin therapy in high-risk patients. Arch Intern Med 163:553–564PubMedCrossRefGoogle Scholar
  49. 49.
    Karin M (2010) NF-kappaB as a critical link between inflammation and cancer. Cold Spring Harb Perspect Biol 1:a000141CrossRefGoogle Scholar
  50. 50.
    Fulda S, Debatin KM (2004) Sensitization for tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis by the chemopreventive agent resveratrol. Cancer Res 64:337–346PubMedCrossRefGoogle Scholar
  51. 51.
    Kamat AM, Tharakan ST, Sung B, Aggarwal BB (2009) Curcumin potentiates the antitumor effects of Bacillus Calmette-Guerin against bladder cancer through the downregulation of NF-κB and upregulation of TRAIL receptors. Cancer Res 69:8958–8966PubMedCrossRefGoogle Scholar
  52. 52.
    Chan DY, Chen GG, Poon WS, Liu PC (2008) Lovastatin sensitized human glioblastoma cells to TRAIL-induced apoptosis. J Neurooncol 86:273–283PubMedCrossRefGoogle Scholar
  53. 53.
    Knapp AC, Huang J, Starling G, Kiener PA (2000) Inhibitors of HMG-CoA reductase sensitize human smooth muscle cells to Fas-ligand and cytokine-induced cell death. Atherosclerosis 152:217–227PubMedCrossRefGoogle Scholar
  54. 54.
    Totzke G, Schulze-Osthoff K, Janicke RU (2003) Cyclooxygenase-2 (COX-2) inhibitors sensitize tumor cells specifically to death receptor-induced apoptosis independently of COX-2 inhibition. Oncogene 22:8021–8030PubMedCrossRefGoogle Scholar
  55. 55.
    Glynn SA, O’Sullivan D, Eustace AJ, Clynes M, O’Donovan N (2008) The 3-hydroxy-3-methylglutaryl-coenzyme A reductase inhibitors, simvastatin, lovastatin and mevastatin inhibit proliferation and invasion of melanoma cells. BMC Cancer 8:9PubMedCrossRefGoogle Scholar
  56. 56.
    Minichsdorfer C, Hohenegger M (2009) Autocrine amplification loop in statin-induced apoptosis of human melanoma cells. Br J Pharmacol 157:1278–1290PubMedCrossRefGoogle Scholar
  57. 57.
    Pettersson H, Karlsson J, Pietras A, Øra I, Påhlman S (2007) Arsenic trioxide and neuroblastoma cytotoxicity. J Bioenerg Biomembr 39:35–41PubMedCrossRefGoogle Scholar
  58. 58.
    Satyamoorthy K, DeJesus E, Linnenbach AJ, Kraj B, Kornreich DL, Rendle S, Elder DE, Herlyn M (1997) Melanoma cell lines from different stages of progression and their biological and molecular analyses. Melanoma Res 7(Suppl 2):S35–S42PubMedGoogle Scholar
  59. 59.
    Myklebust AT, Helseth A, Breistol K, Hall WA, Fodstad O (1994) Nude rat models for human tumor metastasis to CNS. Procedures for intracarotid delivery of cancer cells and drugs. J Neurooncol 21:215–224PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Radiation Oncology, Center for Radiological Research, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations