, 16:1128 | Cite as

Rapamycin protects against dominant negative-HNF1A-induced apoptosis in INS-1 cells

  • Angela M. Farrelly
  • Seán M. Kilbride
  • Caroline Bonner
  • Jochen H. M. Prehn
  • Maria M. Byrne
Original Paper


HNF1A-maturity onset diabetes of the young (HNF1A-MODY) is caused by mutations in Hnf1a gene encoding the transcription factor hepatocyte nuclear factor 1alpha (HNF1A). An increased rate of apoptosis has been associated with the decrease in beta-cell mass that is a hallmark of HNF1A-MODY and other forms of diabetes. In a cellular model of HNF1A-MODY, we have recently shown that signalling through mammalian target of rapamycin (mTOR) is decreased by the overexpression of a dominant-negative mutant of HNF1A (DN-HNF1A). mTOR is a protein kinase which has important roles in cell metabolism and growth, but also in cell survival, where it has been shown to be both protective and detrimental. Here, we show that pharmacological inhibition of mTOR activity with rapamycin protected INS-1 cells against DN-HNF1A-induced apoptosis. Rapamycin also prevented DN-HNF1A-induced activation of AMP-activated protein kinase (AMPK), an intracellular energy sensor which we have previously shown to mediate DN-HNF1A-induced apoptosis. Conversely, activation of mTOR with leucine potentiated DN-HNF1A-induced apoptosis. Gene silencing of raptor (regulatory associated protein of mTOR), a subunit of mTOR complex 1 (mTORC1), also conferred protection on INS-1 cells against DN-HNF1A-induced apoptosis, confirming that mTORC1 mediates the protective effect. The potential relevance of this effect with regards to the clinical use of rapamycin as an immunosuppressant in diabetics post-transplantation is discussed.


Mammalian target of rapamycin (mTOR) HNF1A-MODY Rapamycin Apoptosis 



This work was funded by Health Research Board (RP/2008/14) and Science Foundation Ireland (08/IN1/1949) grants to J.H.M.P., and from the Health Research Board (RP/2007/316) to M.M.B.


  1. 1.
    Eide SA, Raeder H, Johansson S, Midthjell K, Sovik O, Njolstad PR, Molven A (2008) Prevalence of HNF1A (MODY3) mutations in a Norwegian population (the HUNT2 study). Diabet Med 25(7):775–781PubMedCrossRefGoogle Scholar
  2. 2.
    Ellard S, Colclough K (2006) Mutations in the genes encoding the transcription factors hepatocyte nuclear factor 1 alpha (HNF1A) and 4 alpha (HNF4A) in maturity-onset diabetes of the young. Hum Mutat 27(9):854–869PubMedCrossRefGoogle Scholar
  3. 3.
    Yamagata K, Oda N, Kaisaki PJ, Menzel S, Furuta H, Vaxillaire M, Southam L, Cox RD, Lathrop GM, Boriraj VV, Chen X, Cox NJ, Oda Y, Yano H, Le Beau MM, Yamada S, Nishigori H, Takeda J, Fajans SS, Hattersley AT, Iwasaki N, Hansen T, Pedersen O, Polonsky KS, Bell GI et al (1996) Mutations in the hepatocyte nuclear factor-1alpha gene in maturity-onset diabetes of the young (MODY3). Nature 384(6608):455–458PubMedCrossRefGoogle Scholar
  4. 4.
    Odom DT, Zizlsperger N, Gordon DB, Bell GW, Rinaldi NJ, Murray HL, Volkert TL, Schreiber J, Rolfe PA, Gifford DK, Fraenkel E, Bell GI, Young RA (2004) Control of pancreas and liver gene expression by HNF transcription factors. Science 303(5662):1378–1381PubMedCrossRefGoogle Scholar
  5. 5.
    Wang H, Antinozzi PA, Hagenfeldt KA, Maechler P, Wollheim CB (2000) Molecular targets of a human HNF1 alpha mutation responsible for pancreatic beta-cell dysfunction. EMBO J 19(16):4257–4264PubMedCrossRefGoogle Scholar
  6. 6.
    Byrne MM, Sturis J, Menzel S, Yamagata K, Fajans SS, Dronsfield MJ, Bain SC, Hattersley AT, Velho G, Froguel P, Bell GI, Polonsky KS (1996) Altered insulin secretory responses to glucose in diabetic and nondiabetic subjects with mutations in the diabetes susceptibility gene MODY3 on chromosome 12. Diabetes 45(11):1503–1510PubMedCrossRefGoogle Scholar
  7. 7.
    Pontoglio M, Sreenan S, Roe M, Pugh W, Ostrega D, Doyen A, Pick AJ, Baldwin A, Velho G, Froguel P, Levisetti M, Bonner-Weir S, Bell GI, Yaniv M, Polonsky KS (1998) Defective insulin secretion in hepatocyte nuclear factor 1alpha-deficient mice. J Clin Invest 101(10):2215–2222PubMedCrossRefGoogle Scholar
  8. 8.
    Yamagata K, Nammo T, Moriwaki M, Ihara A, Iizuka K, Yang Q, Satoh T, Li M, Uenaka R, Okita K, Iwahashi H, Zhu Q, Cao Y, Imagawa A, Tochino Y, Hanafusa T, Miyagawa J, Matsuzawa Y (2002) Overexpression of dominant-negative mutant hepatocyte nuclear factor-1 alpha in pancreatic beta-cells causes abnormal islet architecture with decreased expression of E-cadherin, reduced beta-cell proliferation, and diabetes. Diabetes 51(1):114–123PubMedCrossRefGoogle Scholar
  9. 9.
    Wobser H, Bonner C, Nolan JJ, Byrne MM, Prehn JH (2006) Downregulation of protein kinase B/Akt-1 mediates INS-1 insulinoma cell apoptosis induced by dominant-negative suppression of hepatocyte nuclear factor-1alpha function. Diabetologia 49(3):519–526PubMedCrossRefGoogle Scholar
  10. 10.
    Wobser H, Dussmann H, Kogel D, Wang H, Reimertz C, Wollheim CB, Byrne MM, Prehn JH (2002) Dominant-negative suppression of HNF-1 alpha results in mitochondrial dysfunction, INS-1 cell apoptosis, and increased sensitivity to ceramide-, but not to high glucose-induced cell death. J Biol Chem 277(8):6413–6421PubMedCrossRefGoogle Scholar
  11. 11.
    Kilbride SM, Farrelly AM, Bonner C, Ward MW, Nyhan KC, Concannon CG, Wollheim CB, Byrne MM, Prehn JH (2010) AMP-activated protein kinase mediates apoptosis in response to bioenergetic stress through activation of the pro-apoptotic Bcl-2 homology domain-3-only protein BMF. J Biol Chem 285(46):36199–36206PubMedCrossRefGoogle Scholar
  12. 12.
    Inoki K, Zhu T, Guan KL (2003) TSC2 mediates cellular energy response to control cell growth and survival. Cell 115(5):577–590PubMedCrossRefGoogle Scholar
  13. 13.
    Farrelly AM, Wobser H, Bonner C, Anguissola S, Rehm M, Concannon CG, Prehn JH, Byrne MM (2009) Early loss of mammalian target of rapamycin complex 1 (mTORC1) signalling and reduction in cell size during dominant-negative suppression of hepatic nuclear factor 1-alpha (HNF1A) function in INS-1 insulinoma cells. Diabetologia 52(1):136–144PubMedCrossRefGoogle Scholar
  14. 14.
    Foster KG, Fingar DC (2010) Mammalian target of rapamycin (mTOR): conducting the cellular signaling symphony. J Biol Chem 285(19):14071–14077PubMedCrossRefGoogle Scholar
  15. 15.
    Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484PubMedCrossRefGoogle Scholar
  16. 16.
    Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM (2006) Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol Cell 22(2):159–168PubMedCrossRefGoogle Scholar
  17. 17.
    Dumont FJ, Staruch MJ, Koprak SL, Melino MR, Sigal NH (1990) Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J Immunol 144(1):251–258PubMedGoogle Scholar
  18. 18.
    Shapiro AM, Lakey JR, Ryan EA, Korbutt GS, Toth E, Warnock GL, Kneteman NM, Rajotte RV (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343(4):230–238PubMedCrossRefGoogle Scholar
  19. 19.
    Berney T, Secchi A (2009) Rapamycin in islet transplantation: friend or foe? Transpl Int 22(2):153–161PubMedCrossRefGoogle Scholar
  20. 20.
    Akiyama TE, Ward JM, Gonzalez FJ (2000) Regulation of the liver fatty acid-binding protein gene by hepatocyte nuclear factor 1alpha (HNF1alpha). Alterations in fatty acid homeostasis in HNF1alpha-deficient mice. J Biol Chem 275(35):27117–27122PubMedGoogle Scholar
  21. 21.
    Abdel-Naby MA, Osman MY, Abdel-Fattah AF (1999) Purification and properties of three cellobiases from Aspergillus niger A20. Appl Biochem Biotechnol 76(1):33–44PubMedCrossRefGoogle Scholar
  22. 22.
    Bai X, Jiang Y (2010) Key factors in mTOR regulation. Cell Mol Life Sci 67(2):239–253PubMedCrossRefGoogle Scholar
  23. 23.
    Oshiro N, Yoshino K, Hidayat S, Tokunaga C, Hara K, Eguchi S, Avruch J, Yonezawa K (2004) Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 9(4):359–366PubMedCrossRefGoogle Scholar
  24. 24.
    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101PubMedCrossRefGoogle Scholar
  25. 25.
    Kimball SR (2002) Regulation of global and specific mRNA translation by amino acids. J Nutr 132(5):883–886PubMedGoogle Scholar
  26. 26.
    Hagenfeldt-Johansson KA, Herrera PL, Wang H, Gjinovci A, Ishihara H, Wollheim CB (2001) Beta-cell-targeted expression of a dominant-negative hepatocyte nuclear factor-1 alpha induces a maturity-onset diabetes of the young (MODY)3-like phenotype in transgenic mice. Endocrinology 142(12):5311–5320PubMedCrossRefGoogle Scholar
  27. 27.
    Pongratz RL, Kibbey RG, Kirkpatrick CL, Zhao X, Pontoglio M, Yaniv M, Wollheim CB, Shulman GI, Cline GW (2009) Mitochondrial dysfunction contributes to impaired insulin secretion in INS-1 cells with dominant-negative mutations of HNF-1alpha and in HNF-1alpha-deficient islets. J Biol Chem 284(25):16808–16821PubMedCrossRefGoogle Scholar
  28. 28.
    Hardie DG (2008) AMPK: a key regulator of energy balance in the single cell and the whole organism. Int J Obes (Lond) 32(Suppl 4):S7–S12CrossRefGoogle Scholar
  29. 29.
    Ravikumar B, Berger Z, Vacher C, O’Kane CJ, Rubinsztein DC (2006) Rapamycin pre-treatment protects against apoptosis. Hum Mol Genet 15(7):1209–1216PubMedCrossRefGoogle Scholar
  30. 30.
    Levine B, Klionsky DJ (2004) Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 6(4):463–477PubMedCrossRefGoogle Scholar
  31. 31.
    Sarbassov DD, Ali SM, Sabatini DM (2005) Growing roles for the mTOR pathway. Curr Opin Cell Biol 17(6):596–603PubMedCrossRefGoogle Scholar
  32. 32.
    Sonenberg N, Hinnebusch AG (2009) Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136(4):731–745PubMedCrossRefGoogle Scholar
  33. 33.
    Mardanova ES, Zamchuk LA, Ravin NV (2008) Contribution of internal initiation to translation of cellular mRNAs containing IRESs. Biochem Soc Trans 36(Pt 4):694–697PubMedCrossRefGoogle Scholar
  34. 34.
    Choo AY, Yoon SO, Kim SG, Roux PP, Blenis J (2008) Rapamycin differentially inhibits S6Ks and 4E-BP1 to mediate cell-type-specific repression of mRNA translation. Proc Natl Acad Sci USA 105(45):17414–17419PubMedCrossRefGoogle Scholar
  35. 35.
    Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS (2009) An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 284(12):8023–8032PubMedCrossRefGoogle Scholar
  36. 36.
    Korsgren O, Nilsson B, Berne C, Felldin M, Foss A, Kallen R, Lundgren T, Salmela K, Tibell A, Tufveson G (2005) Current status of clinical islet transplantation. Transplantation 79(10):1289–1293PubMedCrossRefGoogle Scholar
  37. 37.
    Shapiro AM, Nanji SA, Lakey JR (2003) Clinical islet transplant: current and future directions towards tolerance. Immunol Rev 196:219–236PubMedCrossRefGoogle Scholar
  38. 38.
    Melzi R, Maffi P, Nano R, Sordi V, Mercalli A, Scavini M, Secchi A, Bonifacio E, Piemonti L (2009) Rapamycin does not adversely affect intrahepatic islet engraftment in mice and improves early islet engraftment in humans. Islets 1(1):42–49PubMedCrossRefGoogle Scholar
  39. 39.
    Piemonti L, Maffi P, Monti L, Lampasona V, Perseghin G, Magistretti P, Secchi A, Bonifacio E (2011) Beta cell function during rapamycin monotherapy in long-term type 1 diabetes. Diabetologia 54(2):433–439PubMedCrossRefGoogle Scholar
  40. 40.
    Marcelli-Tourvieille S, Hubert T, Moerman E, Gmyr V, Kerr-Conte J, Nunes B, Dherbomez M, Vandewalle B, Pattou F, Vantyghem MC (2007) In vivo and in vitro effect of sirolimus on insulin secretion. Transplantation 83(5):532–538PubMedCrossRefGoogle Scholar
  41. 41.
    Cuthbertson DJ, Babraj JA, Mustard KJ, Towler MC, Green KA, Wackerhage H, Leese GP, Baar K, Thomason-Hughes M, Sutherland C, Hardie DG, Rennie MJ (2007) 5-Aminoimidazole-4-carboxamide 1-beta-D-ribofuranoside acutely stimulates skeletal muscle 2-deoxyglucose uptake in healthy men. Diabetes 56(8):2078–2084. doi: 10.2337/db06-1716 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Angela M. Farrelly
    • 1
    • 2
  • Seán M. Kilbride
    • 2
  • Caroline Bonner
    • 2
  • Jochen H. M. Prehn
    • 2
  • Maria M. Byrne
    • 1
  1. 1.Department of EndocrinologyMater Misericordiae University HospitalDublin 7Ireland
  2. 2.Department of Physiology and Medical PhysicsRoyal College of Surgeons in IrelandDublin 2Ireland

Personalised recommendations