, 16:1014

Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2

  • Eleonore Mayola
  • Cindy Gallerne
  • Davide Degli Esposti
  • Cecile Martel
  • Shazib Pervaiz
  • Lionel Larue
  • Brigitte Debuire
  • Antoinette Lemoine
  • Catherine Brenner
  • Christophe Lemaire
Original Paper


A high resistance and heterogeneous response to conventional anti-cancer chemotherapies characterize malignant cutaneous melanoma, the most aggressive and deadly form of skin cancer. Withaferin A (WFA), a withanolide derived from the medicinal plant Withania somnifera, has been reported for its anti-tumorigenic activity against various cancer cells. For the first time, we examined the death-inducing potential of WFA against a panel of four different human melanoma cells and investigated the cellular mechanisms involved. WFA induces apoptotic cell death with various IC50 ranging from 1.8 to 6.1 μM. The susceptibility of cells toward WFA-induced apoptosis correlated with low Bcl-2/Bax and Bcl-2/Bim ratios. In all cell lines, the apoptotic process triggered by WFA involves the mitochondrial pathway and was associated with Bcl-2 down regulation, Bax mitochondrial translocation, cytochrome c release into the cytosol, transmembrane potential (ΔΨm) dissipation, caspase 9 and caspase 3 activation and DNA fragmentation. WFA cytotoxicity requires early reactive oxygen species (ROS) production and glutathione depletion, the inhibition of ROS increase by the antioxidant N-acetylcysteine resulting in complete suppression of mitochondrial and nuclear events. Altogether, these results support the therapeutic potential of WFA against human melanoma.


Melanoma resistance Cell death Oncogene Chemotherapy 


  1. 1.
    Markovic SN, Erickson LA, Rao RD et al (2007) Malignant melanoma in the 21st century, part 2: staging, prognosis, and treatment. Mayo Clin Proc 82:490–513PubMedCrossRefGoogle Scholar
  2. 2.
    Bhatia S, Tykodi SS, Thompson JA (2009) Treatment of metastatic melanoma: an overview. Oncology (Williston Park) 23:488–496Google Scholar
  3. 3.
    Lorigan P, Eisen T, Hauschild A (2008) Systemic therapy for metastatic malignant melanoma—from deeply disappointing to bright future? Exp Dermatol 17:383–394PubMedCrossRefGoogle Scholar
  4. 4.
    Eberle J, Hossini AM (2008) Expression and function of bcl-2 proteins in melanoma. Curr Genom 9:409–419CrossRefGoogle Scholar
  5. 5.
    Raisova M, Hossini AM, Eberle J et al (2001) The Bax/Bcl-2 ratio determines the susceptibility of human melanoma cells to CD95/Fas-mediated apoptosis. J Invest Dermatol 117:333–340PubMedCrossRefGoogle Scholar
  6. 6.
    Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100:57–70PubMedCrossRefGoogle Scholar
  7. 7.
    Reed JC (2002) Apoptosis-based therapies. Nat Rev Drug Discov 1:111–121PubMedCrossRefGoogle Scholar
  8. 8.
    Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9:447–464PubMedCrossRefGoogle Scholar
  9. 9.
    Kroemer G, Galluzzi L, Vandenabeele P et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11PubMedCrossRefGoogle Scholar
  10. 10.
    Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163PubMedCrossRefGoogle Scholar
  11. 11.
    Chipuk JE, Fisher JC, Dillon CP, Kriwacki RW, Kuwana T, Green DR (2008) Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins. Proc Natl Acad Sci USA 105:20327–20332PubMedCrossRefGoogle Scholar
  12. 12.
    Le Bras M, Clement MV, Pervaiz S, Brenner C (2005) Reactive oxygen species and the mitochondrial signaling pathway of cell death. Histol Histopathol 20:205–219PubMedGoogle Scholar
  13. 13.
    Fruehauf JP, Meyskens FL Jr (2007) Reactive oxygen species: a breath of life or death? Clin Cancer Res 13:789–794PubMedCrossRefGoogle Scholar
  14. 14.
    Meyskens FL Jr, Farmer P, Fruehauf JP (2001) Redox regulation in human melanocytes and melanoma. Pigment Cell Res 14:148–154PubMedCrossRefGoogle Scholar
  15. 15.
    Meyskens FL Jr, McNulty SE, Buckmeier JA et al (2001) Aberrant redox regulation in human metastatic melanoma cells compared to normal melanocytes. Free Radic Biol Med 31:799–808PubMedCrossRefGoogle Scholar
  16. 16.
    Meyskens FL Jr, Buckmeier JA, McNulty SE, Tohidian NB (1999) Activation of nuclear factor-kappa B in human metastatic melanomacells and the effect of oxidative stress. Clin Cancer Res 5:1197–1202PubMedGoogle Scholar
  17. 17.
    Scartezzini P, Speroni E (2000) Review on some plants of Indian traditional medicine with antioxidant activity. J Ethnopharmacol 71:23–43PubMedCrossRefGoogle Scholar
  18. 18.
    Malik F, Kumar A, Bhushan S et al (2007) Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine. Apoptosis 12:2115–2133PubMedCrossRefGoogle Scholar
  19. 19.
    Mandal C, Dutta A, Mallick A et al (2008) Withaferin A induces apoptosis by activating p38 mitogen-activated protein kinase signaling cascade in leukemic cells of lymphoid and myeloid origin through mitochondrial death cascade. Apoptosis 13:1450–1464PubMedCrossRefGoogle Scholar
  20. 20.
    Oh JH, Lee TJ, Kim SH et al (2008) Induction of apoptosis by withaferin A in human leukemia U937 cells through down-regulation of Akt phosphorylation. Apoptosis 13:1494–1504PubMedCrossRefGoogle Scholar
  21. 21.
    Srinivasan S, Ranga RS, Burikhanov R, Han SS, Chendil D (2007) Par-4-dependent apoptosis by the dietary compound withaferin A in prostate cancer cells. Cancer Res 67:246–253PubMedCrossRefGoogle Scholar
  22. 22.
    Yang H, Shi G, Dou QP (2007) The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from “Indian winter cherry”. Mol Pharmacol 71:426–437PubMedCrossRefGoogle Scholar
  23. 23.
    Koduru S, Kumar R, Srinivasan S, Evers MB, Damodaran C (2010) Notch-1 inhibition by Withaferin-A: a therapeutic target against colon carcinogenesis. Mol Cancer Ther 9:202–210PubMedCrossRefGoogle Scholar
  24. 24.
    Mohan R, Hammers HJ, Bargagna-Mohan P et al (2004) Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 7:115–122PubMedCrossRefGoogle Scholar
  25. 25.
    Stan SD, Hahm ER, Warin R, Singh SV (2008) Withaferin A causes FOXO3a- and Bim-dependent apoptosis and inhibits growth of human breast cancer cells in vivo. Cancer Res 68:7661–7669PubMedCrossRefGoogle Scholar
  26. 26.
    Kaileh M, Vanden Berghe W, Heyerick A et al (2007) Withaferin a strongly elicits IkappaB kinase beta hyperphosphorylation concomitant with potent inhibition of its kinase activity. J Biol Chem 282:4253–4264PubMedCrossRefGoogle Scholar
  27. 27.
    Yu Y, Hamza A, Zhang T et al (2010) Withaferin A targets heat shock protein 90 in pancreatic cancer cells. Biochem Pharmacol 79:542–551PubMedCrossRefGoogle Scholar
  28. 28.
    Lee TJ, Um HJ, Min do S, Park JW, Choi KS, Kwon TK (2009) Withaferin A sensitizes TRAIL-induced apoptosis through reactive oxygen species-mediated up-regulation of death receptor 5 and down-regulation of c-FLIP. Free Radic Biol Med 46:1639–1649PubMedCrossRefGoogle Scholar
  29. 29.
    Deniaud A, Sharaf el dein O, Maillier E et al (2008) Endoplasmic reticulum stress induces calcium-dependent permeability transition, mitochondrial outer membrane permeabilization and apoptosis. Oncogene 27:285–299PubMedCrossRefGoogle Scholar
  30. 30.
    Buron N, Porceddu M, Brabant M et al (2010) Use of human cancer cell lines mitochondria to explore the mechanisms of BH3 peptides and ABT-737-induced mitochondrial membrane permeabilization. PLoS ONE 5:e9924PubMedCrossRefGoogle Scholar
  31. 31.
    Belzacq-Casagrande AS, Martel C, Pertuiset C, Borgne-Sanchez A, Jacotot E, Brenner C (2009) Pharmacological screening and enzymatic assays for apoptosis. Front Biosci 14:3550–3562PubMedCrossRefGoogle Scholar
  32. 32.
    Guenal I, Sidoti-de Fraisse C, Gaumer S, Mignotte B (1997) Bcl-2 and Hsp27 act at different levels to suppress programmed cell death. Oncogene 15:347–360PubMedCrossRefGoogle Scholar
  33. 33.
    Petronilli V, Miotto G, Canton M et al (1999) Transient and long-lasting openings of the mitochondrial permeability transition pore can be monitored directly in intact cells by changes in mitochondrial calcein fluorescence. Biophys J 76:725–734PubMedCrossRefGoogle Scholar
  34. 34.
    Li P, Nijhawan D, Budihardjo I et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489PubMedCrossRefGoogle Scholar
  35. 35.
    Clement MV, Pervaiz S (1999) Reactive oxygen intermediates regulate cellular response to apoptotic stimuli: an hypothesis. Free Radic Res 30:247–252PubMedCrossRefGoogle Scholar
  36. 36.
    Circu ML, Aw TY (2010) Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 48:749–762PubMedCrossRefGoogle Scholar
  37. 37.
    Robinson KM, Janes MS, Pehar M et al (2006) Selective fluorescent imaging of superoxide in vivo using ethidium-based probes. Proc Natl Acad Sci USA 103:15038–15043PubMedCrossRefGoogle Scholar
  38. 38.
    Hirpara JL, Clement MV, Pervaiz S (2001) Intracellular acidification triggered by mitochondrial-derived hydrogen peroxide is an effector mechanism for drug-induced apoptosis in tumor cells. J Biol Chem 276:514–521PubMedCrossRefGoogle Scholar
  39. 39.
    Deneke SM (2000) Thiol-based antioxidants. Curr Top Cell Regul 36:151–180PubMedCrossRefGoogle Scholar
  40. 40.
    Franco R, DeHaven WI, Sifre MI, Bortner CD, Cidlowski JA (2008) Glutathione depletion and disruption of intracellular ionic homeostasis regulate lymphoid cell apoptosis. J Biol Chem 283:36071–36087PubMedCrossRefGoogle Scholar
  41. 41.
    Kamencic H, Lyon A, Paterson PG, Juurlink BH (2000) Monochlorobimane fluorometric method to measure tissue glutathione. Anal Biochem 286:35–37PubMedCrossRefGoogle Scholar
  42. 42.
    La Porta CA (2007) Drug resistance in melanoma: new perspectives. Curr Med Chem 14:387–391PubMedCrossRefGoogle Scholar
  43. 43.
    Dantzig AH, Shepard RL, Cao J et al (1996) Reversal of P-glycoprotein-mediated multidrug resistance by a potent cyclopropyldibenzosuberane modulator, LY335979. Cancer Res 56:4171–4179PubMedGoogle Scholar
  44. 44.
    Selzer E, Schlagbauer-Wadl H, Okamoto I, Pehamberger H, Potter R, Jansen B (1998) Expression of Bcl-2 family members in human melanocytes, in melanoma metastases and in melanoma cell lines. Melanoma Res 8:197–203PubMedCrossRefGoogle Scholar
  45. 45.
    Bedard K, Krause KH (2007) The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol Rev 87:245–313PubMedCrossRefGoogle Scholar
  46. 46.
    St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790PubMedCrossRefGoogle Scholar
  47. 47.
    Vieira H, Kroemer G (2003) Mitochondria as targets of apoptosis regulation by nitric oxide. IUBMB Life 55:613–616PubMedCrossRefGoogle Scholar
  48. 48.
    Fruehauf JP, Trapp V (2008) Reactive oxygen species: an Achilles’ heel of melanoma? Expert Rev Anticancer Ther 8:1751–1757PubMedCrossRefGoogle Scholar
  49. 49.
    Marengo B, De Ciucis C, Verzola D et al (2008) Mechanisms of BSO (L-buthionine-S,R-sulfoximine)-induced cytotoxic effects in neuroblastoma. Free Radic Biol Med 44:474–482PubMedCrossRefGoogle Scholar
  50. 50.
    Gomez-Bougie P, Bataille R, Amiot M (2004) The imbalance between Bim and Mcl-1 expression controls the survival of human myeloma cells. Eur J Immunol 34:3156–3164PubMedCrossRefGoogle Scholar
  51. 51.
    Raisova M, Goltz G, Bektas M et al (2002) Bcl-2 overexpression prevents apoptosis induced by ceramidase inhibitors in malignant melanoma and HaCaT keratinocytes. FEBS Lett 516:47–52PubMedCrossRefGoogle Scholar
  52. 52.
    Bedikian AY, Millward M, Pehamberger H et al (2006) Bcl-2 antisense (oblimersen sodium) plus dacarbazine in patients with advanced melanoma: the Oblimersen Melanoma Study Group. J Clin Oncol 24:4738–4745PubMedCrossRefGoogle Scholar
  53. 53.
    Jansen B, Wacheck V, Heere-Ress E et al (2000) Chemosensitisation of malignant melanoma by BCL2 antisense therapy. Lancet 356:1728–1733PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Eleonore Mayola
    • 1
    • 2
    • 3
  • Cindy Gallerne
    • 1
  • Davide Degli Esposti
    • 2
    • 3
  • Cecile Martel
    • 1
    • 2
    • 3
  • Shazib Pervaiz
    • 4
  • Lionel Larue
    • 3
    • 5
  • Brigitte Debuire
    • 2
    • 3
  • Antoinette Lemoine
    • 2
    • 3
  • Catherine Brenner
    • 1
    • 3
  • Christophe Lemaire
    • 1
    • 3
    • 6
  1. 1.INSERM UMR S-769, Université Paris-Sud 11Châtenay-MalabryFrance
  2. 2.Faculté de Pharmacie, Châtenay-MalabryINSERM U1004, Université Paris-Sud 11VillejuifFrance
  3. 3.PRES UniverSud ParisChâtenay-MalabryFrance
  4. 4.Department of Physiology, Yong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
  5. 5.Institut Curie, Université Paris-Sud 11, CNRS UMR3347/INSERM U1021OrsayFrance
  6. 6.Université Versailles St-QuentinVersaillesFrance

Personalised recommendations