, Volume 16, Issue 8, pp 831–845 | Cite as

Singapore grouper iridovirus, a large DNA virus, induces nonapoptotic cell death by a cell type dependent fashion and evokes ERK signaling

  • Xiaohong Huang
  • Youhua Huang
  • Zhengliang Ouyang
  • Lixiao Xu
  • Yang Yan
  • Huachun Cui
  • Xin Han
  • Qiwei QinEmail author
Original Paper


Virus induced cell death, including apoptosis and nonapoptotic cell death, plays a critical role in the pathogenesis of viral diseases. Singapore grouper iridovirus (SGIV), a novel iridovirus of genus Ranavirus, causes high mortality and heavy economic losses in grouper aquaculture. Here, using fluorescence microscopy, electron microscopy and biochemical assays, we found that SGIV infection in host (grouper spleen, EAGS) cells evoked nonapoptotic programmed cell death (PCD), characterized by appearance of cytoplasmic vacuoles and distended endoplasmic reticulum, in the absence of DNA fragmentation, apoptotic bodies and caspase activation. In contrast, SGIV induced typical apoptosis in non-host (fathead minnow, FHM) cells, as evidenced by caspase activation and DNA fragmentation, suggesting that SGIV infection induced nonapoptotic cell death by a cell type dependent fashion. Furthermore, viral replication was essential for SGIV induced nonapoptotic cell death, but not for apoptosis. Notably, the disruption of mitochondrial transmembrane potential (ΔΨm) and externalization of phosphatidylserine (PS) were not detected in EAGS cells but in FHM cells after SGIV infection. Moreover, the extracellular signal-regulated kinase (ERK) signaling was involved in SGIV infection induced nonapoptotic cell death and viral replication. This is a first demonstration of ERK-mediated nonapoptotic cell death induced by a DNA virus. These findings contribute to understanding the mechanisms of iridovirus pathogenesis.


SGIV Iridovirus Nonapoptotic cell death Apoptosis ERK signaling 



This work was supported by grants from Natural Science Foundation of China (30930070, 30725027, 30700616, 30800846) and the knowledge innovation program of the Chinese Academy of Sciences (SQ200902, KZCX2-YW-BR-08, KZCX2-EW-Q213).


  1. 1.
    Huang YH, Huang XH, Gui JF, Zhang QY (2007) Mitochondrion-mediated apoptosis induced by Rana grylio virus infection in fish cells. Apoptosis 12:1569–1577PubMedCrossRefGoogle Scholar
  2. 2.
    Clarke P, Tyler KL (2009) Apoptosis in animal models of virus-induced disease. Nat Rev Microbiol 7:144–155PubMedCrossRefGoogle Scholar
  3. 3.
    Shinmoto H, Taniguchi K, Ikawa T, Kawai K, Oshima S (2009) Phenotypic diversity of infectious red sea bream iridovirus isolates from cultured fish in Japan. Appl Environ Microbiol 75:3535–3541PubMedCrossRefGoogle Scholar
  4. 4.
    Qin QW, Lam TJ, Sin YM, Shen H, Chang SF et al (2001) Electron microscopic observations of a marine fish iridovirus isolated from brown-spotted grouper, Epinephelus tauvina. J Virol Methods 98:17–24PubMedCrossRefGoogle Scholar
  5. 5.
    Qin QW, Shi C, Gin KY, Lam TJ (2002) Antigenic characterization of a marine fish iridovirus from grouper, Epinephelus spp. J Virol Methods 106:89–96PubMedCrossRefGoogle Scholar
  6. 6.
    Qin QW, Chang SF, Ngoh-Lim GH, Gibson-Kueh S, Shi C et al (2003) Characterization of a novel ranavirus isolated from grouper Epinephelus tauvina. Dis Aquat Organ 22:1–9CrossRefGoogle Scholar
  7. 7.
    Huang XH, Huang YH, Sun JJ, Han X, Qin QW (2009) Characterization of two grouper Epinephelus akaara cell lines: application to studies of Singapore grouper iridovirus (SGIV) propagation and virus-host interaction. Aquaculture 292:172–179CrossRefGoogle Scholar
  8. 8.
    Chinchar VG, Bryan L, Wang J, Long S, Chinchar GD (2003) Induction of apoptosis in frog virus 3-infected cells. Virology 306:303–312PubMedCrossRefGoogle Scholar
  9. 9.
    Imajoh M, Sugiura H, Oshima S (2004) Morphological changes contribute to apoptotic cell death and are affected by caspase-3 and caspase-6 inhibitors during red sea bream iridovirus permissive replication. Virology 322:220–230PubMedCrossRefGoogle Scholar
  10. 10.
    Labbé K, Saleh M (2008) Cell death in the host response to infection. Cell Death Differ 15:1339–1349PubMedCrossRefGoogle Scholar
  11. 11.
    Ameisen JC (2002) On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ 9:367–393PubMedCrossRefGoogle Scholar
  12. 12.
    Hotchkiss RS, Strasser A, McDunn JE, Swanson PE (2009) Cell death. N Engl J Med 361:1570–1583PubMedCrossRefGoogle Scholar
  13. 13.
    Sir D, Chen WL, Choi J, Wakita T, Yen TS et al (2008) Induction of incomplete autophagic response by hepatitis C virus via the unfolded protein response. Hepatology 48:1054–1061PubMedCrossRefGoogle Scholar
  14. 14.
    Castro-Obregón S, Del Rio G, Chen SF, Swanson RA, Frankowski H et al (2002) A ligand-receptor pair that triggers a nonapoptotic form of programmed cell death. Cell Death Differ 9:807–817PubMedCrossRefGoogle Scholar
  15. 15.
    Wang Y, Li X, Wang L, Ding P, Zhang Y et al (2004) An alternative form of paraptosis-like cell death, triggered by TAJ/TROY and enhanced by PDCD5 overexpression. J Cell Sci 117:1525–1532PubMedCrossRefGoogle Scholar
  16. 16.
    Joubert PE, Meiffren G, Grégoire IP, Pontini G, Richetta C et al (2009) Autophagy induction by the pathogen receptor CD46. Cell Host Microbe 6:354–366PubMedCrossRefGoogle Scholar
  17. 17.
    Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 16:3–11PubMedCrossRefGoogle Scholar
  18. 18.
    Sperandio S, de Belle I, Bredesen DE (2000) An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA 97:14376–14381PubMedCrossRefGoogle Scholar
  19. 19.
    Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8:931–937PubMedCrossRefGoogle Scholar
  20. 20.
    Wada T, Penninger JM (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene 23:2838–2849PubMedCrossRefGoogle Scholar
  21. 21.
    Dong C, Davis RJ, Flavell RA (2002) MAP kinases in the immune response. Annu Rev Immunol 20:55–72PubMedCrossRefGoogle Scholar
  22. 22.
    Moser LA, Schultz-Cherry S (2008) Suppression of astrovirus replication by an ERK1/2 inhibitor. J Virol 82:7475–7482PubMedCrossRefGoogle Scholar
  23. 23.
    Rahaus M, Desloges N, Wolff MH (2004) Replication of varicella-zoster virus is influenced by the levels of JNK/SAPK and p38/MAPK activation. J Gen Virol 85:3529–3540PubMedCrossRefGoogle Scholar
  24. 24.
    de Magalhães JC, Andrade AA, Silva PN, Sousa LP, Ropert C et al (2001) A mitogenic signal triggered at an early stage of vaccinia virus infection: implication of MEK/ERK and protein kinase A in virus multiplication. J Biol Chem 276:38353–38360PubMedCrossRefGoogle Scholar
  25. 25.
    Pleschka S, Wolff T, Ehrhardt C, Hobom G, Planz O et al (2001) Influenza virus propagation is impaired by inhibition of the Raf/MEK/ERK signalling cascade. Nat Cell Biol 3:301–305PubMedCrossRefGoogle Scholar
  26. 26.
    Wei L, Liu J (2009) Porcine circovirus type 2 replication is impaired by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. Virology 386:203–209PubMedCrossRefGoogle Scholar
  27. 27.
    Gravell M, Malsberger RG (1965) A permanent cell line form the fathead minnow (Pimephales promelas). Ann NY Acad Sci 126:555–565PubMedCrossRefGoogle Scholar
  28. 28.
    Bosnjak L, Miranda-Saksena M, Koelle DM, Boadle RA, Jones CA, Cunningham AL (2005) Herpes simplex virus infection of human dendritic cells induces apoptosis and allows cross-presentation via uninfected dendritic cells. J Immunol 174:2220–2227PubMedGoogle Scholar
  29. 29.
    Bacus SS, Gudkov AV, Lowe M, Lyass L, Yung Y, Komarov AP, Keyomarsi K, Yarden Y, Seger R (2001) Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 20:147–155PubMedCrossRefGoogle Scholar
  30. 30.
    Huang XH, Huang YH, Yuan XP, Zhang QY (2006) Electron microscopic examination of the viromatrix of Rana grylio virus in a fish cell line. J Virol Methods 133:117–123PubMedCrossRefGoogle Scholar
  31. 31.
    Si X, McManus BM, Zhang J, Yuan J, Cheung C, Esfandiarei M, Suarez A, Morgan A, Luo H (2005) Pyrrolidine dithiocarbamate reduces coxsackievirus B3 replication through inhibition of the ubiquitin-proteasome pathway. J Virol 79:8014–8023PubMedCrossRefGoogle Scholar
  32. 32.
    Lee SM, Kleiboeker SB (2007) Porcine reproductive and respiratory syndrome virus induces apoptosis through a mitochondria-mediated pathway. Virology 365:419–434PubMedCrossRefGoogle Scholar
  33. 33.
    Choi J, Lee KJ, Zheng Y, Yamaga AK, Lai MM et al (2004) Reactive oxygen species suppress hepatitis C virus RNA replication in human hepatoma cells. Hepatology 39:81–89PubMedCrossRefGoogle Scholar
  34. 34.
    Seet BT, Johnston JB, Brunetti CR, Barrett JW, Everett H et al (2003) Poxviruses and immune evasion. Annu Rev Immunol 21:377–423PubMedCrossRefGoogle Scholar
  35. 35.
    Barber GN (2001) Host defense, viruses and apoptosis. Cell Death Differ 8:113–126PubMedCrossRefGoogle Scholar
  36. 36.
    Münz C (2007) Viral evasion of autophagy. Cell Host Microbe 1:9–11PubMedCrossRefGoogle Scholar
  37. 37.
    Benedict CA, Norris PS, Ware CF (2002) To kill or be killed: viral evasion of apoptosis. Nat Immunol 3:1013–1018PubMedCrossRefGoogle Scholar
  38. 38.
    Vanlandschoot P, Leroux-Roels G (2003) Viral apoptotic mimicry: an immune evasion strategy developed by the hepatitis B virus? Trends Immunol 24:144–147PubMedCrossRefGoogle Scholar
  39. 39.
    Deretic V, Levine B (2009) Autophagy, immunity, and microbial adaptations. Cell Host Microbe 5:527–549PubMedCrossRefGoogle Scholar
  40. 40.
    Orvedahl A, Alexander D, Tallóczy Z, Sun Q, Wei Y, Zhang W et al (2007) HSV-1 ICP34.5 confers neurovirulence by targeting the Beclin 1 autophagy protein. Cell Host Microbe 1:23–35PubMedCrossRefGoogle Scholar
  41. 41.
    Mao H, Tu W, Qin G, Law HK, Sia SF et al (2009) Influenza virus directly infects human natural killer cells and induces cell apoptosis. J Virol 83:9215–9222PubMedCrossRefGoogle Scholar
  42. 42.
    Pearce AF, Lyles DS (2009) Vesicular stomatitis virus induces apoptosis primarily through Bak rather than Bax by inactivating Mcl-1 and Bcl-XL. J Virol 83:9102–9112PubMedCrossRefGoogle Scholar
  43. 43.
    Seth P, Diaz F, Tao-Cheng JH, Major EO (2004) JC virus induces nonapoptotic cell death of human central nervous system progenitor cell-derived astrocytes. J Virol 78:4884–4891PubMedCrossRefGoogle Scholar
  44. 44.
    Wong J, Zhang J, Si X, Gao G, Mao I et al (2008) Autophagosome supports coxsackievirus B3 replication in host cells. J Virol 82:9143–9153PubMedCrossRefGoogle Scholar
  45. 45.
    Lee YR, Lei HY, Liu MT, Wang JR, Chen SH, Jiang-Shieh YF et al (2008) Autophagic machinery activated by dengue virus enhances virus replication. Virology 374:240–248PubMedCrossRefGoogle Scholar
  46. 46.
    Orvedahl A, Levine B (2009) Eating the enemy within: autophagy in infectious diseases. Cell Death Differ 16:57–69PubMedCrossRefGoogle Scholar
  47. 47.
    Huang X, Huang Y, Ouyang Z, Qin Q (2011) Establishment of a cell line from the brain of grouper (Epinephelus akaara) for cytotoxicity testing and virus pathogenesis. Aquaculture 311:65–73CrossRefGoogle Scholar
  48. 48.
    Bredesen DE (2007) Key note lecture: toward a mechanistic taxonomy for cell death programs. Stroke 38:652–660PubMedCrossRefGoogle Scholar
  49. 49.
    Fombonne J, Padrón L, Enjalbert A, Krantic S, Torriglia A (2006) A novel paraptosis pathway involving LEI/L-DNaseII for EGF-induced cell death in somato-lactotrope pituitary cells. Apoptosis 11:367–375PubMedCrossRefGoogle Scholar
  50. 50.
    Lai YS, Chiou PP, Chen WJ, Chen YC, Chen CW et al (2008) Characterization of apoptosis induced by grouper iridovirus in two newly established cell lines from barramundi, Lates calcarifer (Bloch). J Fish Dis 31:825–834PubMedCrossRefGoogle Scholar
  51. 51.
    Desagher S, Martinou JC (2000) Mitochondrial as the central control point of apoptosis. Trends Cell Biol 10:369–377PubMedCrossRefGoogle Scholar
  52. 52.
    Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163PubMedCrossRefGoogle Scholar
  53. 53.
    Schlegel RA, Williamson P (2001) Phosphatidylserine, a death knell. Cell Death Differ 8:551–563PubMedCrossRefGoogle Scholar
  54. 54.
    Huang Y, Huang X, Cai J, Ye F, Qin Q (2011) Involvement of the mitogen-activated protein kinase pathway in soft-shelled turtle iridovirus-induced apoptosis. Apoptosis 16:581–593PubMedCrossRefGoogle Scholar
  55. 55.
    Xing Z, Cardona CJ, Anunciacion J, Adams S, Dao N (2010) Roles of the ERK MAPK in the regulation of proinflammatory and apoptotic responses in chicken macrophages infected with H9N2 avian influenza virus. J Gen Virol 91:343–351PubMedCrossRefGoogle Scholar
  56. 56.
    Junttila MR, Li SP, Westermarck J (2008) Phosphatase-mediated crosstalk between MAPK signaling pathways in the regulation of cell survival. FASEB J 22:954–965PubMedCrossRefGoogle Scholar
  57. 57.
    Takeda K, Ichijo H (2002) Neuronal p38 MAPK signalling: an emerging regulator of cell fate and function in the nervous system. Genes Cells 7:1099–1111PubMedCrossRefGoogle Scholar
  58. 58.
    Huang X, Huang Y, Ouyang Z, Cai J, Yan Y, Qin Q (2011) Roles of stress-activated protein kinases in the replication of Singapore grouper iridovirus and regulation of the inflammatory responses in grouper cells. J Gen Virol 92:1292–1301PubMedCrossRefGoogle Scholar
  59. 59.
    Christian SL, Collier TW, Zu D, Licursi M, Hough CM et al (2009) Activated Ras/MEK inhibits the antiviral response of alpha interferon by reducing STAT2 levels. J Virol 83:6717–6726PubMedCrossRefGoogle Scholar
  60. 60.
    Sperandio S, Poksay K, Belle I, de Lafuente MJ, Liu B et al (2004) Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ 11:1066–1075PubMedCrossRefGoogle Scholar
  61. 61.
    Castro-Obregón S, Rao RV, del Rio G, Chen SF, Poksay KS, Rabizadeh S, Vesce S, Zhang XK, Swanson RA, Bredesen DE (2004) Alternative, nonapoptotic programmed cell death: mediation by arrestin 2, ERK2, and Nur77. J Biol Chem 279:17543–17553PubMedCrossRefGoogle Scholar
  62. 62.
    Luo H, Yanagawa B, Zhang J, Luo Z, Zhang M, Esfandiarei M, Carthy C, Wilson JE, Yang D, McManus BM (2002) Coxsackievirus B3 replication is reduced by inhibition of the extracellular signal-regulated kinase (ERK) signaling pathway. J Virol 76:3365–3373PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Xiaohong Huang
    • 1
  • Youhua Huang
    • 1
  • Zhengliang Ouyang
    • 1
  • Lixiao Xu
    • 2
  • Yang Yan
    • 2
  • Huachun Cui
    • 2
  • Xin Han
    • 2
  • Qiwei Qin
    • 1
    Email author
  1. 1.Key Laboratory of Marine Bio-Resources Sustainable UtilizationSouth China Sea Institute of Oceanology, Chinese Academy of SciencesGuangzhouChina
  2. 2.State Key Laboratory of Biocontrol, School of Life ScienceSun Yat-sen UniversityGuangzhouChina

Personalised recommendations