, Volume 16, Issue 4, pp 425–437 | Cite as

Light- and sodium azide-induced death of RGC-5 cells in culture occurs via different mechanisms

  • Dan Ji
  • Tengku A. Kamalden
  • Susana del Olmo-Aguado
  • Neville N. OsborneEmail author
Original Paper


Previous studies have shown that light impinging on the retina in situ has the capacity to kill neuronal and non-neuronal cells in vitro by interacting directly with mitochondrial constituents. A number of fluorophores are associated with mitochondria which can potentially absorb different wave-lengths of light, including cytochrome oxidase. The aim of the present study was to compare the death mechanism of a light insult to RGC-5 cells in culture with that of sodium azide. Sodium azide’s main toxic action is in inhibiting the function of cytochrome oxidase in the mitochondrial electron transport chain. Our studies showed that light and sodium azide kill RGC-5 cells via different mechanisms although some similarities do occur. Both inducers of cell death caused the generation of reactive oxygen species (ROS), the expression of phosphatidylserine, the breakdown of DNA and the activation of p38 MAPK, resulting in its translocation from the nucleus to the cytoplasm. However, light-induced cell death occurs via necroptosis, in that it was inhibited by necrostatin-1 and was caspase-independent. This was not the case for sodium azide, where the death process was caspase-dependent, occurred via apoptosis and was unaffected by necrostatin-1. Moreover, light caused an activation of the apoptosis inducing factor (AIF), c-Jun, JNK and HO-1, but it did not affect alpha fodrin or caspase-3. In contrast, sodium azide caused the activation of alpha fodrin and the stimulation of caspase-3 content without influencing AIF, c-Jun, JNK or HO-1. Therefore we conclude that light does not have a specific action on cytochrome oxidase in mitochondria to cause cell death.


Light-insult Sodium azide-insult Mitochondria Necroptosis Apoptosis 



Neville N. Osborne, Cátedra de Biomedicina (Chair of Biomedicine) was supported by the Fundación BBVA, Spain.


  1. 1.
    Chan DC (2006) Mitochondria: dynamic organelles in disease, ageing, and development. Cell 125:1241–1252PubMedCrossRefGoogle Scholar
  2. 2.
    Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787–795PubMedCrossRefGoogle Scholar
  3. 3.
    Christophe M, Nicolas S (2006) Mitochondria: a target for neuroprotective interventions in cerebral ischemia-reperfusion. Curr Pharm Des 12:739–757PubMedCrossRefGoogle Scholar
  4. 4.
    Osborne NN, Casson RJ, Wood JP, Chidlow G, Graham M, Melena J (2004) Retinal ischemia: mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 23:91–147PubMedCrossRefGoogle Scholar
  5. 5.
    Osborne NN, Lascaratos G, Bron AJ, Chidlow G, Wood JP (2006) A hypothesis to suggest that light is a risk factor in glaucoma and the mitochondrial optic neuropathies. Br J Ophthalmol 90:237–241PubMedCrossRefGoogle Scholar
  6. 6.
    King A, Gottlieb E, Brooks DG, Murphy MP, Dunaief GL (2004) Mitochondria-derived reactive oxygen species mediate blue light-induced death of retinal pigment epithelial cells. Photochem Photobiol 79:470–475PubMedCrossRefGoogle Scholar
  7. 7.
    Godley BF, Shamsi FA, Liang F, Jarrett S, Davies S, Boulton M (2005) Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J Biol Chem 280:21061–21066PubMedCrossRefGoogle Scholar
  8. 8.
    Bell JE, Hall C (1981) Hemoproteins. In: Bell JE (ed) Spectroscopy in biochemistry. CRC Press Inc, Boca Raton, FL, pp 42–46Google Scholar
  9. 9.
    Ortiz de Montellano PR (1995) The 1994 Bernard B. Brodie award lecture. Structure, mechanism, and inhibition of cytochrome P450. Drug Metab Dispos 23:1181–1187PubMedGoogle Scholar
  10. 10.
    Hockberger PE, Skimina TA, Centonze VE et al (1999) Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells. Proc Natl Acad Sci 96:6255–6260PubMedCrossRefGoogle Scholar
  11. 11.
    García J, Silva E (1997) Flavin-sensitized photooxidation of amino acids present in a parenteral nutrition infusate: protection by ascorbic acid. J Nutr Biochem 8:341–345CrossRefGoogle Scholar
  12. 12.
    Barron MJ, Griffiths P, Turnbull DM, Bates D, Nichols P (2004) The distributions of mitochondria and sodium channels reflect the specific energy requirements and conduction properties of the human optic nerve head. Br J Ophthalmol 88:286–290PubMedCrossRefGoogle Scholar
  13. 13.
    Carelli V, Ross-Cisneros FN, Sadun AA (2004) Mitochondrial dysfunction as a cause of optic neuropathies. Prog Retin Eye Res 23:53–89PubMedCrossRefGoogle Scholar
  14. 14.
    Osborne NN (2010) Mitochondria: their role in ganglion cell death and survival in primary open angle glaucoma. Exp Eye Res 90:750–757PubMedCrossRefGoogle Scholar
  15. 15.
    Lascaratos G, Ji D, Wood JP et al (2007) Visible light affects mitochondrial function and induces neuronal death in retinal cell cultures. Vis Res 47:1191–1201PubMedCrossRefGoogle Scholar
  16. 16.
    Wood JP, Lascaratos G, Bron AJ et al (2007) The influence of visible light exposure on cultured RGC-5 cells. Mol Vis 14:334–344Google Scholar
  17. 17.
    Osborne NN, Li GY, Ji D et al (2008) Light affects mitochondria to cause apoptosis to cultured cells: possible relevance to ganglion cell death in certain optic neuropathies. J Neurochem 105:2013–2028PubMedCrossRefGoogle Scholar
  18. 18.
    Liu Y, Schubert DR (2009) The specificity of neuroprotection by antioxidants. J Biomed Sci 16:98PubMedCrossRefGoogle Scholar
  19. 19.
    Ellenhort MJ (1988) Sodium azide. In: Ellenhorn MJ (ed) Diagnosis and treatment of human poisoning. Williams and Wilkins, Baltimore, MD, pp 1385–1388Google Scholar
  20. 20.
    Leary SC, Hill BC, Lyons CN, Carlson CG, Michaud D, Kraft CS, Ko K, Glerum DM, Moyes CD (2002) Chronic treatment with azide in situ leads to an irreversible loss of cytochrome c oxidase activity via holoenzyme dissociation. J Biol Chem 277:11321–11328PubMedCrossRefGoogle Scholar
  21. 21.
    Safiulina D, Veksler V, Zharkovsky A, Kaasik A (2006) Loss of mitochondrial membrane potential is associated with increase in mitochondrial volume: physiological role in neurones. J Cell Physiol 206:347–353PubMedCrossRefGoogle Scholar
  22. 22.
    Krishnamoorthy RR, Agarwal P, Prasanna G et al (2001) Characterization of a transformed rat retinal cell line. Brain Res Mol Brain Res 86:1–12PubMedCrossRefGoogle Scholar
  23. 23.
    Ahmed SA, Gogal RM Jr, Walsh JE (1994) A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocytes: an alternative to [3H]thymidine incorporation assay. J Immunol Methods 170:211–224PubMedCrossRefGoogle Scholar
  24. 24.
    Toimela T, Tahti H (2004) Mitochondrial viability and apoptosis induced by aluminum, mercuric mercury and methyl mercury in cell lines of neural origin. Arch Toxicol 78:565–574PubMedCrossRefGoogle Scholar
  25. 25.
    Nicholson DW, Ali A, Thornberry NA, Vaillancourt JP, Ding CK, Gallant M, Gareau Y, Griffin PR, Labelle M, Lazebnik YA et al (1995) Identification and inhibition of the ICE/CED-3 protease necessary for mammalian apoptosis. Nature 376:37–43PubMedCrossRefGoogle Scholar
  26. 26.
    Charalampopoulos I, Tsatsanis C, Dermitzaki E, Alexaki VI, Castanas E, Margioris AN, Gravanis A (2004) Dehydroepiandrosterone and allopregnanolone protect sympathoadrenal medulla cells against apoptosis via antiapoptotic Bcl-2 protein. Proc Natl Acad Sci 101:8209–8214PubMedCrossRefGoogle Scholar
  27. 27.
    Carter WO, Narayanan PK, Robinson JP (1994) Intracellular hydrogen peroxide and superoxide anion detection in endothelial cells. J Leukoc Biol 55:253–258PubMedGoogle Scholar
  28. 28.
    Jones KH, Senft JA (1985) An improved method to determine cell viability by simultaneous staining with fluorescein diacetate-propidium iodide. J Histochem Cytochem 33:77–79PubMedGoogle Scholar
  29. 29.
    Osborne NN, Nash MS, Wood JP (1998) Melatonin counteracts ischemia-induced apoptosis in human retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 39:2374–2383PubMedGoogle Scholar
  30. 30.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  31. 31.
    Galluzzi L, Kroemer G (2008) Necroptosis: a specialized pathway of programmed necrosis. Cell 135:1161–1163PubMedCrossRefGoogle Scholar
  32. 32.
    Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, Cuny GD, Mitchison TJ, Moskowitz MA, Yuan J (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119PubMedCrossRefGoogle Scholar
  33. 33.
    Bennett MC, Mlady GW, Kwon YH, Rose GM (1996) Chronic in vivo sodium azide infusion induces selective and stable inhibition of cytochrome c oxidase. J Neurochem 66:2606–2611PubMedCrossRefGoogle Scholar
  34. 34.
    Qamirani E, Razavi HM, Wu X, Davis MJ, Kuo L, Hein TW (2006) Sodium azide dilates coronary arterioles via activation of inward rectifier K+ channels and Na+–K+-ATPase. Am J Physiol Heart Circ Physiol 290:H1617–H1623PubMedCrossRefGoogle Scholar
  35. 35.
    Marino S, Marani L, Nazzaro C, Beani L, Siniscalchi A (2007) Mechanisms of sodium azide-induced changes in intracellular calcium concentration in rat primary cortical neurons. Neurotoxicology 28:622–629PubMedCrossRefGoogle Scholar
  36. 36.
    Hargreaves IP, Duncan AJ, Wu L, Agrawal A, Land JM, Heales SJR (2007) Inhibition of mitochondrial complex IV leads to secondary loss of complex II–III activity: implications for the pathogenesis and treatment of mitochondrial encephalomyopathies. Mitochondrion 7:284–287PubMedCrossRefGoogle Scholar
  37. 37.
    Mandel SA, Avramovich-Tirosh Y, Reznichenko L, Zheng H, Weinreb O, Amit T, Youdim MBH (2005) Multifunctional activities of green tea catechins in neuroprotection. Neurosignals 14:46–60PubMedCrossRefGoogle Scholar
  38. 38.
    Higdon JV, Frei B (2003) Tea catechins and polyphenols: health effects, metabolism, and antioxidant functions. Crit Rev Food Sci Nutr 43:89–143PubMedCrossRefGoogle Scholar
  39. 39.
    Zhang B, Rusciano D, Osborne NN (2008) Orally administered epigallocatechin gallate attenuates retinal neuronal death in vivo and light-induced apoptosis in vitro. Brain Res 10:141–152CrossRefGoogle Scholar
  40. 40.
    Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, Yuan J (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323PubMedCrossRefGoogle Scholar
  41. 41.
    Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nuñez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G (2009) Classification of cell death: recommendations of the Nomenclature Committee on cell death 2009. Cell Death Differ 16:3–11PubMedCrossRefGoogle Scholar
  42. 42.
    Maher P, Hanneken A (2005) The molecular basis of oxidative stress-induced cell death in an immortalized retinal ganglion cell line. Invest Ophthalmol Vis Sci 46:749–757PubMedCrossRefGoogle Scholar
  43. 43.
    Foresti R, Sarathchandra P, Clark JE, Green CJ, Motterlini R (1999) Peroxynitrite induces haem oxygenase-1 in vascular endothelial cells: a link to apoptosis. Biochem J 339:729–736PubMedCrossRefGoogle Scholar
  44. 44.
    Satoh T, Baba M, Nakatsuka D, Ishikawa Y, Aburatani H, Furuta K, Ishikawa T, Hatanaka H, Suzuki M, Watanabe Y (2003) Role of heme oxygenase-1 protein in the neuroprotective effects of cyclopentenone prostaglandin derivatives under oxidative stress. Eur J Neurosci 17:2249–2255PubMedCrossRefGoogle Scholar
  45. 45.
    Xia ZW, Zhou WP, Cui WJ, Zhang XH, Shen QX, Li YZ, Yu SC (2004) Structure prediction and activity analysis of human heme oxygenase-1 and its mutant. World J Gastroenterol 10:2352–2356PubMedGoogle Scholar
  46. 46.
    Nath R, Huggins M, Glantz SB, Morrow JS, McGinnis K, Nadimpalli R, Wanga KK (2000) Development and characterization of antibodies specific to caspase-3-produced alpha II-spectrin 120 kDa breakdown product: marker for neuronal apoptosis. Neurochem Int 37:351–361PubMedCrossRefGoogle Scholar
  47. 47.
    Arboleda G, Waters C, Gibson R (2007) Inhibition of caspases but not of calpains temporarily protect against C2-ceramide-induced death of CAD cells. Neurosci Lett 421:245–249PubMedCrossRefGoogle Scholar
  48. 48.
    Polster BM, Basañez G, Etxebarria A, Hardwick JM, Nicholls DG (2005) Calpain I induces cleavage and release of apoptosis-inducing factor from isolated mitochondria. J Biol Chem 280:6447–6454PubMedCrossRefGoogle Scholar
  49. 49.
    Otera H, Ohsakaya S, Nagaura Z, Ishihara N, Mihara K (2005) Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J 24:1375–1386PubMedCrossRefGoogle Scholar
  50. 50.
    Yu SW, Andrabi SA, Wang H, Kim NS, Poirier GG, Dawson TM, Dawson VL (2006) Apoptosis-inducing factor mediates poly(ADP-ribose) (PAR) polymer-induced. Proc Natl Acad Sci (USA) 103:18314–18319CrossRefGoogle Scholar
  51. 51.
    Ono K, Han J (2000) The p38 signal transduction pathway: activation and function. Cell Signal 12:1–13PubMedCrossRefGoogle Scholar
  52. 52.
    Davies SP, Reddy H, Caivano M, Cohen P (2000) Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 351:95–105PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Dan Ji
    • 1
    • 3
  • Tengku A. Kamalden
    • 1
  • Susana del Olmo-Aguado
    • 2
  • Neville N. Osborne
    • 1
    • 2
    Email author
  1. 1.Nuffield Laboratory of Ophthalmology, John Radcliffe HospitalUniversity of OxfordOxfordUK
  2. 2.Fundación de Investigación OftalmológicaInstituto Oftalmológico Fernández-VegaOviedoSpain
  3. 3.The First People’s Hospital of ChangdeChangdePeople’s Republic of China

Personalised recommendations