, Volume 16, Issue 4, pp 359–369 | Cite as

Ku70 and Rad51 vary in their importance for the repair of doxorubicin- versus etoposide-induced DNA damage

  • Ilona Schonn
  • Jana Hennesen
  • Dorothee C. DartschEmail author
Original Paper


For DNA targeting anticancer drugs, cellular DNA repair mechanisms may cause resistance and hamper the therapeutic outcome. DNA damage induced by topoisomerase IIα inhibitors like etoposide and anthracyclines, which are a mainstay of cancer therapy, is also repaired in many cell types, but the impact and precise mechanisms of this repair are still obscure. To investigate the DNA damage response of human adenocarcinoma HT29-cells to doxorubicin and to compare the involvement of Ku70 and Rad51 in the repair of doxorubicin- versus etoposide-induced DNA damage, we assessed cell cycle distribution and cell death, DNA damage, proteins relevant for repair by homologous recombination and non-homologous end-joining, and clonogenicity following exposure to doxorubicin at clinically achievable concentrations. Also, we assessed changes in the repair kinetics after siRNA-mediated attenuation of Ku70 or Rad51 expression. We found that exposure to doxorubicin for 24 h induced a substantial amount of DNA damage that was largely repaired when doxorubicin was removed and the cells were maintained in drug-free medium. Nevertheless, a pronounced G2/M arrest occurred at times when repair was maximal. This was followed by a distinct increase in cell death and loss of clonogenicity. In this regard, responses to doxorubicin and etoposide were similar. However, distinct differences in the repair process following doxorubicin versus etoposide were seen in concentration dependency, time-course and requirement of Ku70 and Rad51 proteins. In spite of the shared molecular target of doxorubicin and etoposide, DNA lesions induced by these compounds are repaired differently.


Doxorubicin DNA strand breaks Cell cycle arrest DNA-repair Non-homologous end-joining Homologous recombination Cell death 



We would like to thank Prof. Dr. Frank Gieseler from the University Hospital Luebeck for many helpful discussions. Our work was supported by the Ernst und Elfriede Griebel’s Foerderungs- und Unterstuetzungsstiftung, Hamburg.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Jeggo PA, Lobrich M (2006) Contribution of DNA repair and cell cycle checkpoint arrest to the maintenance of genomic stability. DNA Repair (Amst) 5:1192–1198. doi: 10.1016/j.dnarep.2006.05.011 CrossRefGoogle Scholar
  2. 2.
    Rothkamm K, Kuhne M, Jeggo PA, Lobrich M (2001) Radiation-induced genomic rearrangements formed by nonhomologous end-joining of DNA double-strand breaks. Cancer Res 61:3886–3893PubMedGoogle Scholar
  3. 3.
    Zhang Y, Rowley JD (2006) Chromatin structural elements and chromosomal translocations in leukemia. DNA Repair (Amst) 5:1282–1297. doi: 10.1016/j.dnarep.2006.05.020 CrossRefGoogle Scholar
  4. 4.
    Schonn I, Hennesen J, Dartsch DC (2010) Cellular responses to etoposide: cell death despite cell cycle arrest and repair of DNA damage. Apoptosis 15:162–172. doi: 10.1007/s10495-009-0440-9 PubMedCrossRefGoogle Scholar
  5. 5.
    Hande K (1998) Etoposide: four decades of development of a topoisomerase II inhibitor. Eur J Cancer 34:1514–1521. doi: 10.1016/S0959-8049(98)00228-7 PubMedCrossRefGoogle Scholar
  6. 6.
    Liu LF, Rowe TC, Yang L, Tewey KM, Chen GL (1983) Cleavage of DNA by mammalian DNA topoisomerase II. J Biol Chem 258:15365–15370PubMedGoogle Scholar
  7. 7.
    Capranico G, Binaschi M, Borgnetto M, Zunino F, Palumbo M (1997) A protein-mediated mechanism for the DNA sequence-specific action of topoisomerase II poisons. TiPS 18:323–329PubMedGoogle Scholar
  8. 8.
    Binaschi M, Capranico G, Dal Bo L, Zunino F (1997) Relationship between lethal effects and topoisomerase II-mediated double-stranded DNA breaks produced by anthracyclines with different sequence specificity. Mol Pharmacol 51:1053–1059PubMedGoogle Scholar
  9. 9.
    Zunino F, Capranico G (1990) DNA topoisomerase II as the primary target of anti-tumor anthracyclines. Anticancer Drug Des 5:307–317PubMedGoogle Scholar
  10. 10.
    Gewirtz DA (1999) A critical evaluation of the mechanisms of action proposed for the antitumor effects of the anthracycline antibiotics adriamycin and daunorubicin. Biochem Pharmacol 57:727–741PubMedCrossRefGoogle Scholar
  11. 11.
    Coldwell K, Cutts SM, Ognibene TJ, Henderson PT, Phillips DR (2010) Detection of adriamycin-DNA adducts by accelerator mass spectrometry. Methods Mol Biol 613:103–118. doi: 10.1007/978-1-60327-418-0_7 PubMedCrossRefGoogle Scholar
  12. 12.
    Tapiero H, Nguyen-Ba G, Lampidis TJ (1994) Cross resistance relevance of the chemical structure of different anthracyclines in multidrug resistant cells. Pathol Biol (Paris) 42:328–337Google Scholar
  13. 13.
    Blasiak J, Widera K, Pertynski T (2003) Hyperthermia can differentially modulate the repair of doxorubicin-damaged DNA in normal and cancer cells. Acta Biochim Pol 50:191–195PubMedGoogle Scholar
  14. 14.
    Dartsch DC, Gieseler F (2007) Repair of idarubicin-induced DNA damage: a cause of resistance? DNA Repair (Amst) 6:1618–1628. doi: 10.1016/j.dnarep.2007.05.007 CrossRefGoogle Scholar
  15. 15.
    Gieseler F, Nussler V, Brieden T, Kunze J, Valsamas S (1998) Intracellular pharmacokinetics of anthracyclines in human leukemia cells: correlation of DNA-binding with apoptotic cell death. Int J Clin Pharmacol Ther 36:25–28PubMedGoogle Scholar
  16. 16.
    Maniar N, Krishan A, Israel M, Samy TS (1988) Anthracycline-induced DNA breaks and resealing in doxorubicin-resistant murine leukemic P388 cells. Biochem Pharmacol 37:1763–1772CrossRefGoogle Scholar
  17. 17.
    Zhijian C, Xiaoxue L, Yezhen L, Shijie C, Lifen J, Jianlin L, Deqiang L, Jiliang H (2010) Impact of 1.8-GHz radiofrequency radiation (RFR) on DNA damage and repair induced by doxorubicin in human B-cell lymphoblastoid cells. Mutat Res 695:16–21. doi: 10.1016/j.mrgentox.2009.10.001 PubMedGoogle Scholar
  18. 18.
    D’Arpa P, Beardmore C, Liu L (1990) Involvement of nucleic acid synthesis in cell killing mechanisms of topoisomerase poisons. Cancer Res 50:6919–6924PubMedGoogle Scholar
  19. 19.
    Haber JE (2000) Partners and pathways repairing a double-strand break. Trends Genet 16:259–264PubMedCrossRefGoogle Scholar
  20. 20.
    Iliakis G (2009) Backup pathways of NHEJ in cells of higher eukaryotes: cell cycle dependence. Radiother Oncol 92:310–315. doi: 10.1016/j.radonc.2009.06.024 CrossRefGoogle Scholar
  21. 21.
    Wyman C, Warmerdam DO, Kanaar R (2008) From DNA end chemistry to cell-cycle response: the importance of structure, even when it’s broken. Mol Cell 30:5–6. doi: 10.1016/j.molcel.2008.03.007 PubMedCrossRefGoogle Scholar
  22. 22.
    Connelly JC, Leach DR (2004) Repair of DNA covalently linked to protein. Mol Cell 13:307–316PubMedCrossRefGoogle Scholar
  23. 23.
    Zhang A, Lyu YL, Lin CP, Zhou N, Azarova AM, Wood LM, Liu LF (2006) A protease pathway for the repair of topoisomerase II-DNA covalent complexes. J Biol Chem 281:35997–36003. doi: 10.1074/jbc.M604149200 PubMedCrossRefGoogle Scholar
  24. 24.
    Capranico G, Kohn KW, Pommier Y (1990) Local sequence requirements for DNA cleavage by mammalian topoisomerase II in the presence of doxorubicin. Nucleic Acids Res 18:6611–6619PubMedCrossRefGoogle Scholar
  25. 25.
    Pommier Y, Capranico G, Orr A, Kohn KW (1991) Local base sequence preferences for DNA cleavage by mammalian topoisomerase II in the presence of amsacrine or teniposide. Nucleic Acids Res 19:5973–5980PubMedCrossRefGoogle Scholar
  26. 26.
    Morin PJ, Vogelstein B, Kinzler KW (1996) Apoptosis and APC in colorectal tumorigenesis. Proc Natl Acad Sci USA 93:7950–7954PubMedCrossRefGoogle Scholar
  27. 27.
    Blandino G, Levine AJ, Oren M (1999) Mutant p53 gain of function: differential effects of different p53 mutants on resistance of cultured cells to chemotherapy. Oncogene 18:477–485PubMedCrossRefGoogle Scholar
  28. 28.
    Chang FL, Lai MD (2001) Various forms of mutant p53 confer sensitivity to cisplatin and doxorubicin in bladder cancer cells. J Urol 166:304–310PubMedCrossRefGoogle Scholar
  29. 29.
    Eksborg S, Strandler H-S, Edsmyr F, Näslund I, Tahvanainen P (1985) Pharmacokinetic study of IV infusions of adriamycin. Eur J Clin Pharmacol 28:205–212PubMedCrossRefGoogle Scholar
  30. 30.
    Giaccone G, Linn S, Welink J, Catimel G, Stieltjes H, Van der Vijgh W, Eeltink C, Vermorken J, Pinedo H (1997) A dose-finding and pharmacokinetic study of reversal of multidrug resistance with SDZ PSC 833 in combination with doxorubicin in patients with solid tumors. Clin Cancer Res 3:2005–2015PubMedGoogle Scholar
  31. 31.
    Greene R, Collins J, Jenkins J, Speyer J, Myers C (1983) Plasma pharmacokinetics of adriamycin and adriamycinol: implications for the design of in vitro experiments and treatment protocols. Cancer Res 43:3417–3421PubMedGoogle Scholar
  32. 32.
    Mross K, Mayer U, Hamm K, Burk K, Hossfeld D (1990) Pharmacokinetics and metabolism of iodo-doxorubicin and doxorubicin in humans. Eur J Clin Pharmacol 39:507–513PubMedCrossRefGoogle Scholar
  33. 33.
    Speth P, Linssen P, Termond E, Boezeman J, Wessels H, Haanen C (1989) In vivo and in vitro pharmacokinetic differences between four structurally closely related anthracyclines in hematopoetic cell subtypes in humans. Drug Metab Dispos 17:98–105PubMedGoogle Scholar
  34. 34.
    Zhu G, Gilchrist R, Borley N, Chng H, Morgan M, Marshall J, Camplejohn R, Muir G, Hart I (2004) Reduction of TSG101 protein has a negative impact on tumor cell growth. Int J Cancer 109:541–547. doi: 10.1002/ijc.20014 PubMedCrossRefGoogle Scholar
  35. 35.
    Dartsch D, Schaefer A, Boldt S, Kolch W, Marquardt H (2002) Comparison of anthracycline-induced death of human leukemia cells: programmed cell death versus necrosis. Apoptosis 7:537–548. doi: 10.1023/A:1020647211557 PubMedCrossRefGoogle Scholar
  36. 36.
    Collins AR, Oscoz AA, Brunborg G, Gaivao I, Giovannelli L, Kruszewski M, Smith CC, Stetina R (2008) The comet assay: topical issues. Mutagenesis 23:143–151. doi: 10.1093/mutage/gem051 PubMedCrossRefGoogle Scholar
  37. 37.
    Olive PL, Banath JP (2006) The comet assay: a method to measure DNA damage in individual cells. Nat Protoc 1:23–29. doi: 10.1038/nprot.2006.5 PubMedCrossRefGoogle Scholar
  38. 38.
    Bar-On O, Shapira M, Hershko DD (2007) Differential effects of doxorubicin treatment on cell cycle arrest and Skp2 expression in breast cancer cells. Anticancer Drugs 18:1113–1121PubMedCrossRefGoogle Scholar
  39. 39.
    Lee SM, Youn B, Kim CS, Kim CS, Kang C, Kim J (2005) Gamma-irradiation and doxorubicin treatment of normal human cells cause cell cycle arrest via different pathways. Mol Cells 20:331–338PubMedGoogle Scholar
  40. 40.
    Robles SJ, Buehler PW, Negrusz A, Adami GR (1999) Permanent cell cycle arrest in asynchronously proliferating normal human fibroblasts treated with doxorubicin or etoposide but not camptothecin. Biochem Pharmacol 58:675–685PubMedCrossRefGoogle Scholar
  41. 41.
    Venkatakrishnan CD, Dunsmore K, Wong H, Roy S, Sen CK, Wani A, Zweier JL, Ilangovan G (2008) HSP27 regulates p53 transcriptional activity in doxorubicin-treated fibroblasts and cardiac H9c2 cells: p21 upregulation and G2/M phase cell cycle arrest. Am J Physiol Heart Circ Physiol 294:H1736–H1744. doi: 10.1152/ajpheart.91507.2007 PubMedCrossRefGoogle Scholar
  42. 42.
    Kim HS, Lee YS, Kim DK (2009) Doxorubicin exerts cytotoxic effects through cell cycle arrest and Fas-mediated cell death. Pharmacology 84:300–309. doi: 10.1159/000245937 PubMedCrossRefGoogle Scholar
  43. 43.
    Malugin A, Kopeckova P, Kopecek J (2007) Liberation of doxorubicin from HPMA copolymer conjugate is essential for the induction of cell cycle arrest and nuclear fragmentation in ovarian carcinoma cells. J Control Release 124:6–10PubMedCrossRefGoogle Scholar
  44. 44.
    Puri PL, Medaglia S, Cimino L, Maselli C, Germani A, De Marzio E, Levrero M, Balsano C (1997) Uncoupling of p21 induction and MyoD activation results in the failure of irreversible cell cycle arrest in doxorubicin-treated myocytes. J Cell Biochem 66:27–36PubMedCrossRefGoogle Scholar
  45. 45.
    Banath JP, Klokov D, MacPhail SH, Banuelos CA, Olive PL (2010) Residual gammaH2AX foci as an indication of lethal DNA lesions. BMC Cancer 10:4. doi: 10.1186/1471-2407-10-4 PubMedCrossRefGoogle Scholar
  46. 46.
    Speth PA, Raijmakers RA, Boezeman JB, Linssen PC, de Witte TJ, Wessels HM, Haanen C (1988) In vivo cellular adriamycin concentrations related to growth inhibition of normal and leukemic human bone marrow cells. Eur J Cancer Clin Oncol 24:667–674PubMedCrossRefGoogle Scholar
  47. 47.
    Zhang XP, Liu F, Cheng Z, Wang W (2009) Cell fate decision mediated by p53 pulses. Proc Natl Acad Sci USA 106:12245–12250. doi: 10.1073/pnas.0813088106 PubMedCrossRefGoogle Scholar
  48. 48.
    Binaschi M, Capranico G, De Isabella P, Mariani M, Supino R, Tinelli S, Zunino F (1990) Comparison of DNA cleavage induced by etoposide and doxorubicin in two human small-cell lung cancer lines with different sensitivities to topoisomerase II inhibitors. Int J Cancer 45:347–352PubMedCrossRefGoogle Scholar
  49. 49.
    Martensson S, Nygren J, Osheroff N, Hammarsten O (2003) Activation of the DNA-dependent protein kinase by drug-induced and radiation-induced DNA strand breaks. Radiat Res 160:291–301PubMedCrossRefGoogle Scholar
  50. 50.
    Muslimovic A, Nystrom S, Gao Y, Hammarsten O (2009) Numerical analysis of etoposide induced DNA breaks. PLoS One 4:e5859. doi: 10.1371/journal.pone.0005859 PubMedCrossRefGoogle Scholar
  51. 51.
    Pohl TJ, Nickoloff JA (2008) Rad51-independent interchromosomal double-strand break repair by gene conversion requires Rad52 but not Rad55, Rad57, or Dmc1. Mol Cell Biol 28:897–906. doi: 10.1128/MCB.00524-07 PubMedCrossRefGoogle Scholar
  52. 52.
    Bahmed K, Nitiss KC, Nitiss JL (2010) UnTTrapping the ends: a new player in overcoming protein linked DNA damage. Cell Res 20:122–123. doi: 10.1038/cr.2010.17 PubMedCrossRefGoogle Scholar
  53. 53.
    Kurz EU, Leader KB, Kroll DJ, Clark M, Gieseler F (2000) Modulation of human DNA topoisomerase IIalpha function by interaction with 14-3-3epsilon. J Biol Chem 275:13948–13954. doi: 10.1074/jbc.275.18.13948 PubMedCrossRefGoogle Scholar
  54. 54.
    Mao Y, Desai SD, Ting CY, Hwang J, Liu LF (2001) 26 S proteasome-mediated degradation of topoisomerase II cleavable complexes. J Biol Chem 276:40652–40658. doi: 10.1074/jbc.M104009200 PubMedCrossRefGoogle Scholar
  55. 55.
    Salmena L, Lam V, McPherson J, Goldenberg G (2001) Role of proteasomal degradation in the cell cycle-dependent regulation of DNA topoisomerase IIalpha expression. Biochem Pharmacol 61:795–802PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Ilona Schonn
    • 1
  • Jana Hennesen
    • 1
  • Dorothee C. Dartsch
    • 1
    Email author
  1. 1.Clinical Pharmacy, Institute of PharmacyHamburg UniversityHamburgGermany

Personalised recommendations