Advertisement

Apoptosis

, Volume 15, Issue 12, pp 1444–1452 | Cite as

In vitro reconstitution of the interactions in the PIDDosome

  • Tae-ho Jang
  • Chao Zheng
  • Hao Wu
  • Ju-Hong Jeon
  • Hyun Ho Park
Original Paper

Abstract

Caspase-2 is critical for genotoxic stress induced apoptosis and is activated by formation of the PIDDosome, an oligomeric caspase-2 activating complex. The PIDDosome comprises three protein components, PIDD, RAIDD, and caspase-2. RAIDD contains both a death domain (DD) and a caspase recruitment domain (CARD). It acts as the bridge to recruit PIDD using the DD: DD interaction and to recruit caspase-2 via the CARD: CARD interaction. Here we report biochemical characterization and in vitro reconstitution of the core interactions in the PIDDosome. We show that RAIDD CARD and RAIDD DD interact with their binding partners, caspase-2 CARD and PIDD DD, respectively. However, full-length RAIDD fails to interact with either caspase-2 CARD or PIDD DD under a physiological buffer condition. We reveal that this lack of interaction of full-length RAIDD is not due to its tendency to aggregate under the physiological buffer condition, as decreasing full-length RAIDD aggregation using high salt or high pH is not able to promote complex formation. Instead, full-length RAIDD forms both binary and ternary complexes under a low salt condition. Successful in vitro reconstitution of the ternary complex provides a basis for further structural studies of the PIDDosome.

Keywords

Apoptosis Inflammation Caspase-2 RAIDD PIDD PIDDosome 

Notes

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) of the Ministry of Education, Science and Technology (2010-0015311 to HHP) and by the National Institute of Health (RO1 AI076927 to HW).

References

  1. 1.
    Navratil JS, Ahearn JM (2001) Apoptosis, clearance mechanisms, and the development of systemic lupus erythematosus. Curr Rheumatol Rep 3:191–198CrossRefPubMedGoogle Scholar
  2. 2.
    Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD (1994) Programmed cell death and the control of cell survival. Philos Trans R Soc Lond B Biol Sci 345:265–268CrossRefPubMedGoogle Scholar
  3. 3.
    Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354CrossRefPubMedGoogle Scholar
  4. 4.
    Park HH, Lo YC, Lin SC, Wang L, Yang JK, Wu H (2007) The death domain superfamily in intracellular signaling of apoptosis and inflammation. Annu Rev Immunol 25:561–586CrossRefPubMedGoogle Scholar
  5. 5.
    Fisher DE (2001) Pathways of apoptosis and the modulation of cell death in cancer. Hematol Oncol Clin North Am 15: 931-956Google Scholar
  6. 6.
    Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462CrossRefPubMedGoogle Scholar
  7. 7.
    Harvey NL, Kumar S (1998) The role of caspases in apoptosis. Adv Biochem Eng Biotechnol 62:107–128PubMedGoogle Scholar
  8. 8.
    Salvesen GS (2002) Caspases and apoptosis. Essays Biochem 38:9–19PubMedGoogle Scholar
  9. 9.
    Park HH (2009) Fifty C-terminal amino acid residues are necessary for the chaperone activity of DFF45 but not for the inhibition of DFF40. BMB Rep 42:713–718PubMedGoogle Scholar
  10. 10.
    Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15:725–731CrossRefPubMedGoogle Scholar
  11. 11.
    Pop C, Salvesen GS (2009) Human caspases: activation, specificity and regulation. J Biol Chem 284:21777–21781CrossRefPubMedGoogle Scholar
  12. 12.
    Wajant H (2002) The Fas signaling pathway: more than a paradigm. Science 296:1635–1636CrossRefPubMedGoogle Scholar
  13. 13.
    Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413CrossRefPubMedGoogle Scholar
  14. 14.
    Martinon F, Mayor A, Tschopp J (2009) The inflammasomes: guardians of the body. Annu Rev Immunol 27:229–265CrossRefPubMedGoogle Scholar
  15. 15.
    Martinon F, Tschopp J (2004) Inflammatory caspases: linking an intracellular innate immune system to autoinflammatory diseases. Cell 117:561–574CrossRefPubMedGoogle Scholar
  16. 16.
    Tinel A, Tschopp J (2004) The PIDDosome, a protein complex implicated in activation of caspase-2 in response to genotoxic stress. Science 304:843–846CrossRefPubMedGoogle Scholar
  17. 17.
    Jang TH, Bae JY, Park OK et al (2010) Identification and analysis of dominant negative mutants of RAIDD and PIDD. Biochim Biophys Acta 1804:1557–1563PubMedGoogle Scholar
  18. 18.
    Lassus P, Opitz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297:1352–1354CrossRefPubMedGoogle Scholar
  19. 19.
    Shin S, Lee Y, Kim W, Ko H, Choi H, Kim K (2005) Caspase-2 primes cancer cells for TRAIL-mediated apoptosis by processing procaspase-8. EMBO J 24:3532–3542CrossRefPubMedGoogle Scholar
  20. 20.
    Park HH, Logette E, Raunser S et al (2007) Death domain assembly mechanism revealed by crystal structure of the oligomeric PIDDosome core complex. Cell 128:533–546CrossRefPubMedGoogle Scholar
  21. 21.
    Manzl C, Krumschnabel G, Bock F et al (2009) Caspase-2 activation in the absence of PIDDosome formation. J Cell Biol 185:291–303CrossRefPubMedGoogle Scholar
  22. 22.
    Olsson M, Vakifahmetoglu H, Abruzzo PM, Hogstrand K, Grandien A, Zhivotovsky B (2009) DISC-mediated activation of caspase-2 in DNA damage-induced apoptosis. Oncogene 28:1949–1959CrossRefPubMedGoogle Scholar
  23. 23.
    Duan H, Dixit VM (1997) RAIDD is a new ‘death’ adaptor molecule. Nature 385:86–89CrossRefPubMedGoogle Scholar
  24. 24.
    Park HH, Wu H (2006) Crystal structure of RAIDD death domain implicates potential mechanism of PIDDosome assembly. J Mol Biol 357:358–364CrossRefPubMedGoogle Scholar
  25. 25.
    Park HH, Wu H (2007) Crystallization and preliminary X-ray crystallographic studies of the oligomeric death-domain complex between PIDD and RAIDD. Acta Crystallogr F 63:229–232CrossRefPubMedGoogle Scholar
  26. 26.
    Baptiste-Okoh N, Barsotti AM, Prives C (2008) A role for caspase 2 and PIDD in the process of p53-mediated apoptosis. Proc Natl Acad Sci USA 105:1937–1942CrossRefPubMedGoogle Scholar
  27. 27.
    Janssens S, Tinel A, Lippens S, Tschopp J (2005) PIDD mediates NF-kappaB activation in response to DNA damage. Cell 123:1079–1092CrossRefPubMedGoogle Scholar
  28. 28.
    Lin Y, Ma W, Benchimol S (2000) Pidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nat Genet 26:122–127CrossRefPubMedGoogle Scholar
  29. 29.
    Wu ZH, Mabb A, Miyamoto S (2005) PIDD: a switch hitter. Cell 123:980–982CrossRefPubMedGoogle Scholar
  30. 30.
    Reed JC, Doctor KS, Godzik A (2004) The domains of apoptosis: a genomics perspective. Sci STKE 239: re9Google Scholar
  31. 31.
    Chou JJ, Matsuo H, Duan H, Wagner G (1998) Solution structure of the RAIDD CARD and model for CARD/CARD interaction in caspase-2 and caspase-9 recruitment. Cell 94:171–180CrossRefPubMedGoogle Scholar
  32. 32.
    Tinel A, Janssens S, Lippens S et al (2006) Autoproteolysis of PIDD marks the bifurcation between pro-death caspase-2 and pro-survival NF-kappaB pathway. EMBO J 26(1):197–208CrossRefPubMedGoogle Scholar
  33. 33.
    Pick R, Badura S, Bosser S, Zornig M (2006) Upon intracellular processing, the C-terminal death domain-containing fragment of the p53-inducible PIDD/LRDD protein translocates to the nucleoli and interacts with nucleolin. Biochem Biophys Res Commun 349:1329–1338CrossRefPubMedGoogle Scholar
  34. 34.
    Bondos SE, Bicknell A (2003) Detection and prevention of protein aggregation before, during, and after purification. Anal Biochem 316:223–231CrossRefPubMedGoogle Scholar
  35. 35.
    Dzivenu OK, Park HH, Wu H (2004) General co-expression vectors for the overexpression of heterodimeric protein complexes in Escherichia coli. Protein Expr Purif 38:1–8CrossRefPubMedGoogle Scholar
  36. 36.
    Yang JK, Wang L, Zheng L et al (2005) Crystal structure of MC159 reveals molecular mechanism of DISC assembly and FLIP inhibition. Mol Cell 20:939–949CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Tae-ho Jang
    • 1
  • Chao Zheng
    • 2
  • Hao Wu
    • 2
  • Ju-Hong Jeon
    • 3
  • Hyun Ho Park
    • 1
  1. 1.Department of BiochemistrySchool of Biotechnology and Graduate School of Biochemistry at Yeungnam UniversityGyeongsanSouth Korea
  2. 2.Department of BiochemistryWeill Medical College and Graduate School of Medical Sciences of Cornell UniversityNew YorkUSA
  3. 3.Department of PhysiologySeoul National University College of MedicineSeoulSouth Korea

Personalised recommendations