, Volume 15, Issue 12, pp 1425–1434 | Cite as

Drosophila Chk2 and p53 proteins induce stage-specific cell death independently during oogenesis

  • Anna Bakhrat
  • Tracy Pritchett
  • Gabriella Peretz
  • Kimberly McCall
  • Uri Abdu
Original Paper


In Drosophila, the checkpoint protein-2 kinase (DmChk2) and its downstream effector protein, Dmp53, are required for DNA damage-mediated cell cycle arrest, DNA repair and apoptosis. In this study we focus on understanding the function of these two apoptosis inducing factors during ovarian development. We found that expression of Dmp53, but not DmChk2, led to loss of ovarian stem cells. We demonstrate that expression of DmChk2, but not Dmp53, induced mid-oogenesis cell death. DmChk2 induced cell death was not suppressed by Dmp53 mutant, revealing for the first time that in Drosophila, over-expression of DmChk2 can induce cell death which is independent of Dmp53. We found that over-expression of caspase inhibitors such as DIAP1, p35 and p49 did not suppress DmChk2- and Dmp53-induced cell death. Thus, our study reveals stage-specific effects of Dmp53 and DmChk2 in oogenesis. Moreover, our results demonstrate that although DmChk2 and Dmp53 affect different stages of ovarian development, loss of ovarian stem cells by p53 expression and mid-oogenesis cell death induced by DmChk2 do not require caspase activity.


Drosophila melanogaster Ovary Chk2 p53 Caspase Cell death 



We thank Trudi Schüpbach, Andreas Bergmann, Thomas Neufeld, Michael Brodsky and the Bloomington stock center for generously providing fly strains and reagents. This research was supported by Israel Cancer association grant (to UA) and NIH R01 GM60574 (to KM).

Supplementary material

10495_2010_539_MOESM1_ESM.tif (1.5 mb)
Fig. S1DmChk2 genetically interacts with Dmp53 in regulating apoptosis in the Drosophila eye. ad Scanning electron micrographs of eyes from GMR-Gal4 flies crossed to a wild-type fly (a), UASp-DmChk2 fly (b), UASp-Dmp53 fly (c), or UASp-Dmp53 UASp-DmChk2 fly (d). Expression of DmChk2 in the Drosophila eye had no effect on eye morphology (Fig. 1b). We found that overexpression of Dmp53 in the eye using GMR-Gal4 result in a reduced eye size with partial fusion of the ommatidia and some remaining bristles due to apoptosis (Fig. 1c). Co-expression of DmChk2 and Dmp53 resulted in a considerably more severe phenotype with almost complete loss of the eye compared to flies expressing Dmp53 alone (Fig. 1d). We repeated these experiments using all of our transgenic flies and found similar phenotypes. (TIFF 1585 kb)


  1. 1.
    Stracker TH, Usui T, Petrini JH (2009) Taking the time to make important decisions: the checkpoint effector kinases Chk1 and Chk2 and the DNA damage response. DNA Repair (Amst). 8:1047–1054CrossRefGoogle Scholar
  2. 2.
    Hirao A, Cheung A, Duncan G, Girard PM, Elia AJ, Wakeham A et al (2002) Chk2 is a tumor suppressor that regulates apoptosis in both an ataxia telangiectasia mutated (ATM)-dependent and an ATM-independent manner. Mol Cell Biol 22:6521–6532CrossRefPubMedGoogle Scholar
  3. 3.
    Takai H, Naka K, Okada Y, Watanabe M, Harada N, Saito S et al (2002) Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J 21:5195–5205CrossRefPubMedGoogle Scholar
  4. 4.
    Chen L, Gilkes DM, Pan Y, Lane WS, Chen J (2005) ATM and Chk2-dependent phosphorylation of MDMX contribute to p53 activation after DNA damage. EMBO J 24:3411–3422CrossRefPubMedGoogle Scholar
  5. 5.
    LeBron C, Chen L, Gilkes DM, Chen J (2006) Regulation of MDMX nuclear import and degradation by Chk2 and 14-3-3. EMBO J 25:1196–1206CrossRefPubMedGoogle Scholar
  6. 6.
    Pereg SY, Lam A, Teunisse S, Biton E, Meulmeester L, Mittelman G et al (2006) Differential roles of ATM- and Chk2-mediated phosphorylations of Hdmx in response to DNA damage. Mol Cell Biol 26:6819–6831CrossRefPubMedGoogle Scholar
  7. 7.
    Yang S, Kuo C, Bisi JE, Kim MK (2002) PML-dependent apoptosis after DNA damage is regulated by the checkpoint kinase hCds1/Chk2. Nat Cell Biol 4:865–870CrossRefPubMedGoogle Scholar
  8. 8.
    Brodsky MH, Nordstrom W, Tsang G, Kwan E, Rubin GM, Abrams JM (2000) Drosophila p53 binds a damage response element at the reaper locus. Cell 101:103–113CrossRefPubMedGoogle Scholar
  9. 9.
    Ollmann M, Young LM, Di Como CJ, Karim F, Belvin M, Robertson S et al (2000) Drosophila p53 is a structural and functional homolog of the tumor suppressor p53. Cell 101:91–101CrossRefPubMedGoogle Scholar
  10. 10.
    Jin S, Martinek S, Joo WS, Wortman JR, Mirkovic N, Sali A et al (2000) Identification and characterization of a p53 homologue in Drosophila melanogaster. Proc Natl Acad Sci USA 97:7301–7306CrossRefPubMedGoogle Scholar
  11. 11.
    Fan Y, Lee TV, Xu D, Chen Z, Lamblin AF, Steller H et al (2010) Dual roles of Drosophila p53 in cell death and cell differentiation. Cell Death Differ 17:912–921CrossRefPubMedGoogle Scholar
  12. 12.
    Wells BS, Yoshida E, Johnston LA (2006) Compensatory proliferation in Drosophila imaginal discs requires Dronc-dependent p53 activity. Curr Biol 16:1606–1615CrossRefPubMedGoogle Scholar
  13. 13.
    Bauer JH, Chang C, Morris SN, Hozier S, Andersen S, Waitzman JS et al (2007) Expression of dominant-negative Dmp53 in the adult fly brain inhibits insulin signaling. Proc Natl Acad Sci USA 104:13355–13360CrossRefPubMedGoogle Scholar
  14. 14.
    Yamada Y, Davis KD, Coffman CR (2008) Programmed cell death of primordial germ cells in Drosophila is regulated by p53 and the Outsiders monocarboxylate transporter. Development 135:207–216CrossRefPubMedGoogle Scholar
  15. 15.
    Lu WJ, Chapo J, Roig I, Abrams JM (2010) Meiotic recombination provokes functional activation of the p53 regulatory network. Science 328:1278–1281CrossRefPubMedGoogle Scholar
  16. 16.
    Xu J, Xin S, Du W (2001) Drosophila Chk2 is required for DNA damage-mediated cell cycle arrest and apoptosis. FEBS Lett 508:394–398CrossRefPubMedGoogle Scholar
  17. 17.
    Peters M, DeLuca C, Hirao A, Stambolic V, Potter J et al (2002) Chk2 regulates irradiation-induced, p53-mediated apoptosis in Drosophila. Proc Natl Acad Sci USA 99:11305–11310CrossRefPubMedGoogle Scholar
  18. 18.
    Brodsky MH, Weinert BT, Tsang G, Rong YS, McGinnis NM, Golic KG et al (2004) Drosophila melanogaster MNK/Chk2 and p53 regulate multiple DNA repair and apoptotic pathways following DNA damage. Mol Cell Biol 24:1219–1231CrossRefPubMedGoogle Scholar
  19. 19.
    Xu J, Du W (2003) Drosophila chk2 plays an important role in a mitotic checkpoint in syncytial embryos. FEBS Lett 545:209–212CrossRefPubMedGoogle Scholar
  20. 20.
    Masrouha N, Yang L, Hijal S, Larochelle S, Suter B (2003) The Drosophila chk2 gene loki is essential for embryonic DNA double-strand-break checkpoints induced in S phase or G2. Genetics 163:973–982PubMedGoogle Scholar
  21. 21.
    Takada S, Kelkar A, Theurkauf WE (2003) Drosophila checkpoint kinase 2 couples centrosome function and spindle assembly to genomic integrity. Cell 113:87–99CrossRefPubMedGoogle Scholar
  22. 22.
    Abdu U, Brodsky M, Schupbach T (2002) Activation of a meiotic checkpoint during Drosophila oogenesis regulates the translation of Gurken through Chk2/Mnk. Curr Biol 12:1645–1651CrossRefPubMedGoogle Scholar
  23. 23.
    Staeva-Vieira E, Yoo S, Lehmann R (2003) An essential role of DmRad51/SpnA in DNA repair and meiotic checkpoint control. EMBO J 22:5863–5874CrossRefPubMedGoogle Scholar
  24. 24.
    Klattenhoff C, Bratu DP, McGinnis-Schultz N, Koppetsch BS, Cook HA, Theurkauf WE (2007) Drosophila rasiRNA pathway mutations disrupt embryonic axis specification through activation of an ATR/Chk2 DNA damage response. Dev Cell 12:45–55CrossRefPubMedGoogle Scholar
  25. 25.
    Chen Y, Pane A, Schüpbach T (2007) Cutoff and aubergine mutations result in retrotransposon upregulation and checkpoint Activation in Drosophila. Curr Biol 17:1–6CrossRefGoogle Scholar
  26. 26.
    Pane A, Wehr K, Schüpbach T (2007) Zucchini and squash encode two putative nucleases required for rasiRNA production in the Drosophila germline. Dev Cell 12:851–862CrossRefPubMedGoogle Scholar
  27. 27.
    Rong YS, Titen SW, Xie HB, Golic MM, Bastiani M, Bandyopadhyay P et al (2002) Targeted mutagenesis by homologous recombination in D. melanogaster. Genes Dev 16:1568–1581CrossRefPubMedGoogle Scholar
  28. 28.
    Juhász G, Erdi B, Sass M, Neufeld TP (2007) atg7-Dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev 21:3061–3066CrossRefPubMedGoogle Scholar
  29. 29.
    Peterson JS, Barkett M, McCall K (2003) Stage-specific regulation of caspase activity in Drosophila oogenesis. Dev Biol 260:113–123CrossRefPubMedGoogle Scholar
  30. 30.
    Queenan AM, Ghabrial A, Schüpbach T (1997) Ectopic activation of torpedo/Egfr, a Drosophila receptor tyrosine kinase, dorsalizes both the eggshell and the embryo. Development 124(19):3871–3880PubMedGoogle Scholar
  31. 31.
    Cox RT, Spradling AC (2003) A Balbiani body and the fusome mediate mitochondrial inheritance during Drosophila oogenesis. Development 130:1579–1590CrossRefPubMedGoogle Scholar
  32. 32.
    Spradling AC (1986) P element-mediated transformation. In: Roberts DB (ed) Drosophila—a practical approach. IRL Press, Oxford, pp 175–197Google Scholar
  33. 33.
    McCall K, Pritchett TL, Peterson JS (2009) Detection of cell death in Drosophila. In: Erhardt P, Toth A (eds) Apoptosis: methods and protocol, 2nd edn. Methods in molecular biology, vol 559, pp 343–356Google Scholar
  34. 34.
    Bass BP, Tanner EA, Mateos San Martín D, Blute T, Kinser RD et al (2009) Cell-autonomous requirement for DNaseII in non-apoptotic cell death. Cell Death Differ 16:1362–1371CrossRefPubMedGoogle Scholar
  35. 35.
    Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  36. 36.
    Rorth P (1998) Gal4 in the Drosophila female germline. Mech Dev 78:113–118CrossRefPubMedGoogle Scholar
  37. 37.
    Van Doren M, Williamson AL, Lehmann R (1998) Regulation of zygotic gene expression in Drosophila primordial germ cells. Curr Biol 8:243–246CrossRefPubMedGoogle Scholar
  38. 38.
    Chao S, Nagoshi RN (1999) Induction of apoptosis in the germline and follicle layer of Drosophila egg chambers. Mech Dev 88:159–172CrossRefPubMedGoogle Scholar
  39. 39.
    Baum JS, Arama E, Steller H, McCall K (2007) The Drosophila caspases strica and dronc function redundantly in programmed cell death during oogenesis. Cell Death Differ 14:1508–1517CrossRefPubMedGoogle Scholar
  40. 40.
    Zoog SJ, Schiller JJ, Wetter JA, Chejanovsky N, Friesen PD (2002) Baculovirus apoptotic suppressor P49 is a substrate inhibitor of initiator caspases resistant to P35 in vivo. EMBO J 21:5130–5140CrossRefPubMedGoogle Scholar
  41. 41.
    Jabbour AM, Ekert PG, Coulson EJ, Knight MJ, Ashley DM, Hawkins CJ (2002) The p35 relative, p49, inhibits mammalian and Drosophila caspases including DRONC and protects against apoptosis. Cell Death Differ 9:1311–1320CrossRefPubMedGoogle Scholar
  42. 42.
    Rusten TE, Lindmo K, Juhasz G, Sass M, Seglen PO, Brech A, Stenmark H (2004) Programmed autophagy in the Drosophila fat body is induced by ecdysone through regulation of the PI3K pathway. Dev Cell 7:179–192CrossRefPubMedGoogle Scholar
  43. 43.
    Hou YC, Chittaranjan S, Barbosa SG, McCall K, Gorski SM (2008) Effector caspase Dcp-1 and IAP protein Bruce regulate starvation-induced autophagy during Drosophila melanogaster oogenesis. J Cell Biol 182:1127–1139CrossRefPubMedGoogle Scholar
  44. 44.
    Nezis IP, Lamark T, Velentzas AD, Rusten TE, Bjorkoy G, Johansen T et al (2009) Cell death during Drosophila melanogaster early oogenesis is mediated through autophagy. Autophagy 5:298–302CrossRefPubMedGoogle Scholar
  45. 45.
    Terashima J, Bownes M (2005) A microarray analysis of genes involved in relating egg production to nutritional intake in Drosophila melanogaster. Cell Death Differ 12:429–440CrossRefPubMedGoogle Scholar
  46. 46.
    Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH et al (2009) Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 16:3–11CrossRefPubMedGoogle Scholar
  47. 47.
    Starz-Gaiano M, Lehmann R (2001) Moving towards the next generation. Mech Dev 105:5–18CrossRefPubMedGoogle Scholar
  48. 48.
    Burnett C, Howard K (2003) Fly and mammalian lipid phosphate phosphatase isoforms differ in activity both in vitro and in vivo. EMBO Rep 4:793–799CrossRefPubMedGoogle Scholar
  49. 49.
    Hanyu-Nakamura K, Kobayashi S, Nakamura A (2004) Germ cell-autonomous Wunen2 is required for germline development in Drosophila embryos. Development 131:4545–4553CrossRefPubMedGoogle Scholar
  50. 50.
    Renault AD, Sigal YJ, Morris AJ, Lehmann R (2004) Soma-germ line competition for lipid phosphate uptake regulates germ cell migration and survival. Science 305:1963–1966CrossRefPubMedGoogle Scholar
  51. 51.
    Sano H, Renault AD, Lehmann R (2005) Control of lateral migration and germ cell elimination by the Drosophila melanogaster lipid phosphate phosphatases Wunen and Wunen 2. J Cell Biol 171:675–683CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Anna Bakhrat
    • 1
    • 3
  • Tracy Pritchett
    • 2
  • Gabriella Peretz
    • 1
    • 3
  • Kimberly McCall
    • 2
  • Uri Abdu
    • 1
    • 3
  1. 1.Department of Life SciencesBen-Gurion UniversityBeer-ShevaIsrael
  2. 2.Department of BiologyBoston UniversityBostonUSA
  3. 3.National Institute for Biotechnology in the NegevBen-Gurion UniversityBeer-ShevaIsrael

Personalised recommendations