, Volume 15, Issue 10, pp 1197–1210 | Cite as

Coordinated and sequential activation of neutral and acidic DNases during interdigital cell death in the embryonic limb

  • J. A. Montero
  • C. I. Lorda-Diez
  • A. C. Certal
  • N. Moreno
  • J. Rodriguez-Leon
  • A. Torriglia
  • J. M. Hurle
Original Paper


Interdigital tissue regression during embryonic development is one of the most representative model systems of morphogenetic cell death, but the degenerative cascade accounting for this process awaits clarification. Although the canonical apoptotic caspase pathway appears to be activated in the interdigital mesenchyme committed to die, neither genetic nor chemical blockage of caspases or their downstream effectors, is sufficient to prevent cell death. Hence, alternative and/or complementary dying pathways must also be responsible for this degenerative process. In this work we have chosen to study the endonucleases during the regression of the interdigital tissue of avian embryos to gain insights into the molecular mechanisms accounting for programmed cell death in this system. We show that caspase activated DNase, which is a neutral DNase associated with the caspase apoptotic pathway, appears to be the main endonuclease only at an initial phase of interdigit regression. However at peak stages of the degenerative process, the acidic DNases L-DNase II and lysosomal DNase IIB become predominant in the system and markers for cell autophagy become moderately up-regulated. Consistent with the activation of acidic endonucleases we observed that microenvironmental pH value in the interdigits decreased to levels only appropriate for acidic enzymes. Furthermore, we found that overexpression of lysosomal DNase IIB in embryonic limb mesoderm promoted cell death, which was also accompanied by up-regulation and activation of L-DNase II. Up-regulation of acidic DNases was maintained in interdigits explanted to culture dishes, where the participation of exogenous professional phagocytes of hematopoietic origin is avoided. Finally, and consistent with all our findings, up-regulation of acidic DNases was much reduced in the webbed interdigits of duck embryos, characterized by a rudimentary interdigital degenerative process. We conclude that the regression of the interdigital tissue involves a coordinated and sequential activation of the caspase and lysosomal degenerative molecular cascades.


Apoptosis Autophagy LC3B Caspases Sequestosome Lysosomes Serpin B1 Programmed cell death 


  1. 1.
    Glucksmann A (1951) Cell deaths in normal vertebrate ontogeny. Biol Rev Camb Philos Soc 26:59–86CrossRefGoogle Scholar
  2. 2.
    Zakeri ZF, Ahuja HS (1994) Apoptotic cell death in the limb and its relationship to pattern formation. Biochem Cell Biol 72:603–613CrossRefPubMedGoogle Scholar
  3. 3.
    Zuzarte-Luis V, Hurle JM (2005) Programmed cell death in the embryonic vertebrate limb. Semin Cell Dev Biol 16:261–269CrossRefPubMedGoogle Scholar
  4. 4.
    Merino R, Rodriguez-Leon J, Macias D, Ganan Y, Economides AN, Hurle JM (1999) The BMP antagonist gremlin regulates outgrowth, chondrogenesis and programmed cell death in the developing limb. Development 126:5515–5522PubMedGoogle Scholar
  5. 5.
    Fallon JF, Cameron J (1977) Interdigital cell death during limb development of the turtle and lizard with an interpretation of evolutionary significance. J Embryol Exp Morphol 40:285–289PubMedGoogle Scholar
  6. 6.
    Weatherbee SD, Behringer RR, Rasweiler JJ 4th, Niswander LA (2006) Interdigital webbing retention in bat wings illustrates genetic changes underlying amniote limb diversification. Proc Natl Acad Sci USA 103:15103–15107CrossRefPubMedGoogle Scholar
  7. 7.
    Garcia-Martinez V, Macias D, Ganan Y, Garcia-Lobo JM, Francia MV, Fernandez-Teran MA, Hurle JM (1993) Internucleosomal DNA fragmentation and programmed cell death (apoptosis) in the interdigital tissue of the embryonic chick leg bud. J Cell Sci 106:201–208PubMedGoogle Scholar
  8. 8.
    Zakeri ZF, Quaglino D, Latham T, Lockshin RA (1993) Delayed internucleosomal DNA fragmentation in programmed cell death. FASEB J 7:470–478PubMedGoogle Scholar
  9. 9.
    Hurle J, Hinchcliffe JR (1978) Cell death in the posterior necrotic zone (PNZ) of the chick wing-bud: a stereoscan and ultrastructural survey of autolysis and cell fragmentation. J Embryol Exp Morphol 43:123–136PubMedGoogle Scholar
  10. 10.
    Hurle JM, Ros MA, Climent V, Garcia-Martinez V (1996) Morphology and significance of programmed cell death in the developing limb bud of the vertebrate embryo. Microsc Res Tech 34:236–246CrossRefPubMedGoogle Scholar
  11. 11.
    Lindsten T, Ross AJ, King A, Zong WX, Rathmell JC, Shiels HA, Ulrich E, Waymire KG, Mahar P, Frauwirth K et al (2000) The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol Cell 6:1389–1399CrossRefPubMedGoogle Scholar
  12. 12.
    Hutcheson J, Scatizzi JC, Bickel E, Brown NJ, Bouillet P, Strasser A, Perlman H (2005) Combined loss of proapoptotic genes Bak or Bax with Bim synergizes to cause defects in hematopoiesis and in thymocyte apoptosis. J Exp Med 201:1949–1960CrossRefPubMedGoogle Scholar
  13. 13.
    Boya P, Kroemer G (2008) Lysosomal membrane permeabilization in cell death. Oncogene 27:6434–6451CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang H, Zhong C, Shi L, Guo Y, Fan Z (2009) Granulysin induces cathepsin B release from lysosomes of target tumor cells to attack mitochondria through processing of bid leading to necroptosis. J Immunol 182:6993–7000CrossRefPubMedGoogle Scholar
  15. 15.
    Castino R, Bellio N, Nicotra G, Follo C, Trincheri NF, Isidoro C (2007) Cathepsin D-Bax death pathway in oxidative stressed neuroblastoma cells. Free Radic Biol Med 42:1305–1316CrossRefPubMedGoogle Scholar
  16. 16.
    Zuzarte-Luis V, Berciano MT, Lafarga M, Hurle JM (2006) Caspase redundancy and release of mitochondrial apoptotic factors characterize interdigital apoptosis. Apoptosis 11:701–715CrossRefPubMedGoogle Scholar
  17. 17.
    Wang J, Lenardo MJ (2000) Roles of caspases in apoptosis, development, and cytokine maturation revealed by homozygous gene deficiencies. J Cell Sci 113:753–757PubMedGoogle Scholar
  18. 18.
    Zuzarte-Luis V, Montero JA, Kawakami Y, Izpisua-Belmonte JC, Hurle JM (2007) Lysosomal cathepsins in embryonic programmed cell death. Dev Biol 301:205–217CrossRefPubMedGoogle Scholar
  19. 19.
    Chautan M, Chazal G, Cecconi F, Gruss P, Golstein P (1999) Interdigital cell death can occur through a necrotic and caspase-independent pathway. Curr Biol 9:967–970CrossRefPubMedGoogle Scholar
  20. 20.
    Nagasaka A, Kawane K, Yoshida H, Nagata S (2009) Apaf-1-independent programmed cell death in mouse development. Cell Death Differ 17:931–941CrossRefPubMedGoogle Scholar
  21. 21.
    Stewart S, Yi S, Kassabian G, Mayo M, Sank A, Shuler C (2000) Changes in expression of the lysosomal membrane glycoprotein, LAMP-1 in interdigital regions during embryonic mouse limb development, in vivo and in vitro. Anat Embryol (Berl) 201:483–490CrossRefGoogle Scholar
  22. 22.
    Salas-Vidal E, Lomeli H, Castro-Obregon S, Cuervo R, Escalante-Alcalde D, Covarrubias L (1998) Reactive oxygen species participate in the control of mouse embryonic cell death. Exp Cell Res 238:136–147CrossRefPubMedGoogle Scholar
  23. 23.
    Schnabel D, Salas-Vidal E, Narvaez V, Sanchez-Carbente Mdel R, Hernandez-Garcia D, Cuervo R, Covarrubias L (2006) Expression and regulation of antioxidant enzymes in the developing limb support a function of ROS in interdigital cell death. Dev Biol 291:291–299CrossRefPubMedGoogle Scholar
  24. 24.
    Liu X, Zou H, Slaughter C, Wang X (1997) DFF, a heterodimeric protein that functions downstream of caspase-3 to trigger DNA fragmentation during apoptosis. Cell 89:175–184CrossRefPubMedGoogle Scholar
  25. 25.
    Counis MF, Torriglia A (2006) Acid DNases and their interest among apoptotic endonucleases. Biochimie 88:1851–1858CrossRefPubMedGoogle Scholar
  26. 26.
    McIlroy D, Tanaka M, Sakahira H, Fukuyama H, Suzuki M, Yamamura K, Ohsawa Y, Uchiyama Y, Nagata S (2000) An auxiliary mode of apoptotic DNA fragmentation provided by phagocytes. Genes Dev 14:549–558PubMedGoogle Scholar
  27. 27.
    Krieser RJ, MacLea KS, Longnecker DS, Fields JL, Fiering S, Eastman A (2002) Deoxyribonuclease IIalpha is required during the phagocytic phase of apoptosis and its loss causes perinatal lethality. Cell Death Differ 9:956–962CrossRefPubMedGoogle Scholar
  28. 28.
    Kawane K, Nagata S (2008) Nucleases in programmed cell death. Methods Enzymol 442:271–287CrossRefPubMedGoogle Scholar
  29. 29.
    Ros MA, Rivero FB, Hinchliffe JR, Hurle JM (1995) Immunohistological and ultrastructural study of the developing tendons of the avian foot. Anat Embryol (Berl) 192:483–496Google Scholar
  30. 30.
    Hurle JM, Kitten GT, Sakai LY, Volpin D, Solursh M (1994) Elastic extracellular matrix of the embryonic chick heart: an immunohistological study using laser confocal microscopy. Dev Dyn 200:321–332PubMedGoogle Scholar
  31. 31.
    Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo 1951. Dev Dyn 195:231–272PubMedGoogle Scholar
  32. 32.
    Padron-Barthe L, Courta J, Lepretre C, Nagbou A, Torriglia A (2008) Leukocyte elastase inhibitor, the precursor of L-DNase II, inhibits apoptosis by interfering with caspase-8 activation. Biochim Biophys Acta 1783:1755–1766CrossRefPubMedGoogle Scholar
  33. 33.
    MacLea KS, Cheng HH (2006) Cloning and expression of deoxyribonuclease II from chicken. Gene 373:44–51CrossRefPubMedGoogle Scholar
  34. 34.
    Padron-Barthe L, Lepretre C, Martin E, Counis MF, Torriglia A (2007) Conformational modification of serpins transforms leukocyte elastase inhibitor into an endonuclease involved in apoptosis. Mol Cell Biol 27:4028–4036CrossRefPubMedGoogle Scholar
  35. 35.
    Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−ΔΔCt) method. Methods 25:402–408CrossRefPubMedGoogle Scholar
  36. 36.
    Weil M, Jacobson MD, Coles HS, Davies TJ, Gardner RL, Raff KD, Raff MC (1996) Constitutive expression of the machinery for programmed cell death. J Cell Biol 133:1053–1059CrossRefPubMedGoogle Scholar
  37. 37.
    Hitomi J, Christofferson DE, Ng A, Yao J, Degterev A, Xavier RJ, Yuan J (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135:1311–1323CrossRefPubMedGoogle Scholar
  38. 38.
    Torriglia A, Lepretre C, Padron-Barthe L, Chahory S, Martin E (2008) Molecular mechanism of L-DNase II activation and function as a molecular switch in apoptosis. Biochem Pharmacol 76:1490–1502CrossRefPubMedGoogle Scholar
  39. 39.
    Guillemot FP, Oliver PD, Peault BM, Le Douarin NM (1984) Cells expressing Ia antigens in the avian thymus. J Exp Med 160:1803–1819CrossRefPubMedGoogle Scholar
  40. 40.
    Torriglia A, Perani P, Brossas JY, Altairac S, Zeggai S, Martin E, Treton J, Courtois Y, Counis MF (2000) A caspase-independent cell clearance program. the LEI/L-DNase II pathway. Ann N Y Acad Sci 926:192–203CrossRefPubMedGoogle Scholar
  41. 41.
    Hernandez-Martinez R, Castro-Obregon S, Covarrubias L (2009) Progressive interdigital cell death: regulation by the antagonistic interaction between fibroblast growth factor 8 and retinoic acid. Development 136:3669–3678CrossRefPubMedGoogle Scholar
  42. 42.
    Galluzzi L, Vicencio JM, Kepp O, Tasdemir E, Maiuri MC, Kroemer G (2008) To die or not to die: that is the autophagic question. Curr Mol Med 8:78–91CrossRefPubMedGoogle Scholar
  43. 43.
    Hurle JM, Colvee E, Fernandez-Teran MA (1985) Vascular regression during the formation of the free digits in the avian limb bud: a comparative study in chick and duck embryos. J Embryol Exp Morphol 85:239–250PubMedGoogle Scholar
  44. 44.
    Erdal H, Berndtsson M, Castro J, Brunk U, Shoshan MC, Linder S (2005) Induction of lysosomal membrane permeabilization by compounds that activate p53-independent apoptosis. Proc Natl Acad Sci USA 102:192–197CrossRefPubMedGoogle Scholar
  45. 45.
    He C, Klionsky DJ (2009) Regulation mechanisms and signaling pathways of autophagy. Annu Rev Genet 43:67–93CrossRefPubMedGoogle Scholar
  46. 46.
    Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326CrossRefPubMedGoogle Scholar
  47. 47.
    Bass BP, Tanner EA, Mateos San Martin D, Blute T, Kinser RD, Dolph PJ, McCall K (2009) Cell-autonomous requirement for DNaseII in nonapoptotic cell death. Cell Death Differ 16:1362–1371CrossRefPubMedGoogle Scholar
  48. 48.
    Hurle JM, Fernandez-Teran MA (1984) Fine structure of the interdigital membranes during the morphogenesis of the digits of the webbed foot of the duck embryo. J Embryol Exp Morphol 79:201–210PubMedGoogle Scholar
  49. 49.
    Montero JA, Hurle JM (2009) Sculpturing digit shape by cell death. Apoptosis 15:365–375CrossRefGoogle Scholar
  50. 50.
    Hurle JM, Fernandez-Teran MA (1983) Fine structure of the regressing interdigital membranes during the formation of the digits of the chick embryo leg bud. J Embryol Exp Morphol 78:195–209PubMedGoogle Scholar
  51. 51.
    Hurle JM, Corson G, Daniels K, Reiter RS, Sakai LY, Solursh M (1994) Elastin exhibits a distinctive temporal and spatial pattern of distribution in the developing chick limb in association with the establishment of the cartilaginous skeleton. J Cell Sci 107:2623–2634PubMedGoogle Scholar
  52. 52.
    Nakanishi K, Maruyama M, Shibata T, Morishima N (2001) Identification of a caspase-9 substrate and detection of its cleavage in programmed cell death during mouse development. J Biol Chem 276:41237–41244CrossRefPubMedGoogle Scholar
  53. 53.
    Bergeron L, Perez GI, Macdonald G, Shi L, Sun Y, Jurisicova A, Varmuza S, Latham KE, Flaws JA, Salter JC et al (1998) Defects in regulation of apoptosis in caspase-2-deficient mice. Genes Dev 12:1304–1314CrossRefPubMedGoogle Scholar
  54. 54.
    Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MS, Rakic P, Flavell RA (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94:325–337CrossRefPubMedGoogle Scholar
  55. 55.
    Torriglia A, Lepretre C (2009) LEI/L-DNase II: interplay between caspase-dependent and independent pathways. Front Biosci 14:4836–4847PubMedGoogle Scholar
  56. 56.
    MacLea KS, Krieser RJ, Eastman A (2003) A family history of deoxyribonuclease ii: surprises from Trichinella Spiralis and Burkholderia Pseudomallei. Gene 305:1–12CrossRefPubMedGoogle Scholar
  57. 57.
    Nakahara M, Nagasaka A, Koike M, Uchida K, Kawane K, Uchiyama Y, Nagata S (2007) Degradation of nuclear DNA by DNase II-like acid DNase in cortical fiber cells of mouse eye lens. FEBS J 274:3055–3064CrossRefPubMedGoogle Scholar
  58. 58.
    Wood W, Turmaine M, Weber R, Camp V, Maki RA, McKercher SR, Martin P (2000) Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos. Development 127:5245–5252PubMedGoogle Scholar
  59. 59.
    Milligan CE, Prevette D, Yaginuma H, Homma S, Cardwell C, Fritz LC, Tomaselli KJ, Oppenheim RW, Schwartz LM (1995) Peptide inhibitors of the ICE protease family arrest programmed cell death of motoneurons in vivo and in vitro. Neuron 15:385–393CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • J. A. Montero
    • 1
  • C. I. Lorda-Diez
    • 1
  • A. C. Certal
    • 2
  • N. Moreno
    • 2
  • J. Rodriguez-Leon
    • 3
  • A. Torriglia
    • 4
  • J. M. Hurle
    • 1
  1. 1.Departamento de Anatomía y Biología Celular, Facultad de MedicinaUniversidad de Cantabria/IFIMAVSantanderSpain
  2. 2.Instituto Gulbenkian de CiênciaOeirasPortugal
  3. 3.Departamento de Anatomía, Biología Celular y ZoologíaUniversidad de ExtremaduraBadajozSpain
  4. 4.INSERM UMRS 872 eq 17ParisFrance

Personalised recommendations