, Volume 15, Issue 8, pp 966–981

The role of the ribosomal protein S19 C-terminus in Gi protein-dependent alternative activation of p38 MAP kinase via the C5a receptor in HMC-1 cells

  • Hiroshi Nishiura
  • Kazutaka Tokita
  • Ying Li
  • Koichi Harada
  • Trent M. Woodruff
  • Stephen M. Taylor
  • Tienabe K. Nsiama
  • Norikazu Nishino
  • Tetsuro Yamamoto
Original Paper


We have demonstrated that an alternative C5a receptor (C5aR) ligand, the homodimer of ribosomal protein S19 (RP S19), contains a unique C-terminus (I134–H145) that is distinct from the moieties involved in the C5a–C5aR interaction. To examine the role of I134–H145 in the ligand–C5aR interaction, we connected this peptide to the C-terminus of C5a (C5a/RP S19) and found that it endowed the second binding moiety of RP S19 (L131DR) with a relatively higher binding affinity to the C5aR on a human mast cell line, HMC-1. In contrast to the C5aR, the second C5aR C5L2 worked as a decoy receptor. As a result, the mitogen-activated protein kinase (MAPK) downstream of the Gi protein exchanged extracellular-signal regulated kinase for p38MAPK. This alternative p38MAPK activation could be pharmacologically suppressed not only by the downregulation of phosphoinositide 3-kinase (PI3K) by LY294002, but also by the over-activation of protein kinase C by phorbol 12-myristate 13-acetate. The activation was reproduced upon C5a–C5aR interaction by a simultaneous suppression of PI3K and phospholipase C with LY294002 and U73122 at low concentrations. Moreover, p38MAPK phosphorylation upstream of the pertussis toxin-dependent extracellular Ca2+ entry was also suppressed by high concentrations of MgCl2, which blocks melastatin-type transient receptor potential Ca2+ channels (TRPMs). The active conformation of C5aR upon the ligation by C5a, at least on HMC-1 cells, is changed by the additional interaction of the I134–H145 peptide, which seems to guide the alternative activation of p38MAPK. This activation is then amplified by a novel positive feedback loop between p38MAPK and TRPM.


C5a receptor Gi protein HMC-1 cells p38MAPK PI3K Ribosomal protein S19 

Supplementary material

10495_2010_511_MOESM1_ESM.pdf (5.2 mb)
Supplementary material 1 (DOC 31 kb)


  1. 1.
    Gerard NP, Bao L, Xiao-Ping H, Eddy RL Jr, Shows TB, Gerard C (1993) Human chemotaxis receptor genes cluster at 19q13.3–13.4. Characterization of the human C5a receptor gene. Biochemistry 32:1243–1250CrossRefPubMedGoogle Scholar
  2. 2.
    Monk PN, Scola A-M, Madala P, Fairlie DP (2007) Function, structure and therapeutic potential of complement C5a receptors. Br J Pharm 152:429–448CrossRefGoogle Scholar
  3. 3.
    Goldsmith ZG, Dhanasekaran DN (2007) G Protein regulation of MAPK networks. Oncogene 26:3122–3142CrossRefPubMedGoogle Scholar
  4. 4.
    Siciliano SJ, Rollins TE, DeMartino J, Konteatis Z, Malkowitz L, Van RG, Bondy S, Rosen H, Springer MS (1994) Two-site binding of C5a by its receptor: an alternative binding paradigm for G protein-coupled receptors. Proc Natl Acad Sci USA 91:1214–1218CrossRefPubMedGoogle Scholar
  5. 5.
    Yamamoto T (2007) Roles of the ribosomal protein S19 dimer and the C5a receptor in pathophysiological functions of phagocytic leukocytes. Pathol Int 57:1–11CrossRefPubMedGoogle Scholar
  6. 6.
    Nishiura H, Shibuya Y, Matsubara S, Tanase S, Kambara T, Yamamoto T (1996) Monocyte chemotactic factor in rheumatoid arthritis synovial tissue: probably a cross-linked derivative of S19 ribosomal protein. J Biol Chem 271:878–882CrossRefPubMedGoogle Scholar
  7. 7.
    Shrestha A, Shi L, Tanase S, Tsukamoto M, Nishino N, Tokita K, Yamamoto T (2004) Bacterial chaperone protein, Skp, induces leukocyte chemotaxis via C5a receptor. Am J Pathol 164:763–772PubMedGoogle Scholar
  8. 8.
    Nishiura H, Tanase S, Shibuya Y, Nishimura T, Yamamoto T (1999) Determination of the cross-linked residues in homo-dimerization of S19 ribosomal protein concomitant with exhibition of monocyte chemotactic activity. Lab Invest 79:915–923PubMedGoogle Scholar
  9. 9.
    Horino K, Nishiura H, Ohsako T, Shibuya Y, Hiraoka T, Kitamura N, Yamamoto T (1998) A monocyte chemotactic factor, S19 ribosomal protein dimer, in phagocytic clearance of apoptotic cells. Lab Invest 78:603–617PubMedGoogle Scholar
  10. 10.
    Nishimura T, Horino K, Nishiura H, Shibuya Y, Hiraoka T, Tanase S, Yamamoto T (2001) Apoptotic cells of an epithelial cell line, AsPC-1, release monocyte chemotactic S19 ribosomal protein dimer. J Biochem 129:445–454PubMedGoogle Scholar
  11. 11.
    Shrestha A, Horino K, Nishiura H, Yamamoto T (1999) Acquired immune response as a consequence of the macrophage-dependent apoptotic cell clearance and role of the monocyte chemotactic S19 ribosomal protein dimer in this connection. Lab Invest 79:1629–1642PubMedGoogle Scholar
  12. 12.
    Shibuya Y, Shiokawa M, Nishiura H, Nishimura T, Nishino N, Okabe H, Takagi K, Yamamoto T (2001) Identification of receptor binding sites of monocyte chemotactic S19 ribosomal protein dimer. Am J Pathol 159:2293–2301PubMedGoogle Scholar
  13. 13.
    Shrestha A, Shiokawa M, Nishimura T, Nishiura H, Tanaka Y, Nishino N, Shibuya Y, Yamamoto T (2003) Switch moiety in agonist/antagonist dual effect of S19 ribosomal protein dimer on leukocyte chemotactic C5a receptor. Am J Pathol 162:1381–1388PubMedGoogle Scholar
  14. 14.
    Nishiura H, Shibuya Y, Yamamoto T (1998) S19 ribosomal protein cross-linked dimer causes monocyte-predominant infiltration by means of molecular mimicry to complement C5a. Lab Invest 78:1615–1623PubMedGoogle Scholar
  15. 15.
    Revollo I, Nishiura H, Shibuya Y, Oda Y, Nishino N, Yamamoto T (2005) Agonist and antagonist dual effect of the cross-linked ribosomal protein dimer in the C5a receptor-mediated respiratory burst reaction of phagocytic leukocytes. Inflamm Res 54:82–90CrossRefPubMedGoogle Scholar
  16. 16.
    Fukuoka Y, Ember JA, Yasui A, Hugli TE (1998) Cloning and characterization of the guinea pig C5a anaphylatoxin receptor: interspecies diversity among the C5a receptors. Int Immunol 10:275–283CrossRefPubMedGoogle Scholar
  17. 17.
    Umeda Y, Shibuya Y, Semba U, Tokita K, Nishino N, Yamamoto T (2004) Guinea pig ribosomal protein as precursor of C5a receptor-directed monocyte-selected leukocyte chemotactic factor. Inflamm Res 53:623–630CrossRefPubMedGoogle Scholar
  18. 18.
    Oda Y, Tokita K, Ota Y, Li Y, Taniguchi K, Nishino N, Takagi K, Yamamoto T, Nishiura H (2008) Agonistic and antagonistic effects of C5a-chimera bearing S19 ribosomal protein tail portion on the C5a receptor of monocytes and neutrophils, respectively. J Biochem 144:371–381CrossRefPubMedGoogle Scholar
  19. 19.
    Nishiura H, Tanase S, Shibuya Y, Futa N, Sakamoto T, Higginbottom A, Monk P, Zwirner J, Yamamoto T (2005) S19 ribosomal protein dimer augments metal-induced apoptosis in a mouse fibroblastic cell line by ligation of the C5a receptor. J Cell Biochem 94:540–553CrossRefPubMedGoogle Scholar
  20. 20.
    Nishiura H, Nonaka H, Revollo SI, Semba U, Li Y, Ota Y, Irie A, Harada K, Kehrl HJ, Yamamoto T (2009) Pro- and anti-apoptotic dual functions of the C5a receptor: involvement of regulator of G protein signaling 3 and extracellular signal-regulated kinase. Lab Invest 89:676–694CrossRefPubMedGoogle Scholar
  21. 21.
    Gonzalez VM, Fuertes MA, Alonso C, Perez JM (2006) Leukotriene B4 receptors BLT1 and BLT2: expression and function in human and murine mast cells. J Immunol 177:3439–3447Google Scholar
  22. 22.
    Harteneck C, Frenzel H, Kraft R (2007) N-(p-amylcinnamoyl)anthranilic acid (ACA): a phospholipase A(2) inhibitor and TRP channel blocker. Cardiovasc Drug Rev 25:61–75PubMedGoogle Scholar
  23. 23.
    Sumichika H, Sakata K, Sato N, Takeshita S, Ishibuchi S, Nakamura M, Kamahori T, Ehara S, Itoh K, Ohtsuka T, Ohbora T, Mishina T, Komatsu H, Naka Y (2002) Identification of a potent and orally active non-peptide C5a receptor antagonist. J Biol Chem 277:49403–49407CrossRefPubMedGoogle Scholar
  24. 24.
    Robert SA, Dennis L, James JF, Anthony JJ, Mark AT, Wilfried B, Britta S, Andreas K, Karl FE, Russell DC, Anthony CS JPH, Gerald M, Keith WW, Jerry LA, William EB, David CU, Ruth RO, Alison MB, Henry MS (2001) Identification of a selective nonpeptide antagonist of the anaphylatoxin C3a receptor that demonstrates antiinflammatory activity in animal models. J Immunol 166:6341–6348Google Scholar
  25. 25.
    Konteatis ZD, Siciliano SJ, Van-Riper G, Molineaux CJ, Pandya S, Fischer P, Rosen H, Mumford RA, Springer MS (1994) Development of C5a receptor antagonists: differential loss of functional responses. J Immunol 153:4200–4205PubMedGoogle Scholar
  26. 26.
    Finch AM, Wong AK, Paczkowski NJ, Wadi SK, Craik DJ, Fairlie DP, Taylor SM (1999) Low-molecular-weight peptidic and cyclic antagonists of the receptor for the complement factor C5a. J Med Chem 42:1965–1974CrossRefPubMedGoogle Scholar
  27. 27.
    Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  28. 28.
    Kyhse-Andersen J (1984) Electroblotting of multiple gels: a simple apparatus without buffer tank for rapid transfer of proteins from polyacrylamide to nitrocellulose. J Biochem Biophys Methods 10:203–209CrossRefPubMedGoogle Scholar
  29. 29.
    Shore PA (1971) The chemical determination of histamine. Methods Biochem Anal 89–97Google Scholar
  30. 30.
    Matsubara S, Yamamoto T, Tsuruta T, Takagi K, Kambara T (1991) Complement C4-derived monocyte-directed chemotaxis-inhibitory factor: a molecular mechanism to cause polymorphonuclear leukocyte-predominant infiltration in rheumatoid arthritis synovial cavities. Am J Pathol 138:1279–1291PubMedGoogle Scholar
  31. 31.
    Falk W, Goldwin RH, Leonard EJ (1980) A 48 well micro-chemotaxis assembly for rapid and accurate measurement of leukocyte migration. J Immunol Methods 33:239–247PubMedGoogle Scholar
  32. 32.
    Tokita K, Yamamoto T (2004) Differential role of neutrophils and monocytes during subcutaneous plasma extravasation. Lab Invest 84:1174–1184CrossRefPubMedGoogle Scholar
  33. 33.
    Luca M (2006) Intracellular calcium, endothelial cells and angiogenesis. Recent Pat Anti Cancer Drug Discov 1:105–119Google Scholar
  34. 34.
    Skokowa J, Ali SR, Felda O, Kumar V, Konrad S, Shushakova N (2005) Macrophages induce the inflammatory response in the pulmonary arthus reaction through G alpha i2 activation that controls C5aR and Fc receptor cooperation. J Immunol 174:3041–3050PubMedGoogle Scholar
  35. 35.
    Elorza A, Sarnago S, Mayor F Jr (2000) Agonist-dependent modulation of G protein-coupled receptor kinase 2 by mitogen-activated protein kinases. Mol Pharmacol 57:778–783PubMedGoogle Scholar
  36. 36.
    Schaeffer V, Cuschieri J, Garcia I, Knoll M, Billgren J, Jelacic S, Bulger E, Maier R (2007) The priming effect of C5a on monocytes is predominantly mediated by the p38 MAPK pathway. Shock 27:623–630CrossRefPubMedGoogle Scholar
  37. 37.
    Mehta KD, Miller L (1999) Inhibition of stress-activated p38 mitogen-activated protein kinase induces low-density lipoprotein receptor expression. Trends Cardiovasc Med 9:201–205CrossRefPubMedGoogle Scholar
  38. 38.
    Rubinfeld H, Seger R (2005) The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol 31:151–174CrossRefPubMedGoogle Scholar
  39. 39.
    Hilal-Dandan R, Means CK, Gustafsson AB, Morissette MR, Adams JW, Brunton LL, Heller Brown J (2004) Lysophosphatidic acid induces hypertrophy of neonatal cardiac myocytes via activation of Gi and Rho. J Mol Cell Cardiol 36:481–493CrossRefPubMedGoogle Scholar
  40. 40.
    Peregrin S, Jurado-Pueyo M, Campos MP, Sanz-Moreno V, Ruiz-Gomez A, Crespo P, Mayor F Jr, Murga C (2006) Phosphorylation of p38 by GRK2 at the docking groove unveils a novel mechanism for inactivating p38MAPK. Current Biol 16:2042–2047CrossRefGoogle Scholar
  41. 41.
    Markus H, Reinold P (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356CrossRefGoogle Scholar
  42. 42.
    Pedersen SF, Owsianik G, Nilius B (2005) TRP channels: an overview. Cell Calcium 38:233–252CrossRefPubMedGoogle Scholar
  43. 43.
    Stacey SW, Peter ND (2006) Signaling pathways mediating chemotaxis in the social amoeba, Dictyostelium discoideum. Eur J Cell Biol 85:897–904CrossRefGoogle Scholar
  44. 44.
    Guo NH, Zabrenetzky SV, Chandrasekaran L, Sipes MJ, Lawler J, Krutzsch CH, Roberts DD (1998) Differential roles of protein kinase c and pertussis toxin-sensitive G-binding proteins in modulation of melanoma cell proliferation and motility by thrombospondin 1. Cancer Res 58:3154–3162PubMedGoogle Scholar
  45. 45.
    Wakasugi K, Schimmel P (1999) Two distinct cytokines released from a human aminoacyl-tRNA synthetase. Science 284:147–151CrossRefPubMedGoogle Scholar
  46. 46.
    Peter C, Waibel M, Radu CG, Yang LV, Witte ON, Schulze-Osthoff K, Wesselborg S, Lauber K (2008) Migration to apoptotic “find-me” signals is mediated via the phagocyte receptor G2A. J Biol Chem 283:5296–5305CrossRefPubMedGoogle Scholar
  47. 47.
    Touyz RM (2008) Transient receptor potential melastatin 6 and 7 channels, magnesium transport, and vascular biology: implications in hypertension. Am J Physiol Heart Circ Physiol 294:1103–1118CrossRefGoogle Scholar
  48. 48.
    Aarts M, Iihara K, Wei WL, Xiong ZG, Arundine M, Cerwinski W, MacDonald JF, Tymianski M (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115:863–877CrossRefPubMedGoogle Scholar
  49. 49.
    Zhang IW, Hirschler-Laszkiewicz Q, Tong K, Conrad SC, Sun L, Penn DL, Barber R, Stahl DJ, Carey JY, Cheung BA (2006) TRPM2 is an ion channel that modulates hematopoietic cell death through activation of caspases and PARP cleavage. Am J Physiol Cell Physiol 290:1146–1159CrossRefGoogle Scholar
  50. 50.
    Oike H, Wakamori M, Mori Y, Nakanishi H, Taguchi R, Misaka T, Matsumoto I, Abe K (2006) Arachidonic acid can function as a signaling modulator by activating the TRPM5 cation channel in taste receptor cells. Biochim Biophys Acta 1761:1078–1084PubMedGoogle Scholar
  51. 51.
    Andersson DA, Nash M, Bevan S (2007) Modulation of the cold-activated channel TRPM8 by lysophospholipids and polyunsaturated fatty acids. J Neurosci 27:3347–3355CrossRefPubMedGoogle Scholar
  52. 52.
    Zweifach A, Lewis RS (1995) Rapid inactivation of depletion-activated calcium current (ICRAC) due to local calcium feedback. J Gen Physiol 105:209–226CrossRefPubMedGoogle Scholar
  53. 53.
    Cain SA, Monk PN (2002) The orphan receptor C5L2 has high affinity binding sites for complement fragments C5a and C5a des-Arg(74). J Biol Chem 277:7165–7169CrossRefPubMedGoogle Scholar
  54. 54.
    Kalant D, Cain SA, Maslowska M, Sniderman AD, Cianflone K, Monk PN (2003) The chemoattractant receptor-like protein C5L2 binds the C3a des-Arg77/acylation-stimulating protein. J Biol Chem 278:11123–11129CrossRefPubMedGoogle Scholar
  55. 55.
    Gerard NP, Lu B, Liu P, Craig S, Fujiwara Y, Okinaga S, Gerard C (2005) An anti-inflammatory function for the complement anaphylatoxin C5a-binding protein, C5L2. J Biol Chem 280:39677–39680CrossRefPubMedGoogle Scholar
  56. 56.
    Otto M, Hawlisch H, Monk PN, Müller M, Klos A, Karp CL, Köhl J (2004) C5a mutants are potent antagonists of the C5a receptor (CD88) and of C5L2: position 69 is the locus that determines agonism or antagonism. J Biol Chem 279:142–151CrossRefPubMedGoogle Scholar
  57. 57.
    Gougeon ML, Piacentini M (2009) New insights on the role of apoptosis and autophagy in HIV pathogenesis. Apoptosis 14:501–508CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Hiroshi Nishiura
    • 1
  • Kazutaka Tokita
    • 1
  • Ying Li
    • 1
  • Koichi Harada
    • 2
  • Trent M. Woodruff
    • 3
  • Stephen M. Taylor
    • 3
  • Tienabe K. Nsiama
    • 4
  • Norikazu Nishino
    • 4
  • Tetsuro Yamamoto
    • 1
  1. 1.Department of Molecular Pathology, Faculty of Life SciencesKumamoto University Graduate SchoolKumamotoJapan
  2. 2.Department of Health Preservation, Faculty of MedicineKumamoto UniversityKumamotoJapan
  3. 3.School of Biomedical SciencesUniversity of QueenslandBrisbaneAustralia
  4. 4.Department of Biological Functions and Engineering, Graduate School of Life Science and Systems EngineeringKyushu Institute of TechnologyKitakyushuJapan

Personalised recommendations