, Volume 15, Issue 2, pp 139–152

Cytochrome c-induced lymphocyte death from the outside in: inhibition by serum leucine-rich alpha-2-glycoprotein-1

  • Ramil Codina
  • Amelia Vanasse
  • Ameeta Kelekar
  • Vaiva Vezys
  • Ronald Jemmerson
Original Paper


Previously we reported that serum leucine-rich alpha-2-glycoprotein-1 (LRG) binds cytochrome c (Cyt c; Cummings et al., Apoptosis 11:1121–1129, 2009). Here we show that LRG binding to Cyt c is similar to that of Apaf-1. LRG and Apaf-1 share partial amino acid sequences, compete for binding Cyt c, and are inhibited by modification at lysine 72 in Cyt c. However, in contrast to Apaf-1, LRG acts as a survival factor in vitro rather than a pro-apoptotic factor. By depleting LRG from culture medium we found that LRG protects against a toxic effect of exogenous Cyt c on lymphocytes that would otherwise result in an apoptotic phenotype. LRG, as well as antibodies specific for Cyt c, increased cell viability in the absence of added Cyt c indicating that Cyt c released by dying cells in the cultures is itself toxic. Protection from extracellular Cyt c-induced lymphotoxicity appears to involve an active mechanism rather than steric hindrance of Cyt c. Thus, serum LRG when bound to extracellular Cyt c that is released from apoptotic cells acts as a survival factor for lymphocytes and possibly other cells that are susceptible to the toxic effect of extracellular Cyt c.


Cytochrome c Leucine-rich alpha-2-glycoprotein-1 Apoptosis Survival factor Apaf-1 

Supplementary material

10495_2009_412_MOESM1_ESM.doc (123 kb)
Supplementary material 1 (DOC 123 kb)


  1. 1.
    Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: Requirement for dATP and cytochrome c. Cell 86:147–157CrossRefPubMedGoogle Scholar
  2. 2.
    Jiang X, Wang X (2004) Cytochrome c-mediated apoptosis. Annu Rev Biochem 73:87–106CrossRefPubMedGoogle Scholar
  3. 3.
    Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P (1998) Apaf1 (CED- 4 homolog) regulates programmed cell death in mammalian development. Cell 94:727–737CrossRefPubMedGoogle Scholar
  4. 4.
    Yoshida H, Kong Y-Y, Yoshida R, Elia AJ, Hakem A, Hakem R, Penninger JM, Mak TW (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94:739–750CrossRefPubMedGoogle Scholar
  5. 5.
    Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, de la Pompa JL, Kagi D, Khoo W, Potter J, Yoshida R, Kaufman SA, Lowe SW, Penninger JM, Mak TW (1998) Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94:339–352CrossRefPubMedGoogle Scholar
  6. 6.
    Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C, Karasuyama H, Su MS-S, Rakic P, Flavell RA (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94:325–337CrossRefPubMedGoogle Scholar
  7. 7.
    Hao Z, Duncan GS, Chang CC, Elia A, Fang M, Wakeham A, Okada H, Calzascia T, Jang YJ, You-Ten A, Yeh WC, Ohashi P, Wang X, Mak TW (2005) Specific ablation of the apoptotic functions of cytochrome c reveals a differential requirement for cytochrome c and Apaf-1 in apoptosis. Cell 121:579–591CrossRefPubMedGoogle Scholar
  8. 8.
    Yu T, Wang X, Purring-Koch C, Wei Y, McLendon G (2001) A mutational epitope for cytochrome c binding to the apoptosis protease activation factor (Apaf-1). J Biol Chem 276:13034–13038CrossRefPubMedGoogle Scholar
  9. 9.
    Cummings C, Walder J, Treeful A, Jemmerson R (2006) Serum leucine-rich alpha-2-glycoprotein-1 binds cytochrome c and inhibits antibody detection of this apoptotic marker in enzyme-linked immunosorbent assay. Apoptosis 11:1121–1129CrossRefPubMedGoogle Scholar
  10. 10.
    Weivoda S, Andersen JD, Skogen A, Schlievert PM, Fontana D, Schacker T, Tuite P, Dubinsky JM, Jemmerson R (2008) ELISA for human serum leucine-rich alpha-2-glycoprotein-1 employing cytochrome c as the capturing ligand. J Immunol Methods 336:22–29CrossRefPubMedGoogle Scholar
  11. 11.
    Shirai R, Hirano F, Ohkura N, Ikeda K, Inoue S (2009) Up-regulation of the expression of leucine-rich α2-glycoprotein in hepatocytes by the mediators of acute- phase response. Biochem Biophys Res Comm 382:776–779CrossRefPubMedGoogle Scholar
  12. 12.
    Takahashi N, Takahashi Y, Putnam FW (1985) Periodicity of leucine and tandem repetition of a 24-amino acid segment in the primary structure of leucine-rich α2-glycoprotein of human serum. Proc Natl Acad Sci USA 82:1906–1910CrossRefPubMedGoogle Scholar
  13. 13.
    Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Op Struct Biol 11:725–732CrossRefGoogle Scholar
  14. 14.
    Okumura K, Ohkura N, Inoue S, Ikeda K, Hayashi K (1998) A novel phospholipase A2 inhibitor with leucine-rich repeats from the blood plasma of Agkistrodon blomhoffii siniticus: sequence homologies with human leucine-rich α2- glycoprotein. J Biol Chem 273:19469–19475CrossRefPubMedGoogle Scholar
  15. 15.
    Renz A, Berdel WE, Kreuter M, Belka C, Schulze-Osthoff K, Los M (2001) Rapid extracellular release of cytochrome c is specific for apoptosis and marks cell death in vivo. Blood 98:1542–1548CrossRefPubMedGoogle Scholar
  16. 16.
    Jemmerson R, LaPlante B, Treeful A (2002) Release of intact, monomeric cytochrome c from apoptotic and necrotic cells. Cell Death Differ 9:538–548CrossRefPubMedGoogle Scholar
  17. 17.
    Ahlemeyer B, Klumpp S, Krieglstein J (2002) Release of cytochrome c into the extracellular space contributes to neuronal apoptosis induced by staurosporine. Brain Res 934:107–116CrossRefPubMedGoogle Scholar
  18. 18.
    Jemmerson R, Dubinsky JM, Brustovetsky N (2005) Cytochrome c release from CNS mitochondria and potential for clinical intervention in apoptosis-mediated CNS diseases. Antiox Red Signal 7:1158–1172CrossRefGoogle Scholar
  19. 19.
    Hiraoka Y, Yamada T, Goto M, Das Gupta TK, Chakrabarty AM (2004) Modulation of mammalian cell growth and death by prokaryotic and eukaryotic cytochrome c. Proc Natl Acad Sci USA 101:6427–6432CrossRefPubMedGoogle Scholar
  20. 20.
    Pullerits R, Bokarewa M, Jonsson I-M, Verdrengh M, Tarkowski A (2005) Extracellular cytochrome c, a mitochondrial apoptosis-related protein, induces arthritis. Rheumatology 44:32–39CrossRefPubMedGoogle Scholar
  21. 21.
    Mustonen P, Virtanen JA, Somerharju PJ, Kinnunen PKJ (1987) Binding of cytochrome c to liposomes as revealed by the quenching of fluorescence from pyrene-labeled phospholipids. Biochemistry 26:2991–2997CrossRefPubMedGoogle Scholar
  22. 22.
    Shidoji Y, Hayashi K, Komura S, Ohishi N, Yagi K (1999) Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation. Biochem Biophys Res Comm 264:343–347CrossRefPubMedGoogle Scholar
  23. 23.
    Tuominen EKJ, Wallace CJA, Kinnunen PKJ (2002) Phospholipid-cytochrome c interaction. Evidence for the extended lipid anchorage. J Biol Chem 277:8822–8826CrossRefPubMedGoogle Scholar
  24. 24.
    Iverson SL, Orrenius S (2004) The cardiolipin-cytochrome c interaction and the mitochondrial regulation of apoptosis. Arch Biochem Biophys 423:37–46CrossRefPubMedGoogle Scholar
  25. 25.
    Mueller CM, Jemmerson R (1996) Maturation of the antibody response to the major epitope on the self antigen mouse cytochrome c. Restricted V gene usage, selected mutations, and increased affinity. J Immunol 157:5329–5338PubMedGoogle Scholar
  26. 26.
    Liu J, Liu L, Jemmerson R (2000) Immunoglobulin gene joints compensate for reduced on-rates imposed by somatic mutations in a VH gene. Mol Immunol 37:95–105CrossRefPubMedGoogle Scholar
  27. 27.
    Purring-Koch C, McLendon G (2000) Cytochrome c binding to Apaf-1: The effects of dATP and ionic strength. Proc Natl Acad Sci USA 97:11928–11931CrossRefPubMedGoogle Scholar
  28. 28.
    Borden D, Margoliash E (1976) Amino acid sequences of proteins- eukaryotic cytochromes c. In: Fasman GD (ed) Handbook of Biochemistry and Molecular Biology, Proteins, vol 3. The Chemical Rubber Co, Cleveland, pp 268–279Google Scholar
  29. 29.
    Hickey DR, Jayaraman K, Goodhue CT, Shah J, Fingar SA, Clements JM, Hosokawa Y, Tsunasawa S, Sherman F (1991) Synthesis and expression of genes encoding tuna, pigeon, and horse cytochromes c in the yeast Saccharomyces cerevisiae. Gene 105:73–81CrossRefPubMedGoogle Scholar
  30. 30.
    Koshy TI, Luntz TL, Garber EAE, Margoliash E (1992) Expression of recombinant cytochromes c from various species in Saccharomyces cerevisiae: Post- translational modifications. Protein Expr Purif 3:441–452CrossRefPubMedGoogle Scholar
  31. 31.
    Minnerath JM, Crump BL, Margoliash E, Jemmerson R (1995) Major and minor epitopes on the self antigen mouse cytochrome c mapped by site-directed mutagenesis. Mol Immunol 32:795–803CrossRefPubMedGoogle Scholar
  32. 32.
    Kluck RM, Ellerby LM, Ellerby HM, Naiem S, Yaffe MP, Margoliash E, Bredesen D, Mauk AG, Sherman F, Newmeyer DD (2000) Determinants of cytochrome c pro- apoptotic activity: The role of lysine 72 trimethylation. J Biol Chem 275:16127–16133CrossRefPubMedGoogle Scholar
  33. 33.
    Hu Y, Benedict MA, Wu D, Inohara N, Núñez G (1998) Bcl-XL interacts with Apaf-1 and inhibits Apaf-1 dependent caspase-9 activation. Proc Natl Acad Sci USA 95:4386–4391CrossRefPubMedGoogle Scholar
  34. 34.
    Ramström M, Palmblad M, Markides KE, Håkansson P, Bergqist J (2003) Protein identification in cerebrospinal fluid using packed capillary liquid chromatography Fourier transform ion cyclotron resonance mass spectrometry. Proteomics 3:184–190CrossRefPubMedGoogle Scholar
  35. 35.
    Jaskelioff M, Peterson CL (2003) Chromatin and transcription: histones continue to make their marks. Nat Cell Biol 5:395–399CrossRefPubMedGoogle Scholar
  36. 36.
    Tatulian SA (2001) Toward understanding interfacial activation of secretory phospholipase A2 (PLA2): Membrane surface properties and membrane- induced structural changes in the enzyme contribute synergistically to PLA2 activation. Biophys J 80:789–800CrossRefPubMedGoogle Scholar
  37. 37.
    Yagami T, Ueda K, Asakura K, Hata S, Kuroda T, Sakaeda T, Takasu N, Tanaka K, Gemba T, Hori Y (2002) Human group IIA secretory phospholipase A2 induces neuronal cell death via apoptosis. Mol Pharmacol 61:114–126CrossRefPubMedGoogle Scholar
  38. 38.
    Corradin G, Harbury HA (1970) Cleavage of cytochrome c with cyanogen bromide. Biochim Biophys Acta 221:489–496PubMedGoogle Scholar
  39. 39.
    Karlsson R, Roos H, Fägerstam L, Persson B (1994) Kinetic and concentration analysis using BIA technology. Methods Companion Methods Enzymol 6:99–110CrossRefGoogle Scholar
  40. 40.
    Goshorn SC, Retzel E, Jemmerson R (1991) Common structural features among monoclonal antibodies binding the same antigenic region of cytochrome c. J Biol Chem 266:2134–2142PubMedGoogle Scholar
  41. 41.
    Zong W-X, Thompson CB (2006) Necrotic death as a cell fate. Genes Dev 20:1–15CrossRefPubMedGoogle Scholar
  42. 42.
    O’Donnell LC, Druhan LJ, Avalos BR (2002) Molecular characterization and expression of leucine-rich α2-glycoprotein, a novel marker of granulocytic differentiation. J Leuk Biol 72:478–485Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Ramil Codina
    • 1
  • Amelia Vanasse
    • 1
  • Ameeta Kelekar
    • 2
  • Vaiva Vezys
    • 1
  • Ronald Jemmerson
    • 3
  1. 1.Department of MicrobiologyUniversity of Minnesota Medical SchoolMinneapolisUSA
  2. 2.Department of Laboratory Medicine and Pathology and Masonic Cancer CenterUniversity of Minnesota Medical SchoolMinneapolisUSA
  3. 3.Department of Microbiology, Masonic Cancer Center, and Center for ImmunologyUniversity of Minnesota Medical SchoolMinneapolisUSA

Personalised recommendations