Apoptosis

, 15:14 | Cite as

The Bax carboxy-terminal hydrophobic helix does not determine organelle-specific targeting but is essential for maintaining Bax in an inactive state and for stable mitochondrial membrane insertion

  • Stephanie E. Brock
  • Chi Li
  • Binks W. Wattenberg
Original Paper

Abstract

Here we address the function of the hydrophobic carboxy-terminal tail of the pro-apoptotic protein Bax. The tail is tucked into a hydrophobic pocket within the closed/inactive conformation of Bax. Apoptotic stimulation changes the Bax conformation, exposing a mitochondrial-targeting signal. We confirmed that the Bax tail alone can specifically target and anchor a passenger protein to the mitochondria. Surprisingly, we determined that the Bax tail does not play the primary targeting role in Bax mitochondrial translocation. Mutating the Bax tail to produce an ER-targeting signal had no effect on Bax mitochondrial targeting. Additionally, we demonstrated that the Bax tail has a negative regulatory effect on Bax activation. Mutations that disrupt the tail interactions with the hydrophobic pocket resulted in constitutive activation and mitochondrial targeting. Deletion of the Bax tail also resulted in an active conformation of Bax, however, mitochondrial targeting was abolished. Thus, the Bax tail is required for mitochondrial translocation. By generating a mutant-tail that cannot insert into membrane, we determined that insertion of the Bax tail is required for Bax mitochondrial targeting. Our data support a model whereby the Bax tail must be released from the pocket for activation of Bax, then functions as an anchor to stabilize Bax at the mitochondrial membrane after the initial addressing step.

Keywords

Apoptosis Protein targeting Tail-anchored proteins Mitochondria 

Abbreviations

MOM

Mitochondrial outer membrane

MEF

Mouse embryonic fibroblasts

TM

Transmembrane

ART

Apoptotic regulation of targeting

References

  1. 1.
    Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326CrossRefPubMedGoogle Scholar
  2. 2.
    Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656CrossRefPubMedGoogle Scholar
  3. 3.
    Wolter KG, Hsu YT, Smith CL, Nechushtan A, Xi XG, Youle RJ (1997) Movement of Bax from the cytosol to mitochondria during apoptosis. J Cell Biol 139:1281–1292CrossRefPubMedGoogle Scholar
  4. 4.
    Goping IS, Gross A, Lavoie JN, Nguyen M, Jemmerson R, Roth K, Korsmeyer SJ, Shore GC (1998) Regulated targeting of BAX to mitochondria. J Cell Biol 143:207–215CrossRefPubMedGoogle Scholar
  5. 5.
    Hsu YT, Wolter KG, Youle RJ (1997) Cytosol-to-membrane redistribution of Bax and Bcl-X(L) during apoptosis. Proc Natl Acad Sci USA 94:3668–3672CrossRefPubMedGoogle Scholar
  6. 6.
    Hsu YT, Youle RJ (1998) Bax in murine thymus is a soluble monomeric protein that displays differential detergent-induced conformations. J Biol Chem 273:10777–10783CrossRefPubMedGoogle Scholar
  7. 7.
    Nechushtan A, Smith CL, Hsu YT, Youle RJ (1999) Conformation of the Bax C-terminus regulates subcellular location and cell death. EMBO J 18:2330–2341CrossRefPubMedGoogle Scholar
  8. 8.
    Annis MG, Soucie EL, Dlugosz PJ, Cruz-Aguado JA, Penn LZ, Leber B, Andrews DW (2005) Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J 24:2096–2103CrossRefPubMedGoogle Scholar
  9. 9.
    Antonsson B, Montessuit S, Lauper S, Eskes R, Martinou JC (2000) Bax oligomerization is required for channel-forming activity in liposomes and to trigger cytochrome c release from mitochondria. Biochem J 345(Pt 2):271–278CrossRefPubMedGoogle Scholar
  10. 10.
    Antonsson B, Montessuit S, Sanchez B, Martinou JC (2001) Bax is present as a high molecular weight oligomer/complex in the mitochondrial membrane of apoptotic cells. J Biol Chem 276:11615–11623CrossRefPubMedGoogle Scholar
  11. 11.
    Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 95:4997–5002CrossRefPubMedGoogle Scholar
  12. 12.
    Sharpe JC, Arnoult D, Youle RJ (2004) Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta 1644:107–113CrossRefPubMedGoogle Scholar
  13. 13.
    Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou JC (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144:891–901CrossRefPubMedGoogle Scholar
  14. 14.
    Eskes R, Desagher S, Antonsson B, Martinou JC (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20:929–935CrossRefPubMedGoogle Scholar
  15. 15.
    Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, Newmeyer DD (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17:525–535CrossRefPubMedGoogle Scholar
  16. 16.
    Marani M, Tenev T, Hancock D, Downward J, Lemoine NR (2002) Identification of novel isoforms of the BH3 domain protein Bim which directly activate Bax to trigger apoptosis. Mol Cell Biol 22:3577–3589CrossRefPubMedGoogle Scholar
  17. 17.
    Ruffolo SC, Breckenridge DG, Nguyen M, Goping IS, Gross A, Korsmeyer SJ, Li H, Yuan J, Shore GC (2000) BID-dependent and BID-independent pathways for BAX insertion into mitochondria. Cell Death Differ 7:1101–1108CrossRefPubMedGoogle Scholar
  18. 18.
    Wu Y, Xing D, Chen WR, Wang X (2007) Bid is not required for Bax translocation during UV-induced apoptosis. Cell Signal 19:2468–2478CrossRefPubMedGoogle Scholar
  19. 19.
    Guo B, Zhai D, Cabezas E, Welsh K, Nouraini S, Satterthwait AC, Reed JC (2003) Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423:456–461CrossRefPubMedGoogle Scholar
  20. 20.
    Nomura M, Shimizu S, Sugiyama T, Narita M, Ito T, Matsuda H, Tsujimoto Y (2003) 14-3-3 Interacts directly with and negatively regulates pro-apoptotic Bax. J Biol Chem 278:2058–2065CrossRefPubMedGoogle Scholar
  21. 21.
    Sawada M, Sun W, Hayes P, Leskov K, Boothman DA, Matsuyama S (2003) Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol 5:320–329CrossRefPubMedGoogle Scholar
  22. 22.
    Cartron PF, Arokium H, Oliver L, Meflah K, Manon S, Vallette FM (2005) Distinct domains control the addressing and the insertion of Bax into mitochondria. J Biol Chem 280:10587–10598CrossRefPubMedGoogle Scholar
  23. 23.
    Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103:645–654CrossRefPubMedGoogle Scholar
  24. 24.
    Borgese N, Colombo S, Pedrazzini E (2003) The tale of tail-anchored proteins: coming from the cytosol and looking for a membrane. J Cell Biol 161:1013–1019CrossRefPubMedGoogle Scholar
  25. 25.
    Borgese N, Brambillasca S, Colombo S (2007) How tails guide tail-anchored proteins to their destinations. Curr Opin Cell Biol 19:368–375CrossRefPubMedGoogle Scholar
  26. 26.
    Kaufmann T, Schlipf S, Sanz J, Neubert K, Stein R, Borner C (2003) Characterization of the signal that directs Bcl-x(L), but not Bcl-2, to the mitochondrial outer membrane. J Cell Biol 160:53–64CrossRefPubMedGoogle Scholar
  27. 27.
    Nguyen M, Millar DG, Yong VW, Korsmeyer SJ, Shore GC (1993) Targeting of Bcl-2 to the mitochondrial outer membrane by a COOH-terminal signal anchor sequence. J Biol Chem 268:25265–25268PubMedGoogle Scholar
  28. 28.
    Schinzel A, Kaufmann T, Schuler M, Martinalbo J, Grubb D, Borner C (2004) Conformational control of Bax localization and apoptotic activity by Pro168. J Cell Biol 164:1021–1032CrossRefPubMedGoogle Scholar
  29. 29.
    Cartron PF, Priault M, Oliver L, Meflah K, Manon S, Vallette FM (2003) The N-terminal end of Bax contains a mitochondrial-targeting signal. J Biol Chem 278:11633–11641CrossRefPubMedGoogle Scholar
  30. 30.
    Tremblais K, Oliver L, Juin P, Le Cabellec TM, Meflah K, Vallette FM (1999) The C-terminus of Bax is not a membrane addressing/anchoring signal. Biochem Biophys Res Commun 260:582–591CrossRefPubMedGoogle Scholar
  31. 31.
    Bellot G, Cartron PF, Er E, Oliver L, Juin P, Armstrong LC, Bornstein P, Mihara K, Manon S, Vallette FM (2007) TOM22, a core component of the mitochondria outer membrane protein translocation pore, is a mitochondrial receptor for the proapoptotic protein Bax. Cell Death Differ 14:785–794CrossRefPubMedGoogle Scholar
  32. 32.
    Horie C, Suzuki H, Sakaguchi M, Mihara K (2002) Characterization of signal that directs C-tail-anchored proteins to mammalian mitochondrial outer membrane. Mol Biol Cell 13:1615–1625CrossRefPubMedGoogle Scholar
  33. 33.
    Isenmann S, Khew-Goodall Y, Gamble J, Vadas M, Wattenberg BW (1998) A splice-isoform of vesicle-associated membrane protein-1 (VAMP-1) contains a mitochondrial targeting signal. Mol Biol Cell 9:1649–1660PubMedGoogle Scholar
  34. 34.
    Lan L, Isenmann S, Wattenberg BW (2000) Targeting and insertion of C-terminally anchored proteins to the mitochondrial outer membrane is specific and saturable but does not strictly require ATP or molecular chaperones. Biochem J 349:611–621CrossRefPubMedGoogle Scholar
  35. 35.
    Wattenberg BW, Clark D, Brock S (2007) An artificial mitochondrial tail signal/anchor sequence confirms a requirement for moderate hydrophobicity for targeting. Biosci Rep 27:385–401CrossRefPubMedGoogle Scholar
  36. 36.
    Balch WE, Rothman JE (1985) Characterization of protein transport between successive compartments of the Golgi apparatus: asymmetric properties of donor and acceptor activities in a cell-free system. Arch Biochem Biophys 240:413–425CrossRefPubMedGoogle Scholar
  37. 37.
    White C, Li C, Yang J, Petrenko NB, Madesh M, Thompson CB, Foskett JK (2006) The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat Cell Biol 7:1021–1028CrossRefGoogle Scholar
  38. 38.
    Arokium H, Camougrand N, Vallette FM, Manon S (2004) Studies of the interaction of substituted mutants of BAX with yeast mitochondria reveal that the C-terminal hydrophobic alpha-helix is a second ART sequence and plays a role in the interaction with anti-apoptotic BCL-xL. J Biol Chem 279:52566–52573CrossRefPubMedGoogle Scholar
  39. 39.
    Hsu YT, Youle RJ (1997) Nonionic detergents induce dimerization among members of the Bcl-2 family. J Biol Chem 272:13829–13834CrossRefPubMedGoogle Scholar
  40. 40.
    Yethon JA, Epand RF, Leber B, Epand RM, Andrews DW (2003) Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis. J Biol Chem 278:48935–48941CrossRefPubMedGoogle Scholar
  41. 41.
    Gardai SJ, Hildeman DA, Frankel SK, Whitlock BB, Frasch SC, Borregaard N, Marrack P, Bratton DL, Henson PM (2004) Phosphorylation of Bax Ser184 by Akt regulates its activity and apoptosis in neutrophils. J Biol Chem 279:21085–21095CrossRefPubMedGoogle Scholar
  42. 42.
    Xin M, Deng X (2005) Nicotine inactivation of the proapoptotic function of Bax through phosphorylation. J Biol Chem 280:10781–10789CrossRefPubMedGoogle Scholar
  43. 43.
    Leber B, Lin J, Andrews DW (2007) Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis 12:897–911CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Stephanie E. Brock
    • 1
  • Chi Li
    • 2
  • Binks W. Wattenberg
    • 3
  1. 1.Department of Biochemistry and Molecular BiologyUniversity of Louisville School of MedicineLouisvilleUSA
  2. 2.Brown Cancer Center, Departments of Medicine, and Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleUSA
  3. 3.Brown Cancer Center, Departments of Medicine, Biochemistry and Molecular Biology, and Pharmacology and ToxicologyUniversity of Louisville School of MedicineLouisvilleUSA

Personalised recommendations