Apoptosis

, Volume 14, Issue 10, pp 1245–1254 | Cite as

Epigallocatechin-3-gallate enhances ischemia/reperfusion-induced apoptosis in human umbilical vein endothelial cells via AKT and MAPK pathways

  • Tianpeng Zhang
  • Dan Yang
  • Yongna Fan
  • Ping Xie
  • Huihua Li
Original Paper

Abstract

Epigallocatechin-3-gallate (EGCG), the major constituent of green tea, has been shown to promote apoptosis in cancer cells. However, the role of EGCG in endothelial cells following ischemia/reperfusion (I/R) injury remains unclear. In the present study, we investigated the mechanisms by which EGCG enhances I/R-induced cell growth inhibition and apoptosis in human umbilical vein endothelial cells (HUVECs). Our results showed that EGCG treatment caused cell proliferation inhibition during I/R injury, and this effect was associated with increased p27 and p21 levels and reduced cyclin D1 level. Moreover, treatment of cells with EGCG resulted in increase of caspase-3 and Bax and decrease of Bcl-2, enhancing I/R-induced apoptosis. Interestingly, EGCG decreased I/R-induced phosphorylation of AKT and its downstream substrates Foxo1 and Foxo3a and ERK1/2. In contrast, EGCG increased JNK1/2 and c-Jun phosphorylation. Furthermore, both wortamannin (PI3K inhibitor) and U0126 (MEK1/2 inhibitor) markedly enhanced EGCG-induced apoptosis during I/R, whereas SP600125 (JNK inhibitor) attenuated the action of EGCG. Taken together, our study for the first time suggest that EGCG is able to enhance growth arrest and apoptosis of HUVECs during I/R injury, at least in part, through inhibition of AKT and ERK1/2 and activation of JNK1/2 signaling pathways.

Keywords

Epigallocatechin-3-gallate Ischemia-reperfusion Human umbilical vein endothelial cells Apoptosis AKT Mitogen-activated protein kinases 

Notes

Acknowledgments

This work was supported by grants from China Natural Science Foundation (H. L., 2006CB910306) and the 111 project (H. L., B08007).

Disclosures

The authors declare that they have no conflict of interest.

References

  1. 1.
    Baines CP, Molkentin JD (2005) STRESS signaling pathways that modulate cardiac myocyte apoptosis. J Mol Cell Cardiol 38:47–62PubMedCrossRefGoogle Scholar
  2. 2.
    Scarabelli TM, Knight R, Stephanou A, Townsend P, Chen-Scarabelli C, Lawrence K, Gottlieb R, Latchman D, Narula J (2006) Clinical implications of apoptosis in ischemic myocardium. Curr Probl Cardiol 31:181–264PubMedCrossRefGoogle Scholar
  3. 3.
    Scarabelli T, Stephanou A, Rayment N, Pasini E, Comini L, Curello S, Ferrari R, Knight R, Latchman D (2001) Apoptosis of endothelial cells precedes myocyte cell apoptosis in ischemia/reperfusion injury. Circulation 104:253–256PubMedGoogle Scholar
  4. 4.
    Matsui T, Rosenzweig A (2005) Convergent signal transduction pathways controlling cardiomyocyte survival and function: the role of PI 3-kinase and Akt. J Mol Cell Cardiol 38:63–71PubMedCrossRefGoogle Scholar
  5. 5.
    Armstrong SC (2004) Protein kinase activation and myocardial ischemia/reperfusion injury. Cardiovasc Res 61:427–436PubMedCrossRefGoogle Scholar
  6. 6.
    Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241PubMedCrossRefGoogle Scholar
  7. 7.
    Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E, Frisch S, Reed JC (1998) Regulation of cell death protease caspase-9 by phosphorylation. Science 282:1318–1321PubMedCrossRefGoogle Scholar
  8. 8.
    Huang H, Regan KM, Wang F, Wang D, Smith DI, van Deursen JM, Tindall DJ (2005) Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci USA 102:1649–1654PubMedCrossRefGoogle Scholar
  9. 9.
    Chen L, Zhang HY (2007) Cancer preventive mechanisms of the green tea polyphenol (-)-epigallocatechin-3-gallate. Molecules (Basel, Switzerland) 12:946–957Google Scholar
  10. 10.
    Park G, Yoon BS, Moon JH, Kim B, Jun EK, Oh S, Kim H, Song HJ, Noh JY, Oh C, You S (2008) Green tea polyphenol epigallocatechin-3-gallate suppresses collagen production and proliferation in keloid fibroblasts via inhibition of the STAT3-signaling pathway. J Invest Dermatol 128:2429–2441PubMedCrossRefGoogle Scholar
  11. 11.
    Sah JF, Balasubramanian S, Eckert RL, Rorke EA (2004) Epigallocatechin-3-gallate inhibits epidermal growth factor receptor signaling pathway. Evidence for direct inhibition of ERK1/2 and AKT kinases. J Biol Chem 279:12755–12762PubMedCrossRefGoogle Scholar
  12. 12.
    Hofmann CS, Sonenshein GE (2003) Green tea polyphenol epigallocatechin-3 gallate induces apoptosis of proliferating vascular smooth muscle cells via activation of p53. FASEB J 17:702–704PubMedGoogle Scholar
  13. 13.
    Ahn HY, Hadizadeh KR, Seul C, Yun YP, Vetter H, Sachinidis A (1999) Epigallocathechin-3 gallate selectively inhibits the PDGF-BB-induced intracellular signaling transduction pathway in vascular smooth muscle cells and inhibits transformation of sis-transfected NIH 3T3 fibroblasts and human glioblastoma cells (A172). Mol Biol Cell 10:1093–1104PubMedGoogle Scholar
  14. 14.
    Townsend PA, Scarabelli TM, Pasini E, Gitti G, Menegazzi M, Suzuki H, Knight RA, Latchman DS, Stephanou A (2004) Epigallocatechin-3-gallate inhibits STAT-1 activation and protects cardiac myocytes from ischemia/reperfusion-induced apoptosis. FASEB J 18:1621–1623PubMedGoogle Scholar
  15. 15.
    Kim JA, Formoso G, Li Y, Potenza MA, Marasciulo FL, Montagnani M, Quon MJ (2007) Epigallocatechin gallate, a green tea polyphenol, mediates NO-dependent vasodilation using signaling pathways in vascular endothelium requiring reactive oxygen species and Fyn. J Biol Chem 282:13736–13745PubMedCrossRefGoogle Scholar
  16. 16.
    Jaffe EA, Nachman RL, Becker CG, Minick CR (1973) Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 52:2745–2756PubMedCrossRefGoogle Scholar
  17. 17.
    Xie P, Guo S, Fan Y, Zhang H, Gu D, Li H (2009) Atrogin-1/MAFbx enhances simulated ischemia/reperfusion-induced apoptosis in cardiomyocytes through degradation of MAPK phosphatase-1 and sustained JNK activation. J Biol Chem 284:5488–5496PubMedCrossRefGoogle Scholar
  18. 18.
    Das A, Smolenski A, Lohmann SM, Kukreja RC (2006) Cyclic GMP-dependent protein kinase Ialpha attenuates necrosis and apoptosis following ischemia/reoxygenation in adult cardiomyocyte. J Biol Chem 281:38644–38652PubMedCrossRefGoogle Scholar
  19. 19.
    Chae YJ, Kim CH, Ha TS, Hescheler J, Ahn HY, Sachinidis A (2007) Epigallocatechin-3-O-gallate inhibits the angiotensin II-induced adhesion molecule expression in human umbilical vein endothelial cell via inhibition of MAPK pathways. Cell Physiol Biochem 20:859–866PubMedCrossRefGoogle Scholar
  20. 20.
    Li HH, Kedar V, Zhang C, McDonough H, Arya R, Wang DZ, Patterson C (2004) Atrogin-1/muscle atrophy F-box inhibits calcineurin-dependent cardiac hypertrophy by participating in an SCF ubiquitin ligase complex. J Clin Invest 114:1058–1071PubMedGoogle Scholar
  21. 21.
    Lusis AJ (2000) Atherosclerosis. Nature 407:233–241PubMedCrossRefGoogle Scholar
  22. 22.
    Ross R (1999) Atherosclerosis is an inflammatory disease. Am Heart J 138:S419–S420PubMedCrossRefGoogle Scholar
  23. 23.
    Bayes-Genis A, Conover CA, Schwartz RS (2000) The insulin-like growth factor axis: a review of atherosclerosis and restenosis. Circ Res 86:125–130PubMedGoogle Scholar
  24. 24.
    Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868PubMedCrossRefGoogle Scholar
  25. 25.
    Nakae J, Kitamura T, Kitamura Y, Biggs WHIII, Arden KC, Accili D (2003) The forkhead transcription factor Foxo1 regulates adipocyte differentiation. Dev Cell 4:119–129PubMedCrossRefGoogle Scholar
  26. 26.
    Schmidt M, Fernandez de Mattos S, van der Horst A, Klompmaker R, Kops GJ, Lam EW, Burgering BM, Medema RH (2002) Cell cycle inhibition by FoxO forkhead transcription factors involves downregulation of cyclin D. Mol Cell Biol 22:7842–7852PubMedCrossRefGoogle Scholar
  27. 27.
    Rathbone CR, Booth FW, Lees SJ (2008) FoxO3a preferentially induces p27Kip1 expression while impairing muscle precursor cell-cycle progression. Muscle Nerve 37:84–89PubMedCrossRefGoogle Scholar
  28. 28.
    Michel MC, Li Y, Heusch G (2001) Mitogen-activated protein kinases in the heart. Naunyn Schmiedebergs Arch Pharmacol 363:245–266PubMedCrossRefGoogle Scholar
  29. 29.
    He H, Li HL, Lin A, Gottlieb RA (1999) Activation of the JNK pathway is important for cardiomyocyte death in response to simulated ischemia. Cell Death Differ 6:987–991PubMedCrossRefGoogle Scholar
  30. 30.
    Roovers K, Assoian RK (2000) Integrating the MAP kinase signal into the G1 phase cell cycle machinery. Bioessays 22:818–826PubMedCrossRefGoogle Scholar
  31. 31.
    Hreniuk D, Garay M, Gaarde W, Monia BP, McKay RA, Cioffi CL (2001) Inhibition of c-Jun N-terminal kinase 1, but not c-Jun N-terminal kinase 2, suppresses apoptosis induced by ischemia/reoxygenation in rat cardiac myocytes. Mol Pharmacol 59:867–874PubMedGoogle Scholar
  32. 32.
    Ferrandi C, Ballerio R, Gaillard P, Giachetti C, Carboni S, Vitte PA, Gotteland JP, Cirillo R (2004) Inhibition of c-Jun N-terminal kinase decreases cardiomyocyte apoptosis and infarct size after myocardial ischemia and reperfusion in anaesthetized rats. Br J Pharmacol 142:953–960PubMedCrossRefGoogle Scholar
  33. 33.
    Milano G, Morel S, Bonny C, Samaja M, von Segesser LK, Nicod P, Vassalli G (2007) A peptide inhibitor of c-Jun NH2-terminal kinase reduces myocardial ischemia-reperfusion injury and infarct size in vivo. Am J Physiol Heart Circ Physiol 292:H1828–H1835PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Tianpeng Zhang
    • 1
  • Dan Yang
    • 1
  • Yongna Fan
    • 1
  • Ping Xie
    • 1
  • Huihua Li
    • 1
  1. 1.Department of Pathology and National Laboratory of Medical Molecular Biology, Institute of Basic Medical SciencesChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina

Personalised recommendations