Apoptosis

, Volume 14, Issue 6, pp 771–777 | Cite as

Glycogen synthase kinase-3β regulates etoposide-induced apoptosis via Bcl-2 mediated caspase-3 activation in C3H10T1/2 cells

Original Paper

Abstract

Glycogen synthase kinase-3β (GSK3β) controls the survival of osteoblasts during bone development through Wnt canonical signaling. GSK3β is a key factor for osteoblastogenesis, but relatively less is known regarding its role in osteoblast apoptosis. Genotoxic stress induced by etoposide promoted apoptotic signaling by GSK3β activation in C3H10T1/2 cells, a mouse mesenchymal cell line. Etoposide led to the time-dependent activation of GSK3β and caspase-3, which resulted in PARP cleavage. LiCl (a specific inhibitor) and siRNA (gene knock-down) of GSK3β prevented the effects of etoposide on apoptosis. Staurosporine also induced apoptosis in C3H10T1/2 cells, but LiCl could not rescue. Bcl-2 was decreased in the cells by exposure to etoposide. LiCl completely recovered Bcl-2 expression as shown by both the mRNA and the protein expression levels. In conclusion, etoposide-induced apoptosis in C3H10T1/2 cells is mediated by GSK3β, which leads to caspase-3 activation via decrease in Bcl-2 expression.

Keywords

C3H10T1/2 Apoptosis Etoposide Glycogen synthase kinase-3β (GSK3β) Bcl-2 

Supplementary material

10495_2009_348_MOESM1_ESM.ppt (180 kb)
(PPT 180 kb)

References

  1. 1.
    Jope RS, Yuskaitis CJ, Beurel E (2007) Glycogen synthase kinase-3 (GSK-3): inflammation, diseases, and therapeutics. Neurochem Res 32:577–595. doi:10.1007/s11064-006-9128-5 PubMedCrossRefGoogle Scholar
  2. 2.
    Doble BW, Woodgett JR (2003) GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci 116:1175–1186. doi:10.1242/jcs.00384 PubMedCrossRefGoogle Scholar
  3. 3.
    Grimes CA, Jope RS (2001) The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol 65:391–426. doi:10.1016/S0301-0082(01)00011-9 PubMedCrossRefGoogle Scholar
  4. 4.
    Pop M, Cooper GM (1998) Role of glycogen synthase kinase-3 in the phosphatidylinositon 3-kinase/Akt cell survival pathway. J Biol Chem 273:19929–19932. doi:10.1074/jbc.273.32.19929 CrossRefGoogle Scholar
  5. 5.
    Beurel E, Jope RS (2006) The paradoxical pro- and anti-apoptotic actions of GSK3 in the intrinsic and extrinsic apoptosis signaling pathways. Prog Neurobiol 79:173–189. doi:10.1016/j.pneurobio.2006.07.006 PubMedCrossRefGoogle Scholar
  6. 6.
    Kulkarni NH, Wei T, Kumar A et al (2007) Changes in osteoblast, chondrocyte, and adipocyte lineages mediate the bone anabolic actions of PTH and small molecule GSK-3 inhibitor. J Cell Biochem 102:1504–1518. doi:10.1002/jcb.21374 PubMedCrossRefGoogle Scholar
  7. 7.
    Jin ZH, Kurosu T, Yamaguchi M, Arai A, Miura O (2005) Hematopoietic cytokines enhance Chk1-dependent G2/M checkpoint activation by etoposide through the Akt/GSK3 pathway to inhibit apoptosis. Oncogene 24:1973–1981. doi:10.1038/sj.onc.1208408 PubMedCrossRefGoogle Scholar
  8. 8.
    Smith E, Frenkel B (2005) Glucocorticoids inhibit the transcriptional activity of LEF/TCF in differentiation osteoblasts in a glycogen synthase kinase-3beta-dependent and–independent manner. J Biol Chem 280:2388–2394. doi:10.1074/jbc.M406294200 PubMedCrossRefGoogle Scholar
  9. 9.
    Gaur T, Lengner CJ, Hovhannisyan H et al (2005) Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J Biol Chem 280:33132–33140. doi:10.1074/jbc.M500608200 PubMedCrossRefGoogle Scholar
  10. 10.
    Duchowicz PR, Castro EA (2007) QSAR studies for the pharmacological inhibition of glycogen synthase kinase-3. Med Chem 3:393–417. doi:10.2174/157340607781024375 PubMedCrossRefGoogle Scholar
  11. 11.
    Yun SI, Yoon HY, Jeong SY, Chung YS (2009) Glucocorticoid induces apoptosis of osteoblast cells through the activation of glycogen synthase kinase 3beta. J Bone Miner Metab 27:140–148. doi:10.1007/s00774-008-0019-5 PubMedCrossRefGoogle Scholar
  12. 12.
    Davies JH, Evans BA, Jenney ME, Gregory JW (2002) In vitro effects of chemotherapeutic agents on human osteoblast-like cells. Calcif Tissue Int 70:408–415. doi:10.1007/s002230020039 PubMedCrossRefGoogle Scholar
  13. 13.
    Agas D, Marchetti L, Menghi G et al (2008) Anti-apoptotic Bcl-2 enhancing requires FGF-2/FGF receptor 1 binding in mouse osteoblasts. J Cell Physiol 214:145–152. doi:10.1002/jcp.21170 PubMedCrossRefGoogle Scholar
  14. 14.
    Forde JE, Dale TC (2007) Glycogen synthase 3: a key regulator of cellular fate. Cell Mol Life Sci 64:1930–1944. doi:10.1007/s00018-007-7045-7 PubMedCrossRefGoogle Scholar
  15. 15.
    Caponigro F, French RC, Kaye SB (1997) Protein kinase C: a worthwhile target for anticancer drugs? Anticancer Drugs 8:26–33. doi:10.1097/00001813-199701000-00003 PubMedCrossRefGoogle Scholar
  16. 16.
    Chae HJ, Kang JS, Byun JO et al (2000) Molecular mechanism of staurosporine-induced apoptosis in osteoblasts. Pharmacol Res 42:373–381. doi:10.1006/phrs.2000.0700 PubMedCrossRefGoogle Scholar
  17. 17.
    Tan J, Zhuang L, Leong HS et al (2005) Pharmacologic modulation of glycogen synthase kinase-3beta promotes p53-dependent apoptosis through a direct Bax-mediated mitochondrial pathway in colorectal cancer cells. Cancer Res 65:9012–9020. doi:10.1158/0008-5472.CAN-05-1226 PubMedCrossRefGoogle Scholar
  18. 18.
    Bellido T, Ali AA, Plotkin LI et al (2003) Proteasomal degradation of Runx2 shortens parathyroid hormone-induced anti-apoptotic signaling in osteoblasts: a putative explanation for why intermittent administration is needed for bone anabolism. J Biol Chem 278:50259–50272. doi:10.1074/jbc.M307444200 PubMedCrossRefGoogle Scholar
  19. 19.
    Yuan XW, Zhu XF, Liang SG et al (2008) Interferon-alpha enhances etoposide-induced apoptosis in human osteosarcoma U2OS cells by a p53-dependent pathway. Life Sci 82:393–401. doi:10.1016/j.lfs.2007.11.025 PubMedCrossRefGoogle Scholar
  20. 20.
    Chen RW, Chuang DM (1999) Long term lithium treatment suppresses p53 and Bax expression but increased Bcl-2 expression. A prominent role in neuroprotection against excitotoxicity. J Biol Chem 274:6039–6042. doi:10.1074/jbc.274.10.6039 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Endocrinology and MetabolismAjou University School of MedicineSuwon CitySouth Korea

Personalised recommendations