, 14:1435 | Cite as

Diabetes mellitus and apoptosis: inflammatory cells

  • Aidan Ryan
  • Madeline Murphy
  • Catherine Godson
  • Fionnuala B. Hickey
Diabetes and Apoptosis


Since the early observation that similarities between thyroiditis and insulitis existed, the important role played by inflammation in the development of diabetes has been appreciated. More recently, experiments have shown that inflammation also plays a prominent role in the development of target organ damage arising as complications, with both elements of the innate and the adaptive immune system being involved, and that cytokines contributing to local tissue damage may arise from both infiltrating and resident cells. This review will discuss the experimental evidence that shows that inflammatory cell-mediated apoptosis contributes to target organ damage, from beta cell destruction to both micro- and macro-vascular disease complications, and also how alterations in leukocyte turnover affects immune function.


Diabetes Microvascular complications Macrovascular complications Apoptosis Inflammation 



Acyl Co-A: cholesterol acyltransferase


Advanced glycation end products


Apoptosis inhibitor expressed by macrophages


Antigen presenting cells


Apolipoprotein E


Bone morphogenetic protein


Canabinoid 2


Chemokine ligand 2


Chemokine receptor


Chronic kidney disease




Connective tissue growth factor


Cytotoxic T lymphocyte


Cardiovascular disease


Dendritic cells


Diabetic nephropathy


Diabetic retinopathy


Epithelial-mesenchymal transformation


Endoplasmic reticulum


End-stage renal failure


Fas ligand


Free cholesterol


FLICE-like inhibitory protein


Forkhead transcription factor


Hepatocyte growth factor


Inhibitor of apoptosis


Induced in high glucose-1




IL-1 receptor antagonist


Inducible NO synthase


Interleukin-1 receptor-associated kinase


Low-density lipoprotein


LDL receptor-1


Lipoprotein-associated phospholipase A2




Macrophage colony-stimulating factor


Monocyte chemotactic protein-1


Migration inhibitory factor


Nitric oxide


Nonobese diabetic


Oxidised low-density lipoprotein


Poly (ADP-ribose) polymerase


Phospholipase C


Peroxisome proliferator-activated receptor




Receptor for advanced glycation end products


Rat insulin promoter


Reactive oxygen species


Macrophage scavenger receptor A




Type 1 diabetes mellitus


Type 2 diabetes mellitus


T cell receptor


Tubulointerstitial fibrosis


Tissue inhibitors of metalloproteinase


Toll-like receptor


Tumour necrosis factor


TNF Related Apoptosis Inducing Ligand


Regulatory T cells


Unfolded protein response


Ubiquitin-proteasome system


Vascular cell adhesion molecule-1


Very late-acting antigen-4



Work in the authors laboratory is funded by Science Foundation Ireland, The Health Research Board Ireland and the EU FP6 EICOSANOX Consortium (LSHM-CT-2004-005033). Aidan Ryan is the recipient of a Molecular Medicine Ireland Clinical Research Fellowship


  1. 1.
    Rossini AA, Mordes JP, Like AA (1985) Immunology of insulin-dependent diabetes mellitus. Annu Rev Immunol 3:289–320. doi: 10.1146/annurev.iy.03.040185.001445 PubMedCrossRefGoogle Scholar
  2. 2.
    Kahn SE (2001) Clinical review 135: the importance of beta-cell failure in the development and progression of type 2 diabetes. J Clin Endocrinol Metab 86:4047–4058. doi: 10.1210/jc.86.9.4047 PubMedCrossRefGoogle Scholar
  3. 3.
    Kahn BB, Flier JS (2000) Obesity and insulin resistance. J Clin Invest 106:473–481. doi: 10.1172/JCI10842 PubMedCrossRefGoogle Scholar
  4. 4.
    Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820. doi: 10.1038/414813a PubMedCrossRefGoogle Scholar
  5. 5.
    Nishikawa T, Edelstein D, Du XL et al (2000) Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404:787–790. doi: 10.1038/35008121 PubMedCrossRefGoogle Scholar
  6. 6.
    Mehta JL, Rasouli N, Sinha AK, Molavi B (2006) Oxidative stress in diabetes: a mechanistic overview of its effects on atherogenesis and myocardial dysfunction. Int J Biochem Cell Biol 38:794–803. doi: 10.1016/j.biocel.2005.12.008 PubMedCrossRefGoogle Scholar
  7. 7.
    Borst SE (2004) The role of TNF-alpha in insulin resistance. Endocr 23:177–182. doi: 10.1385/ENDO:23:2-3:177 CrossRefGoogle Scholar
  8. 8.
    Jager J, Gremeaux T, Cormont M, Le Marchand-Brustel Y, Tanti JF (2007) Interleukin-1beta-induced insulin resistance in adipocytes through down-regulation of insulin receptor substrate-1 expression. Endocrinology 148:241–251. doi: 10.1210/en.2006-0692 PubMedCrossRefGoogle Scholar
  9. 9.
    Senn JJ, Klover PJ, Nowak IA, Mooney RA (2002) Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes 51:3391–3399. doi: 10.2337/diabetes.51.12.3391 PubMedCrossRefGoogle Scholar
  10. 10.
    Navarro-Gonzalez JF, Mora-Fernandez C (2008) The role of inflammatory cytokines in diabetic nephropathy. J Am Soc Nephrol 19:433–442. doi: 10.1681/ASN.2007091048 PubMedCrossRefGoogle Scholar
  11. 11.
    Riboulet-Chavey A, Diraison F, Siew LK, Wong FS, Rutter GA (2008) Inhibition of AMP-activated protein kinase protects pancreatic beta-cells from cytokine-mediated apoptosis and CD8+ T-cell-induced cytotoxicity. Diabetes 57:415–423. doi: 10.2337/db07-0993 PubMedCrossRefGoogle Scholar
  12. 12.
    Butler AE, Janson J, Bonner-Weir S et al (2003) Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52:102–110. doi: 10.2337/diabetes.52.1.102 PubMedCrossRefGoogle Scholar
  13. 13.
    Sjoholm A, Nystrom T (2006) Inflammation and the etiology of type 2 diabetes. Diabetes Metab Res Rev 22:4–10. doi: 10.1002/dmrr.568 PubMedCrossRefGoogle Scholar
  14. 14.
    Maedler K, Sergeev P, Ris F et al (2002) Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 110:851–860PubMedGoogle Scholar
  15. 15.
    Delovitch TL, Singh B (1997) The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 7:727–738. doi: 10.1016/S1074-7613(00)80392-1 PubMedCrossRefGoogle Scholar
  16. 16.
    Wicker LS, Todd JA, Peterson LB (1995) Genetic control of autoimmune diabetes in the NOD mouse. Annu Rev Immunol 13:179–200. doi: 10.1146/annurev.iy.13.040195.001143 PubMedCrossRefGoogle Scholar
  17. 17.
    Mandrup-Poulsen T (2003) Apoptotic signal transduction pathways in diabetes. Biochem Pharmacol 66:1433–1440. doi: 10.1016/S0006-2952(03)00494-5 PubMedCrossRefGoogle Scholar
  18. 18.
    Lee SC, Pervaiz S (2007) Apoptosis in the pathophysiology of diabetes mellitus. Int J Biochem Cell Biol 39:497–504. doi: 10.1016/j.biocel.2006.09.007 PubMedCrossRefGoogle Scholar
  19. 19.
    Hui H, Dotta F, Di Mario U, Perfetti R (2004) Role of caspases in the regulation of apoptotic pancreatic islet beta-cells death. J Cell Physiol 200:177–200. doi: 10.1002/jcp.20021 PubMedCrossRefGoogle Scholar
  20. 20.
    Cnop M, Welsh N, Jonas JC et al (2005) Mechanisms of pancreatic beta-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes 54(Suppl 2):S97–S107. doi: 10.2337/diabetes.54.suppl_2.S97 PubMedCrossRefGoogle Scholar
  21. 21.
    Brodie GM, Wallberg M, Santamaria P, Wong FS, Green EA (2008) B-cells promote intra-islet CD8+ cytotoxic T-cell survival to enhance type 1 diabetes. Diabetes 57:909–917. doi: 10.2337/db07-1256 PubMedCrossRefGoogle Scholar
  22. 22.
    Trudeau JD, Kelly-Smith C, Verchere CB et al (2003) Prediction of spontaneous autoimmune diabetes in NOD mice by quantification of autoreactive T cells in peripheral blood. J Clin Invest 111:217–223PubMedGoogle Scholar
  23. 23.
    Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of T cell costimulation. Annu Rev Immunol 14:233–258. doi: 10.1146/annurev.immunol.14.1.233 PubMedCrossRefGoogle Scholar
  24. 24.
    Kagi D, Odermatt B, Seiler P et al (1997) Reduced incidence and delayed onset of diabetes in perforin-deficient nonobese diabetic mice. J Exp Med 186:989–997. doi: 10.1084/jem.186.7.989 PubMedCrossRefGoogle Scholar
  25. 25.
    Eizirik DL, Mandrup-Poulsen T (2001) A choice of death—the signal-transduction of immune-mediated beta-cell apoptosis. Diabetologia 44:2115–2133. doi: 10.1007/s001250100021 PubMedCrossRefGoogle Scholar
  26. 26.
    Stephens LA, Thomas HE, Ming L et al (1999) Tumor necrosis factor-alpha-activated cell death pathways in NIT-1 insulinoma cells and primary pancreatic beta cells. Endocrinology 140:3219–3227. doi: 10.1210/en.140.7.3219 PubMedCrossRefGoogle Scholar
  27. 27.
    Eizirik DL, Flodstrom M, Karlsen AE, Welsh N (1996) The harmony of the spheres: inducible nitric oxide synthase and related genes in pancreatic beta cells. Diabetologia 39:875–890. doi: 10.1007/BF00403906 PubMedCrossRefGoogle Scholar
  28. 28.
    Papaccio G, Graziano A, D’Aquino R, Valiante S, Naro F (2005) A biphasic role of nuclear transcription factor (NF)-kappaB in the islet beta-cell apoptosis induced by interleukin (IL)-1beta. J Cell Physiol 204:124–130. doi: 10.1002/jcp.20276 PubMedCrossRefGoogle Scholar
  29. 29.
    McKenzie MD, Dudek NL, Mariana L et al (2006) Perforin and Fas induced by IFNgamma and TNFalpha mediate beta cell death by OT-I CTL. Int Immunol 18:837–846. doi: 10.1093/intimm/dxl020 PubMedCrossRefGoogle Scholar
  30. 30.
    Wachlin G, Augstein P, Schroder D et al (2003) IL-1beta, IFN-gamma and TNF-alpha increase vulnerability of pancreatic beta cells to autoimmune destruction. J Autoimmun 20:303–312. doi: 10.1016/S0896-8411(03)00039-8 PubMedCrossRefGoogle Scholar
  31. 31.
    Kwon G, Xu G, Marshall CA, McDaniel ML (1999) Tumor necrosis factor alpha-induced pancreatic beta-cell insulin resistance is mediated by nitric oxide and prevented by 15-deoxy-Delta12, 14-prostaglandin J2 and aminoguanidine. A role for peroxisome proliferator-activated receptor gamma activation and inos expression. J Biol Chem 274:18702–18708. doi: 10.1074/jbc.274.26.18702 PubMedCrossRefGoogle Scholar
  32. 32.
    Kim WH, Lee JW, Gao B, Jung MH (2005) Synergistic activation of JNK/SAPK induced by TNF-alpha and IFN-gamma: apoptosis of pancreatic beta-cells via the p53 and ROS pathway. Cell Signal 17:1516–1532. doi: 10.1016/j.cellsig.2005.03.020 PubMedCrossRefGoogle Scholar
  33. 33.
    Maedler K, Spinas GA, Dyntar D et al (2001) Distinct effects of saturated and monounsaturated fatty acids on beta-cell turnover and function. Diabetes 50:69–76. doi: 10.2337/diabetes.50.1.69 PubMedCrossRefGoogle Scholar
  34. 34.
    Roehrich ME, Mooser V, Lenain V et al (2003) Insulin-secreting beta-cell dysfunction induced by human lipoproteins. J Biol Chem 278:18368–18375. doi: 10.1074/jbc.M300102200 PubMedCrossRefGoogle Scholar
  35. 35.
    Harding HP, Ron D (2002) Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 51(Suppl 3):S455–S461. doi: 10.2337/diabetes.51.2007.S455 PubMedCrossRefGoogle Scholar
  36. 36.
    Zhao YF, Feng DD, Chen C (2006) Contribution of adipocyte-derived factors to beta-cell dysfunction in diabetes. Int J Biochem Cell Biol 38:804–819. doi: 10.1016/j.biocel.2005.11.008 PubMedCrossRefGoogle Scholar
  37. 37.
    Boni-Schnetzler MML, Ehses JA, Weir GC, Donath MY (2007) IL-1beta expression is induced by glucose and IL-1beta auto-stimulation, and increased in beta cells of type 2 diabetics. Diabetes 56:A413 AbstractGoogle Scholar
  38. 38.
    Larsen CM, Faulenbach M, Vaag A et al (2007) Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 356:1517–1526. doi: 10.1056/NEJMoa065213 PubMedCrossRefGoogle Scholar
  39. 39.
    Hull RL, Westermark GT, Westermark P, Kahn SE (2004) Islet amyloid: a critical entity in the pathogenesis of type 2 diabetes. J Clin Endocrinol Metab 89:3629–3643. doi: 10.1210/jc.2004-0405 PubMedCrossRefGoogle Scholar
  40. 40.
    Marzban L, Park K, Verchere CB (2003) Islet amyloid polypeptide and type 2 diabetes. Exp Gerontol 38:347–351. doi: 10.1016/S0531-5565(03)00004-4 PubMedCrossRefGoogle Scholar
  41. 41.
    Homo-Delarche F, Calderari S, Irminger JC et al (2006) Islet inflammation and fibrosis in a spontaneous model of type 2 diabetes, the GK rat. Diabetes 55:1625–1633. doi: 10.2337/db05-1526 PubMedCrossRefGoogle Scholar
  42. 42.
    Ehses JA, Perren A, Eppler E et al (2007) Increased number of islet-associated macrophages in type 2 diabetes. Diabetes 56:2356–2370. doi: 10.2337/db06-1650 PubMedCrossRefGoogle Scholar
  43. 43.
    Dai YD, Carayanniotis G, Sercarz E (2005) Antigen processing by autoreactive B cells promotes determinant spreading. Cell Mol Immunol 2:169–175PubMedGoogle Scholar
  44. 44.
    Gruessner RW, Sutherland DE, Najarian JS, Dunn DL, Gruessner AC (1997) Solitary pancreas transplantation for nonuremic patients with labile insulin-dependent diabetes mellitus. Transplantation 64:1572–1577. doi: 10.1097/00007890-199712150-00011 PubMedCrossRefGoogle Scholar
  45. 45.
    Ryan EA, Paty BW, Senior PA et al (2005) Five-year follow-up after clinical islet transplantation. Diabetes 54:2060–2069. doi: 10.2337/diabetes.54.7.2060 PubMedCrossRefGoogle Scholar
  46. 46.
    Nir T, Melton DA, Dor Y (2007) Recovery from diabetes in mice by beta cell regeneration. J Clin Invest 117:2553–2561. doi: 10.1172/JCI32959 PubMedCrossRefGoogle Scholar
  47. 47.
    Kang SM, Schneider DB, Lin Z et al (1997) Fas ligand expression in islets of Langerhans does not confer immune privilege and instead targets them for rapid destruction. Nat Med 3:738–743. doi: 10.1038/nm0797-738 PubMedCrossRefGoogle Scholar
  48. 48.
    Hsu PN, Lin HH, Tu CF et al (2001) Expression of human Fas ligand on mouse beta islet cells does not induce insulitis but is insufficient to confer immune privilege for islet grafts. J Biomed Sci 8:262–269. doi: 10.1007/BF02256600 PubMedCrossRefGoogle Scholar
  49. 49.
    Lin B, Zhang ZL, Yu LY, Guo LH (2003) CMV-hFasL transgenic mice are sensitive to low doses of streptozotocin-induced type I diabetes mellitus. Acta Pharmacol Sin 24:1199–1204PubMedGoogle Scholar
  50. 50.
    Sakata M, Yasuda H, Moriyama H et al (2008) Prevention of recurrent but not spontaneous autoimmune diabetes by transplanted NOD islets adenovirally transduced with immunomodulating molecules. Diabetes Res Clin Pract 80:352–359. doi: 10.1016/j.diabres.2008.01.030 PubMedCrossRefGoogle Scholar
  51. 51.
    Lamhamedi-Cherradi SE, Zheng S, Tisch RM, Chen YH (2003) Critical roles of tumor necrosis factor-related apoptosis-inducing ligand in type 1 diabetes. Diabetes 52:2274–2278. doi: 10.2337/diabetes.52.9.2274 PubMedCrossRefGoogle Scholar
  52. 52.
    Ou D, Metzger DL, Wang X et al (2002) TNF-related apoptosis-inducing ligand death pathway-mediated human beta-cell destruction. Diabetologia 45:1678–1688. doi: 10.1007/s00125-002-0926-2 PubMedCrossRefGoogle Scholar
  53. 53.
    Ou D, Wang X, Metzger DL et al (2005) Synergistic inhibition of tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis in human pancreatic beta cells by Bcl-2 and X-linked inhibitor of apoptosis. Hum Immunol 66:274–284. doi: 10.1016/j.humimm.2004.12.002 PubMedCrossRefGoogle Scholar
  54. 54.
    Sanlioglu AD, Dirice E, Elpek O et al (2008) High levels of endogenous tumor necrosis factor-related apoptosis-inducing ligand expression correlate with increased cell death in human pancreas. Pancreas 36:385–393. doi: 10.1097/MPA.0b013e318158a4e5 PubMedCrossRefGoogle Scholar
  55. 55.
    Moore KW, l Malefyt R, Coffman RL, O’Garra A (2001) Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 19:683–765. doi: 10.1146/annurev.immunol.19.1.683 PubMedCrossRefGoogle Scholar
  56. 56.
    Szelachowska M, Kretowski A, Kinalska I (1998) Decreased in vitro IL-4 [corrected] and IL-10 production by peripheral blood in first degree relatives at high risk of diabetes type-I. Horm Metab Res 30:526–530. doi: 10.1055/s-2007-978926 PubMedCrossRefGoogle Scholar
  57. 57.
    Alleva DG, Pavlovich RP, Grant C, Kaser SB, Beller DI (2000) Aberrant macrophage cytokine production is a conserved feature among autoimmune-prone mouse strains: elevated interleukin (IL)-12 and an imbalance in tumor necrosis factor-alpha and IL-10 define a unique cytokine profile in macrophages from young nonobese diabetic mice. Diabetes 49:1106–1115. doi: 10.2337/diabetes.49.7.1106 PubMedCrossRefGoogle Scholar
  58. 58.
    Smith DK, Korbutt GS, Suarez-Pinzon WL et al (1997) Interleukin-4 or interleukin-10 expressed from adenovirus-transduced syngeneic islet grafts fails to prevent beta cell destruction in diabetic NOD mice. Transplantation 64:1040–1049. doi: 10.1097/00007890-199710150-00017 PubMedCrossRefGoogle Scholar
  59. 59.
    Tarbell KV, Petit L, Zuo X et al (2007) Dendritic cell-expanded, islet-specific CD4+ CD25+ CD62L+ regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med 204:191–201. doi: 10.1084/jem.20061631 PubMedCrossRefGoogle Scholar
  60. 60.
    Long ET, Wood KJ (2007) Regulatory T cells—a journey from rodents to the clinic. Front Biosci 12:4042–4049. doi: 10.2741/2370 PubMedCrossRefGoogle Scholar
  61. 61.
    Luo X, Tarbell KV, Yang H et al (2007) Dendritic cells with TGF-beta1 differentiate naive CD4+ CD25-T cells into islet-protective Foxp3+ regulatory T cells. Proc Natl Acad Sci USA 104:2821–2826. doi: 10.1073/pnas.0611646104 PubMedCrossRefGoogle Scholar
  62. 62.
    Caro JJ, Ward AJ, O’Brien JA (2002) Lifetime costs of complications resulting from type 2 diabetes in the U.S. Diabetes Care 25:476–481. doi: 10.2337/diacare.25.3.476 PubMedCrossRefGoogle Scholar
  63. 63.
    Navarro JF, Mora C, Maca M, Garca J (2003) Inflammatory parameters are independently associated with urinary albumin in type 2 diabetes mellitus. Am J Kidney Dis 42:53–61. doi: 10.1016/S0272-6386(03)00408-6 PubMedCrossRefGoogle Scholar
  64. 64.
    Joussen AM, Poulaki V, Le ML et al (2004) A central role for inflammation in the pathogenesis of diabetic retinopathy. FASEB J 18:1450–1452PubMedGoogle Scholar
  65. 65.
    Satoh J, Yagihashi S, Toyota T (2003) The possible role of tumor necrosis factor-alpha in diabetic polyneuropathy. Exp Diabesity Res 4:65–71PubMedGoogle Scholar
  66. 66.
    Nassar H, Kantarci A, van Dyke TE (2007) Diabetic periodontitis: a model for activated innate immunity and impaired resolution of inflammation. Periodontol 2000 43:233–244. doi: 10.1111/j.1600-0757.2006.00168.x PubMedCrossRefGoogle Scholar
  67. 67.
    Peleg AY, Weerarathna T, McCarthy JS, Davis TM (2007) Common infections in diabetes: pathogenesis, management and relationship to glycaemic control. Diabetes Metab Res Rev 23:3–13. doi: 10.1002/dmrr.682 PubMedCrossRefGoogle Scholar
  68. 68.
    Joshi N, Caputo GM, Weitekamp MR, Karchmer AW (1999) Infections in patients with diabetes mellitus. N Engl J Med 341:1906–1912. doi: 10.1056/NEJM199912163412507 PubMedCrossRefGoogle Scholar
  69. 69.
    Finney SJ, Zekveld C, Elia A, Evans TW (2003) Glucose control and mortality in critically ill patients. JAMA 290:2041–2047. doi: 10.1001/jama.290.15.2041 PubMedCrossRefGoogle Scholar
  70. 70.
    Alba-Loureiro TC, Munhoz CD, Martins JO et al (2007) Neutrophil function and metabolism in individuals with diabetes mellitus. Braz J Med Biol Res 40:1037–1044. doi: 10.1590/S0100-879X2006005000143 PubMedCrossRefGoogle Scholar
  71. 71.
    Glowacka E, Banasik M, Lewkowicz P, Tchorzewski H (2002) The effect of LPS on neutrophils from patients with high risk of type 1 diabetes mellitus in relation to IL-8, IL-10 and IL-12 production and apoptosis in vitro. Scand J Immunol 55:210–217. doi: 10.1046/j.1365-3083.2002.01046.x PubMedCrossRefGoogle Scholar
  72. 72.
    Wang H, Meng QH, Gordon JR, Khandwala H, Wu L (2007) Proinflammatory and proapoptotic effects of methylglyoxal on neutrophils from patients with type 2 diabetes mellitus. Clin Biochem 40:1232–1239. doi: 10.1016/j.clinbiochem.2007.07.016 PubMedCrossRefGoogle Scholar
  73. 73.
    Gawlowski T, Stratmann B, Stirban AO, Negrean M, Tschoepe D (2007) AGEs and methylglyoxal induce apoptosis and expression of Mac-1 on neutrophils resulting in platelet-neutrophil aggregation. Thromb Res 121:117–126. doi: 10.1016/j.thromres.2007.03.002 PubMedCrossRefGoogle Scholar
  74. 74.
    Otton R, Soriano FG, Verlengia R, Curi R (2004) Diabetes induces apoptosis in lymphocytes. J Endocrinol 182:145–156. doi: 10.1677/joe.0.1820145 PubMedCrossRefGoogle Scholar
  75. 75.
    Tennenberg SD, Finkenauer R, Dwivedi A (1999) Absence of lipopolysaccharide-induced inhibition of neutrophil apoptosis in patients with diabetes. Arch Surg 134:1229–1233. doi: 10.1001/archsurg.134.11.1229 discussion 1233–1224PubMedCrossRefGoogle Scholar
  76. 76.
    Retnakaran R, Zinman B (2008) Type 1 diabetes, hyperglycaemia, and the heart. Lancet 371:1790–1799. doi: 10.1016/S0140-6736(08)60767-9 PubMedCrossRefGoogle Scholar
  77. 77.
    Mazzone T, Chait A, Plutzky J (2008) Cardiovascular disease risk in type 2 diabetes mellitus: insights from mechanistic studies. Lancet 371:1800–1809. doi: 10.1016/S0140-6736(08)60768-0 PubMedCrossRefGoogle Scholar
  78. 78.
    Milicevic Z, Raz I, Beattie SD et al (2008) Natural history of cardiovascular disease in patients with diabetes: role of hyperglycemia. Diabetes Care 31(Suppl 2):S155–S160. doi: 10.2337/dc08-s240 PubMedCrossRefGoogle Scholar
  79. 79.
    Libby P, Ridker PM, Maseri A (2002) Inflammation and atherosclerosis. Circulation 105:1135–1143. doi: 10.1161/hc0902.104353 PubMedCrossRefGoogle Scholar
  80. 80.
    Platt N, Gordon S (2001) Is the class A macrophage scavenger receptor (SR-A) multifunctional?—the mouse’s tale. J Clin Invest 108:649–654PubMedGoogle Scholar
  81. 81.
    Martinet W, Kockx MM, Verh K (2004) Apoptosis in atheroclerosis: implications for plaque destabilization. Acad Geneeskd Belg 66:61–79Google Scholar
  82. 82.
    Zeini M, Lopez-Fontal R, Traves PG, Benito G, Hortelano S (2007) Differential sensitivity to apoptosis among the cells that contribute to the atherosclerotic disease. Biochem Biophys Res Commun 363:444–450. doi: 10.1016/j.bbrc.2007.09.004 PubMedCrossRefGoogle Scholar
  83. 83.
    Seimon T, Tabas I (2008) Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J Lipid Res [Epub ahead of print]Google Scholar
  84. 84.
    Arai S, Shelton JM, Chen M et al (2005) A role for the apoptosis inhibitory factor AIM/Spalpha/Api6 in atherosclerosis development. Cell Metab 1:201–213. doi: 10.1016/j.cmet.2005.02.002 PubMedCrossRefGoogle Scholar
  85. 85.
    Liu J, Thewke DP, Su YR et al (2005) Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice. Arterioscler Thromb Vasc Biol 25:174–179PubMedGoogle Scholar
  86. 86.
    Tedgui A, Mallat Z (2001) Apoptosis as a determinant of atherothrombosis. Thromb Haemost 86:420–426PubMedGoogle Scholar
  87. 87.
    Ohayon J, Finet G, Gharib AM et al (2008) Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am J Physiol Heart Circ Physiol 295:H717–H727. doi: 10.1152/ajpheart.00005.2008 PubMedCrossRefGoogle Scholar
  88. 88.
    Burke AP, Kolodgie FD, Zieske A et al (2004) Morphologic findings of coronary atherosclerotic plaques in diabetics: a postmortem study. Arterioscler Thromb Vasc Biol 24:1266–1271. doi: 10.1161/01.ATV.0000131783.74034.97 PubMedCrossRefGoogle Scholar
  89. 89.
    Riedl SJ, Salvesen GS (2007) The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8:405–413. doi: 10.1038/nrm2153 PubMedCrossRefGoogle Scholar
  90. 90.
    Thorburn A (2004) Death receptor-induced cell killing. Cell Signal 16:139–144. doi: 10.1016/j.cellsig.2003.08.007 PubMedCrossRefGoogle Scholar
  91. 91.
    Ravagnan L, Roumier T, Kroemer G (2002) Mitochondria, the killer organelles and their weapons. J Cell Physiol 192:131–137. doi: 10.1002/jcp.10111 PubMedCrossRefGoogle Scholar
  92. 92.
    Berthier A, Lemaire-Ewing S, Prunet C et al (2005) 7-Ketocholesterol-induced apoptosis. Involvement of several pro-apoptotic but also anti-apoptotic calcium-dependent transduction pathways. FEBS J 272:3093–3104. doi: 10.1111/j.1742-4658.2005.04723.x PubMedCrossRefGoogle Scholar
  93. 93.
    Ermak N, Lacour B, Drueke TB, Vicca S (2008) Role of reactive oxygen species and Bax in oxidized low density lipoprotein-induced apoptosis of human monocytes. Atherosclerosis 200:247–256. doi: 10.1016/j.atherosclerosis.2007.12.052 PubMedCrossRefGoogle Scholar
  94. 94.
    Yao PM, Tabas I (2000) Free cholesterol loading of macrophages induces apoptosis involving the Fas pathway. J Biol Chem 275:23807–23813. doi: 10.1074/jbc.M002087200 PubMedCrossRefGoogle Scholar
  95. 95.
    Sarai M, Hartung D, Petrov A et al (2007) Broad and specific caspase inhibitor-induced acute repression of apoptosis in atherosclerotic lesions evaluated by radiolabeled annexin A5 imaging. J Am Coll Cardiol 50:2305–2312. doi: 10.1016/j.jacc.2007.08.044 PubMedCrossRefGoogle Scholar
  96. 96.
    Mercer J, Figg N, Stoneman V, Braganza D, Bennett MR (2005) Endogenous p53 protects vascular smooth muscle cells from apoptosis and reduces atherosclerosis in ApoE knockout mice. Circ Res 96:667–674. doi: 10.1161/ PubMedCrossRefGoogle Scholar
  97. 97.
    Hans CP, Zerfaoui M, Naura AS, Catling A, Boulares AH (2008) Differential effects of PARP inhibition on vascular cell survival and ACAT-1 expression favouring atherosclerotic plaque stability. Cardiovasc Res 78:429–439. doi: 10.1093/cvr/cvn018 PubMedCrossRefGoogle Scholar
  98. 98.
    Chinetti G, Griglio S, Antonucci M et al (1998) Activation of proliferator-activated receptors alpha and gamma induces apoptosis of human monocyte-derived macrophages. J Biol Chem 273:25573–25580. doi: 10.1074/jbc.273.40.25573 PubMedCrossRefGoogle Scholar
  99. 99.
    Chen Z, Sakuma M, Zago AC et al (2004) Evidence for a role of macrophage migration inhibitory factor in vascular disease. Arterioscler Thromb Vasc Biol 24:709–714. doi: 10.1161/01.ATV.0000119356.35748.9e PubMedCrossRefGoogle Scholar
  100. 100.
    Johnson JL, Sala-Newby GB, Ismail Y, Aguilera CM, Newby AC (2008) Low tissue inhibitor of metalloproteinases 3 and high matrix metalloproteinase 14 levels defines a subpopulation of highly invasive foam-cell macrophages. Arterioscler Thromb Vasc Biol 28:1647–1653. doi: 10.1161/ATVBAHA.108.170548 PubMedCrossRefGoogle Scholar
  101. 101.
    Li W, Kornmark L, Jonasson L, Forssell C, Yuan XM (2009) Cathepsin L is significantly associated with apoptosis and plaque destabilization in human atherosclerosis. Atherosclerosis 202:92–102. doi: 10.1016/j.atherosclerosis.2008.03.027 PubMedCrossRefGoogle Scholar
  102. 102.
    Samokhin AO, Wong A, Saftig P, Bromme D (2008) Role of cathepsin K in structural changes in brachiocephalic artery during progression of atherosclerosis in apoE-deficient mice. Atherosclerosis 200:58–68. doi: 10.1016/j.atherosclerosis.2007.12.047 PubMedCrossRefGoogle Scholar
  103. 103.
    Kolodgie FD, Burke AP, Skorija KS et al (2006) Lipoprotein-associated phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 26:2523–2529. doi: 10.1161/01.ATV.0000244681.72738.bc PubMedCrossRefGoogle Scholar
  104. 104.
    Akishima Y, Akasaka Y, Ishikawa Y et al (2005) Role of macrophage and smooth muscle cell apoptosis in association with oxidized low-density lipoprotein in the atherosclerotic development. Mod Pathol 18:365–373. doi: 10.1038/modpathol.3800249 PubMedCrossRefGoogle Scholar
  105. 105.
    Massey JB, Pownall HJ (2006) Structures of biologically active oxysterols determine their differential effects on phospholipid membranes. Biochemistry 45:10747–10758. doi: 10.1021/bi060540u PubMedCrossRefGoogle Scholar
  106. 106.
    Nakajima K, Nakano T, Tanaka A (2006) The oxidative modification hypothesis of atherosclerosis: the comparison of atherogenic effects on oxidized LDL and remnant lipoproteins in plasma. Clin Chim Acta 367:36–47. doi: 10.1016/j.cca.2005.12.013 PubMedCrossRefGoogle Scholar
  107. 107.
    Thorp E, Li Y, Bao L et al (2009) Increased apoptosis in advanced atherosclerotic lesions of Apoe−/− mice lacking macrophage Bcl-2. Arterioscler Thromb Vasc Biol 29(2):169–172PubMedCrossRefGoogle Scholar
  108. 108.
    Blanc-Brude OP, Teissier E, Castier Y et al (2007) IAP survivin regulates atherosclerotic macrophage survival. Arterioscler Thromb Vasc Biol 27:901–907. doi: 10.1161/01.ATV.0000258794.57872.3f PubMedCrossRefGoogle Scholar
  109. 109.
    Koskivirta I, Rahkonen O, Mayranpaa M et al (2006) Tissue inhibitor of metalloproteinases 4 (TIMP4) is involved in inflammatory processes of human cardiovascular pathology. Histochem Cell Biol 126:335–342. doi: 10.1007/s00418-006-0163-8 PubMedCrossRefGoogle Scholar
  110. 110.
    Sigruener A, Buechler C, Bared SM et al (2007) E-LDL upregulates TOSO expression and enhances the survival of human macrophages. Biochem Biophys Res Commun 359:723–728. doi: 10.1016/j.bbrc.2007.05.169 PubMedCrossRefGoogle Scholar
  111. 111.
    Perlman H, Pagliari LJ, Georganas C et al (1999) FLICE-inhibitory protein expression during macrophage differentiation confers resistance to Fas-mediated apoptosis. J Exp Med 190:1679–1688. doi: 10.1084/jem.190.11.1679 PubMedCrossRefGoogle Scholar
  112. 112.
    Halvorsen B, Waehre T, Scholz H et al (2005) Interleukin-10 enhances the oxidized LDL-induced foam cell formation of macrophages by antiapoptotic mechanisms. J Lipid Res 46:211–219. doi: 10.1194/jlr.M400324-JLR200 PubMedCrossRefGoogle Scholar
  113. 113.
    Martinet W, Croons V, Timmermans JP, Herman AG, De Meyer GR (2007) Nitric oxide selectively depletes macrophages in atherosclerotic plaques via induction of endoplasmic reticulum stress. Br J Pharmacol 152:493–500. doi: 10.1038/sj.bjp.0707426 PubMedCrossRefGoogle Scholar
  114. 114.
    Versari D, Herrmann J, Gossl M et al (2006) Dysregulation of the ubiquitin-proteasome system in human carotid atherosclerosis. Arterioscler Thromb Vasc Biol 26:2132–2139. doi: 10.1161/01.ATV.0000232501.08576.73 PubMedCrossRefGoogle Scholar
  115. 115.
    Han S, Liang CP, DeVries-Seimon T et al (2006) Macrophage insulin receptor deficiency increases ER stress-induced apoptosis and necrotic core formation in advanced atherosclerotic lesions. Cell Metab 3:257–266. doi: 10.1016/j.cmet.2006.02.008 PubMedCrossRefGoogle Scholar
  116. 116.
    Devries-Seimon T, Li Y, Yao PM et al (2005) Cholesterol-induced macrophage apoptosis requires ER stress pathways and engagement of the type A scavenger receptor. J Cell Biol 171:61–73. doi: 10.1083/jcb.200502078 PubMedCrossRefGoogle Scholar
  117. 117.
    Senokuchi T, Liang CP, Seimon TA et al (2008) Forkhead transcription factors (FoxOs) promote apoptosis of insulin-resistant macrophages during cholesterol-induced endoplasmic reticulum stress. Diabetes 57:2967–2976. doi: 10.2337/db08-0520 PubMedCrossRefGoogle Scholar
  118. 118.
    Deng T, Zhang L, Ge Y, Lu M, Zheng X (2008) Redistribution of intracellular calcium and its effect on apoptosis in macrophages: induction by oxidized LDL. Biomed Pharmacother [Epub ahead of print]Google Scholar
  119. 119.
    Myoishi M, Hao H, Minamino T et al (2007) Increased endoplasmic reticulum stress in atherosclerotic plaques associated with acute coronary syndrome. Circulation 116:1226–1233. doi: 10.1161/CIRCULATIONAHA.106.682054 PubMedCrossRefGoogle Scholar
  120. 120.
    Hayashi T, Juliet PA, Miyazaki A, Ignarro LJ, Iguchi A (2007) High glucose downregulates the number of caveolae in monocytes through oxidative stress from NADPH oxidase: implications for atherosclerosis. Biochim Biophys Acta 1772:364–372PubMedGoogle Scholar
  121. 121.
    Husemann J, Obstfeld A, Febbraio M, Kodama T, Silverstein SC (2001) CD11b/CD18 mediates production of reactive oxygen species by mouse and human macrophages adherent to matrixes containing oxidized LDL. Arterioscler Thromb Vasc Biol 21:1301–1305. doi: 10.1161/hq0801.095150 PubMedCrossRefGoogle Scholar
  122. 122.
    Kuge Y, Kume N, Ishino S et al (2008) Prominent lectin-like oxidized low density lipoprotein (LDL) receptor-1 (LOX-1) expression in atherosclerotic lesions is associated with tissue factor expression and apoptosis in hypercholesterolemic rabbits. Biol Pharm Bull 31:1475–1482. doi: 10.1248/bpb.31.1475 PubMedCrossRefGoogle Scholar
  123. 123.
    Manning-Tobin JJ, Moore KJ, Seimon TA et al (2009) Loss of SR-A and CD36 activity reduces atherosclerotic lesion complexity without abrogating foam cell formation in hyperlipidemic mice. Arterioscler Thromb Vasc Biol 29:19–26. doi: 10.1161/ATVBAHA.108.176644 PubMedCrossRefGoogle Scholar
  124. 124.
    Madan M, Amar S (2008) Toll-like receptor-2 mediates diet and/or pathogen associated atherosclerosis: proteomic findings. PLoS ONE 3:e3204. doi: 10.1371/journal.pone.0003204 PubMedCrossRefGoogle Scholar
  125. 125.
    Seimon TA, Obstfeld A, Moore KJ, Golenbock DT, Tabas I (2006) Combinatorial pattern recognition receptor signaling alters the balance of life and death in macrophages. Proc Natl Acad Sci USA 103:19794–19799. doi: 10.1073/pnas.0609671104 PubMedCrossRefGoogle Scholar
  126. 126.
    Freeman-Anderson NE, Pickle TG, Netherland CD et al (2008) Cannabinoid (CB2) receptor deficiency reduces the susceptibility of macrophages to oxidized LDL/oxysterol-induced apoptosis. J Lipid Res 49:2338–2346. doi: 10.1194/jlr.M800105-JLR200 PubMedCrossRefGoogle Scholar
  127. 127.
    Thorp E, Cui D, Schrijvers DM, Kuriakose G, Tabas I (2008) Mertk receptor mutation reduces efferocytosis efficiency and promotes apoptotic cell accumulation and plaque necrosis in atherosclerotic lesions of apoe-/- mice. Arterioscler Thromb Vasc Biol 28:1421–1428. doi: 10.1161/ATVBAHA.108.167197 PubMedCrossRefGoogle Scholar
  128. 128.
    Babaev VR, Chew JD, Ding L et al (2008) Macrophage EP4 deficiency increases apoptosis and suppresses early atherosclerosis. Cell Metab 8:492–501. doi: 10.1016/j.cmet.2008.09.005 PubMedCrossRefGoogle Scholar
  129. 129.
    Secchiero P, Candido R, Corallini F et al (2006) Systemic tumor necrosis factor-related apoptosis-inducing ligand delivery shows antiatherosclerotic activity in apolipoprotein E-null diabetic mice. Circulation 114:1522–1530. doi: 10.1161/CIRCULATIONAHA.106.643841 PubMedCrossRefGoogle Scholar
  130. 130.
    Cappello C, Saugel B, Huth KC et al (2007) Ozonized low density lipoprotein (ozLDL) inhibits NF-kappaB and IRAK-1-associated signaling. Arterioscler Thromb Vasc Biol 27:226–232. doi: 10.1161/01.ATV.0000250615.27795.85 PubMedCrossRefGoogle Scholar
  131. 131.
    Wang Z, Liu B, Wang P et al (2008) Phospholipase C beta3 deficiency leads to macrophage hypersensitivity to apoptotic induction and reduction of atherosclerosis in mice. J Clin Invest 118:195–204. doi: 10.1172/JCI33139 PubMedCrossRefGoogle Scholar
  132. 132.
    Greaves DR, Gordon S (2008) The macrophage scavenger receptor at 30 years of age—current knowledge and future challenges. J Lipid Res [Epub ahead of print]Google Scholar
  133. 133.
    Liang CP, Han S, Okamoto H et al (2004) Increased CD36 protein as a response to defective insulin signaling in macrophages. J Clin Invest 113:764–773PubMedGoogle Scholar
  134. 134.
    Liang CP, Han S, Senokuchi T, Tall AR (2007) The macrophage at the crossroads of insulin resistance and atherosclerosis. Circ Res 100:1546–1555. doi: 10.1161/CIRCRESAHA.107.152165 PubMedCrossRefGoogle Scholar
  135. 135.
    Fernandez-Hernando C, Ackah E, Yu J et al (2007) Loss of Akt1 leads to severe atherosclerosis and occlusive coronary artery disease. Cell Metab 6:446–457. doi: 10.1016/j.cmet.2007.10.007 PubMedCrossRefGoogle Scholar
  136. 136.
    Chahine MN, Blackwood DP, Dibrov E, Richard MN, Pierce GN (2009) Oxidized LDL affects smooth muscle cell growth through MAPK-mediated actions on nuclear protein import. J Mol Cell Cardiol 46(3):431–441PubMedCrossRefGoogle Scholar
  137. 137.
    Cui D, Thorp E, Li Y et al (2007) Pivotal advance: macrophages become resistant to cholesterol-induced death after phagocytosis of apoptotic cells. J Leukoc Biol 82:1040–1050. doi: 10.1189/jlb.0307192 PubMedCrossRefGoogle Scholar
  138. 138.
    Billiet L, Furman C, Cuaz-Perolin C et al (2008) Thioredoxin-1 and its natural inhibitor, vitamin D3 up-regulated protein 1, are differentially regulated by PPARalpha in human macrophages. J Mol Biol 384:564–576. doi: 10.1016/j.jmb.2008.09.061 PubMedCrossRefGoogle Scholar
  139. 139.
    Choi JS, Choi YJ, Shin SY et al (2008) Dietary flavonoids differentially reduce oxidized LDL-induced apoptosis in human endothelial cells: role of MAPK- and JAK/STAT-signaling. J Nutr 138:983–990PubMedGoogle Scholar
  140. 140.
    Boullier A, Li Y, Quehenberger O et al (2006) Minimally oxidized LDL offsets the apoptotic effects of extensively oxidized LDL and free cholesterol in macrophages. Arterioscler Thromb Vasc Biol 26:1169–1176. doi: 10.1161/01.ATV.0000210279.97308.9a PubMedCrossRefGoogle Scholar
  141. 141.
    Schrijvers DM, De Meyer GR, Herman AG, Martinet W (2007) Phagocytosis in atherosclerosis: molecular mechanisms and implications for plaque progression and stability. Cardiovasc Res 73:470–480. doi: 10.1016/j.cardiores.2006.09.005 PubMedCrossRefGoogle Scholar
  142. 142.
    Yan ZQ, Hansson GK (2007) Innate immunity, macrophage activation, and atherosclerosis. Immunol Rev 219:187–203. doi: 10.1111/j.1600-065X.2007.00554.x PubMedCrossRefGoogle Scholar
  143. 143.
    Miller YI, Viriyakosol S, Binder CJ et al (2003) Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J Biol Chem 278:1561–1568. doi: 10.1074/jbc.M209634200 PubMedCrossRefGoogle Scholar
  144. 144.
    Ait-Oufella H, Pouresmail V, Simon T et al (2008) Defective mer receptor tyrosine kinase signaling in bone marrow cells promotes apoptotic cell accumulation and accelerates atherosclerosis. Arterioscler Thromb Vasc Biol 28:1429–1431. doi: 10.1161/ATVBAHA.108.169078 PubMedCrossRefGoogle Scholar
  145. 145.
    Tabas I (2007) Apoptosis and efferocytosis in mouse models of atherosclerosis. Curr Drug Targets 8:1288–1296. doi: 10.2174/138945007783220623 PubMedCrossRefGoogle Scholar
  146. 146.
    Rossing P (2006) Diabetic nephropathy: worldwide epidemic and effects of current treatment on natural history. Curr Diab Rep 6:479–483. doi: 10.1007/s11892-006-0083-y PubMedCrossRefGoogle Scholar
  147. 147.
    Makino H, Kashihara N, Sugiyama H et al (1996) Phenotypic modulation of the mesangium reflected by contractile proteins in diabetes. Diabetes 45:488–495. doi: 10.2337/diabetes.45.4.488 PubMedCrossRefGoogle Scholar
  148. 148.
    Verzola D, Gandolfo MT, Ferrario F et al (2007) Apoptosis in the kidneys of patients with type II diabetic nephropathy. Kidney Int 72:1262–1272. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  149. 149.
    Ichinose K, Maeshima Y, Yamamoto Y et al (2005) Antiangiogenic endostatin peptide ameliorates renal alterations in the early stage of a type 1 diabetic nephropathy model. Diabetes 54:2891–2903. doi: 10.2337/diabetes.54.10.2891 PubMedCrossRefGoogle Scholar
  150. 150.
    Ichinose K, Maeshima Y, Yamamoto Y et al (2006) 2-(8-hydroxy-6-methoxy-1-oxo-1 h–2-benzopyran-3-yl) Propionic acid, an inhibitor of angiogenesis, ameliorates renal alterations in obese type 2 diabetic mice. Diabetes 55:1232–1242. doi: 10.2337/db05-1367 PubMedCrossRefGoogle Scholar
  151. 151.
    Maeda S (2008) Do inflammatory cytokine genes confer susceptibility to diabetic nephropathy? Kidney Int 74:413–415. doi: 10.1038/ki.2008.291 PubMedCrossRefGoogle Scholar
  152. 152.
    Kisseleva T, Brenner DA (2008) Mechanisms of fibrogenesis. Exp Biol Med (Maywood) 233:109–122. doi: 10.3181/0707-MR-190 CrossRefGoogle Scholar
  153. 153.
    Boor P, Sebekova K, Ostendorf T, Floege J (2007) Treatment targets in renal fibrosis. Nephrol Dial Transplant 22:3391–3407. doi: 10.1093/ndt/gfm393 PubMedCrossRefGoogle Scholar
  154. 154.
    Murphy M, Docherty NG, Griffin B et al (2008) IHG-1 amplifies TGF-beta1 signaling and is increased in renal fibrosis. J Am Soc Nephrol 19:1672–1680. doi: 10.1681/ASN.2007101080 PubMedCrossRefGoogle Scholar
  155. 155.
    Schlondorff DO (2008) Overview of factors contributing to the pathophysiology of progressive renal disease. Kidney Int 74:860–866. doi: 10.1038/ki.2008.351 PubMedCrossRefGoogle Scholar
  156. 156.
    Ninichuk V, Khandoga AG, Segerer S et al (2007) The role of interstitial macrophages in nephropathy of type 2 diabetic db/db mice. Am J Pathol 170:1267–1276. doi: 10.2353/ajpath.2007.060937 PubMedCrossRefGoogle Scholar
  157. 157.
    Usui HK, Shikata K, Sasaki M et al (2007) Macrophage scavenger receptor-a-deficient mice are resistant against diabetic nephropathy through amelioration of microinflammation. Diabetes 56:363–372. doi: 10.2337/db06-0359 PubMedCrossRefGoogle Scholar
  158. 158.
    Tesch GH (2008) MCP-1/CCL2: a new diagnostic marker and therapeutic target for progressive renal injury in diabetic nephropathy. Am J Physiol Renal Physiol 294:F697–F701. doi: 10.1152/ajprenal.00016.2008 PubMedCrossRefGoogle Scholar
  159. 159.
    Ricardo SD, van Goor H, Eddy AA (2008) Macrophage diversity in renal injury and repair. J Clin Invest 118:3522–3530. doi: 10.1172/JCI36150 PubMedCrossRefGoogle Scholar
  160. 160.
    Wang Y, Wang YP, Zheng G et al (2007) Ex vivo programmed macrophages ameliorate experimental chronic inflammatory renal disease. Kidney Int 72:290–299. doi: 10.1038/ PubMedCrossRefGoogle Scholar
  161. 161.
    Mitchell S, Thomas G, Harvey K et al (2002) Lipoxins, aspirin-triggered epi-lipoxins, lipoxin stable analogues, and the resolution of inflammation: stimulation of macrophage phagocytosis of apoptotic neutrophils in vivo. J Am Soc Nephrol 13:2497–2507. doi: 10.1097/01.ASN.0000032417.73640.72 PubMedCrossRefGoogle Scholar
  162. 162.
    Wu SH, Wu XH, Liao PY, Dong L (2007) Signal transduction involved in protective effects of 15(R/S)-methyl–lipoxin A(4) on mesangioproliferative nephritis in rats. Prostaglandins Leukot Essent Fatty Acids 76:173–180. doi: 10.1016/j.plefa.2006.12.006 PubMedCrossRefGoogle Scholar
  163. 163.
    Leonard MO, Hannan K, Burne MJ et al (2002) 15-Epi-16-(para-fluorophenoxy)-Lipoxin A(4)-methyl ester, a synthetic analogue of 15-epi-lipoxin A(4), is protective in experimental ischemic acute renal failure. J Am Soc Nephrol 13:1657–1662. doi: 10.1097/01.ASN.0000015795.74094.91 PubMedCrossRefGoogle Scholar
  164. 164.
    O’Meara SJ, Rodgers K, Godson C (2008) Lipoxins: update and impact of endogenous pro-resolution lipid mediators. Rev Physiol Biochem Pharmacol 160:47–70. doi: 10.1007/112_2006_0606 PubMedCrossRefGoogle Scholar
  165. 165.
    Moriya R, Manivel JC, Mauer M (2004) Juxtaglomerular apparatus T-cell infiltration affects glomerular structure in Type 1 diabetic patients. Diabetologia 47:82–88. doi: 10.1007/s00125-003-1253-y PubMedCrossRefGoogle Scholar
  166. 166.
    Fong DS, Aiello L, Gardner TW et al (2003) Diabetic retinopathy. Diabetes Care 26:226–229. doi: 10.2337/diacare.26.1.226 PubMedCrossRefGoogle Scholar
  167. 167.
    The Diabetes Control Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329:977–986. doi: 10.1056/NEJM199309303291401 CrossRefGoogle Scholar
  168. 168.
    UK Prospective Diabetes Study (UKPDS) Group (1998) Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS) 34. Lancet 352:854–865. doi: 10.1016/S0140-6736(98)07037-8 CrossRefGoogle Scholar
  169. 169.
    Piccolino FC, Zingirian M, Mosci C (1987) Classification of proliferative diabetic retinopathy. Graefe’s Arch Clin Exp Opthalmol 225:245–250. doi: 10.1007/BF02150141 CrossRefGoogle Scholar
  170. 170.
    Spalter HF (1983) Diabetic maculopathy. Metab Pediatr Syst Ophthalmol 7:211–215PubMedGoogle Scholar
  171. 171.
    Khan ZA, Chakrabarti S (2007) Cellular signaling and potential new treatment targets in diabetic retinopathy. Exp Diabetes Res 2007:31867PubMedGoogle Scholar
  172. 172.
    Kane R, Stevenson L, Godson C, Stitt AW, O’Brien C (2005) Gremlin gene expression in bovine retinal pericytes exposed to elevated glucose. Br J Ophthalmol 89:1638–1642. doi: 10.1136/bjo.2005.069591 PubMedCrossRefGoogle Scholar
  173. 173.
    Boado RJ, Pardridge WM (1990) The brain-type glucose transporter mRNA is specifically expressed at the blood-brain barrier. Biochem Biophys Res Commun 166:174–179. doi: 10.1016/0006-291X(90)91927-K PubMedCrossRefGoogle Scholar
  174. 174.
    Gardner TW, Antonetti DA, Barber AJ, LaNoue KF, Levison SW (2002) Diabetic retinopathy: more than meets the eye. Surv Ophthalmol 47(Suppl 2):S253–S262. doi: 10.1016/S0039-6257(02)00387-9 PubMedCrossRefGoogle Scholar
  175. 175.
    Behl Y, Krothapalli P, Desta T et al (2008) Diabetes-enhanced tumor necrosis factor-alpha production promotes apoptosis and the loss of retinal microvascular cells in type 1 and type 2 models of diabetic retinopathy. Am J Pathol 172:1411–1418. doi: 10.2353/ajpath.2008.071070 PubMedCrossRefGoogle Scholar
  176. 176.
    Leal EC, Manivannan A, Hosoya K et al (2007) Inducible nitric oxide synthase isoform is a key mediator of leukostasis and blood-retinal barrier breakdown in diabetic retinopathy. Invest Ophthalmol Vis Sci 48:5257–5265. doi: 10.1167/iovs.07-0112 PubMedCrossRefGoogle Scholar
  177. 177.
    Joussen AM, Poulaki V, Qin W et al (2002) Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. Am J Pathol 160:501–509PubMedGoogle Scholar
  178. 178.
    Early Treatment Diabetic Retinopathy Study Research Group (1991) Effects of aspirin treatment on diabetic retinopathy. ETDRS report number 8. Ophthalmology 98:757–765Google Scholar
  179. 179.
    Boulton AJ, Vinik AI, Arezzo JC et al (2005) Diabetic neuropathies: a statement by the American Diabetes Association. Diabetes Care 28:956–962. doi: 10.2337/diacare.28.4.956 PubMedCrossRefGoogle Scholar
  180. 180.
    Tesfaye S, Stevens LK, Stephenson JM et al (1996) Prevalence of diabetic peripheral neuropathy and its relation to glycaemic control and potential risk factors: the EURODIAB IDDM complications study. Diabetologia 39:1377–1384. doi: 10.1007/s001250050586 PubMedCrossRefGoogle Scholar
  181. 181.
    Figueroa-Romero C, Sadidi M, Feldman EL (2008) Mechanisms of disease: the oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord 9:301–314. doi: 10.1007/s11154-008-9104-2 PubMedCrossRefGoogle Scholar
  182. 182.
    Kabe Y, Ando K, Hirao S, Yoshida M, Handa H (2005) Redox regulation of NF-kappaB activation: distinct redox regulation between the cytoplasm and the nucleus. Antioxid Redox Signal 7:395–403. doi: 10.1089/ars.2005.7.395 PubMedCrossRefGoogle Scholar
  183. 183.
    Ha HC, Hester LD, Snyder SH (2002) Poly (ADP-ribose) polymerase-1 dependence of stress-induced transcription factors and associated gene expression in glia. Proc Natl Acad Sci USA 99:3270–3275. doi: 10.1073/pnas.052712399 PubMedCrossRefGoogle Scholar
  184. 184.
    Gruden G, Bruno G, Chaturvedi N et al (2008) Serum heat shock protein 27 and diabetes complications in the EURODIAB prospective complications study: a novel circulating marker for diabetic neuropathy. Diabetes 57:1966–1970. doi: 10.2337/db08-0009 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Aidan Ryan
    • 1
  • Madeline Murphy
    • 1
  • Catherine Godson
    • 1
  • Fionnuala B. Hickey
    • 1
  1. 1.UCD Diabetes Research Centre, UCD Conway Institute, School of Medicine and Medical ScienceUniversity College DublinDublinIreland

Personalised recommendations