, Volume 14, Issue 5, pp 687–698 | Cite as

The involvement of mitochondria and the caspase-9 activation pathway in rituximab-induced apoptosis in FL cells

  • Jonna EevaEmail author
  • Ulla Nuutinen
  • Antti Ropponen
  • Mikko Mättö
  • Mine Eray
  • Riikka Pellinen
  • Jarmo Wahlfors
  • Jukka Pelkonen
Original Paper


Despite the wide use of anti-CD20 antibody rituximab in the cancer treatment of B cell malignancies, the signalling pathways of CD20-induced apoptosis are still not understood. By using dominant negative (DN)-caspase-9 overexpressing follicular lymphoma cells we demonstrated that the activation of caspase-9 was essential for rituximab-mediated apoptosis. The death receptor pathway mediated by caspase-8 activation was not involved in rituximab-mediated apoptosis since overexpression of FLIPshort or FLIPlong proteins, inhibitors of caspase-8 activation, could not inhibit rituximab-induced apoptosis. However, the death receptor pathway activation by anti-Fas antibodies showed an additive effect on rituximab-induced apoptosis. The stabilisation of the mitochondrial outer membrane by Bcl-xL overexpression inhibited cell death, showing the important role of mitochondria in rituximab-induced apoptosis. Interestingly, the rituximab-induced release of cytochrome c and collapse of mitochondrial membrane potential were regulated by caspase-9. We suggest that caspase-9 and downstream caspases may feed back to mitochondria to amplify mitochondrial disruption during intrinsic apoptosis.


CD20 Apoptosis Caspase-9 Bcl-xL Cytochrome c Follicular lymphoma 



This work was supported by the Finnish Medical Foundation and Kuopio Univesity Hospital Grants. We thank Eila Pelkonen, Riitta Korhonen and Katja Häkkinen for their excellent technical assistance. We thank Dr Tapio Nousiainen and Kuopio University Hospital for the anti-CD20 antibody rituximab (Mabthera®).


  1. 1.
    Marcus R, Hagenbeek A (2007) The therapeutic use of rituximab in non-Hodgkin’s lymphoma. Eur J Haematol 67:5–14. doi: 10.1111/j.1600-0609.2006.00789.x CrossRefGoogle Scholar
  2. 2.
    Reff ME, Carner K, Chambers KS et al (1994) Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 83:435–445PubMedGoogle Scholar
  3. 3.
    Tedder TF, Engel P (1994) CD20: a regulator of cell-cycle progression of B lymphocytes. Immunol Today 15:450–454. doi: 10.1016/0167-5699(94)90276-3 CrossRefPubMedGoogle Scholar
  4. 4.
    Harjunpaa A, Junnikkala S, Meri S (2000) Rituximab (anti-CD20) therapy of B-cell lymphomas: direct complement killing is superior to cellular effector mechanisms. Scand J Immunol 51:634–641. doi: 10.1046/j.1365-3083.2000.00745.x CrossRefPubMedGoogle Scholar
  5. 5.
    Manches O, Lui G, Chaperot L et al (2003) In vitro mechanisms of action of rituximab on primary non-Hodgkin lymphomas. Blood 101:949–954. doi: 10.1182/blood-2002-02-0469 CrossRefPubMedGoogle Scholar
  6. 6.
    Shan D, Ledbetter JA, Press OW (1998) Apoptosis of malignant human B cells by ligation of CD20 with monoclonal antibodies. Blood 91:1644–1652PubMedGoogle Scholar
  7. 7.
    Van der Kolk LE, Evers LM, Omene C et al (2002) CD20-induced B cell death can bypass mitochondria and caspase activation. Leukemia 16:1735–1744. doi: 10.1038/sj.leu.2402559 CrossRefPubMedGoogle Scholar
  8. 8.
    Chan HT, Hughes D, French RR et al (2003) CD20-induced lymphoma cell death is independent of both caspases and its redistribution into triton X-100 insoluble membrane rafts. Cancer Res 63:5480–5489PubMedGoogle Scholar
  9. 9.
    Mathas S, Rickers A, Bommert K et al (2000) Anti-CD20- and B-cell receptor-mediated apoptosis: evidence for shared intracellular signaling pathways. Cancer Res 60:7170–7176PubMedGoogle Scholar
  10. 10.
    Byrd JC, Kitada S, Flinn IW et al (2002) The mechanism of tumor cell clearance by rituximab in vivo in patients with B-cell chronic lymphocytic leukemia: evidence of caspase activation and apoptosis induction. Blood 99:1038–1043. doi: 10.1182/blood.V99.3.1038 CrossRefPubMedGoogle Scholar
  11. 11.
    Hofmeister JK, Cooney D, Coggeshall KM (2000) Clustered CD20 induced apoptosis: src-family kinase, the proximal regulator of tyrosine phosphorylation, calcium influx, and caspase 3-dependent apoptosis. Blood Cells Mol Dis 26:133–143. doi: 10.1006/bcmd.2000.0287 CrossRefPubMedGoogle Scholar
  12. 12.
    Stel AJ, Ten Cate B, Jacobs S et al (2007) Fas receptor clustering and involvement of the death receptor pathway in rituximab-mediated apoptosis with concomitant sensitization of lymphoma B cells to fas-induced apoptosis. J Immunol 178:2287–2295CrossRefPubMedGoogle Scholar
  13. 13.
    Flieger D, Renoth S, Beier I et al (2000) Mechanism of cytotoxicity induced by chimeric mouse human monoclonal antibody IDEC-C2B8 in CD20-expressing lymphoma cell lines. Cell Immunol 204:55–63. doi: 10.1006/cimm.2000.1693 CrossRefPubMedGoogle Scholar
  14. 14.
    Mattila AM, Meri S (2008) Responses to rituximab vary among follicular lymphoma B cells of different maturation stages. Scand J Immunol 68:159–168. doi: 10.1111/j.1365-3083.2008.02129.x CrossRefPubMedGoogle Scholar
  15. 15.
    Chow KU, Sommerlad WD, Boehrer S et al (2002) Anti-CD20 antibody (IDEC-C2B8, rituximab) enhances efficacy of cytotoxic drugs on neoplastic lymphocytes in vitro: role of cytokines, complement, and caspases. Haematologica 87:33–43PubMedGoogle Scholar
  16. 16.
    Jazirehi AR, Gan XH, De Vos S et al (2003) Rituximab (anti-CD20) selectively modifies Bcl-xL and apoptosis protease activating factor-1 (Apaf-1) expression and sensitizes human non-Hodgkin’s lymphoma B cell lines to paclitaxel-induced apoptosis. Mol Cancer Ther 2:1183–1193PubMedGoogle Scholar
  17. 17.
    Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316. doi: 10.1126/science.281.5381.1312 CrossRefPubMedGoogle Scholar
  18. 18.
    Kischkel FC, Hellbardt S, Behrmann I et al (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J 14:5579–5588CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Li H, Zhu H, Xu CJ et al (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501. doi: 10.1016/S0092-8674(00)81590-1 CrossRefGoogle Scholar
  20. 20.
    Riedl SJ, Salvesen GS (2007) The apoptosome: signalling platform of cell death. Nat Rev Mol Cell Biol 8:405–413. doi: 10.1038/nrm2153 CrossRefPubMedGoogle Scholar
  21. 21.
    Lakhani SA, Masud A, Kuida K et al (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311:847–851. doi: 10.1126/science.1115035 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Kim H, Rafiuddin-Shah M, Tu HC et al (2006) Hierarchical regulation of mitochondrion-dependent apoptosis by BCL-2 subfamilies. Nat Cell Biol 8:1348–1358. doi: 10.1038/ncb1499 CrossRefPubMedGoogle Scholar
  23. 23.
    Goldstein JC, Munoz-Pinedo C, Ricci JE et al (2005) Cytochrome c is released in a single step during apoptosis. Cell Death Differ 12:453–462. doi: 10.1038/sj.cdd.4401596 CrossRefPubMedGoogle Scholar
  24. 24.
    Shan D, Ledbetter JA, Press OW (2000) Signaling events involved in anti-CD20-induced apoptosis of malignant human B cells. Cancer Immunol Immunother 48:673–683. doi: 10.1007/s002620050016 CrossRefPubMedGoogle Scholar
  25. 25.
    Foghsgaard L, Wissing D, Mauch D et al (2001) Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 153:999–1010. doi: 10.1083/jcb.153.5.999 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Daniels I, Abulayha AM, Thomson BJ et al (2006) Caspase-independent killing of Burkitt lymphoma cell lines by rituximab. Apoptosis 11:1013–1023. doi: 10.1007/s10495-006-6314-5 CrossRefPubMedGoogle Scholar
  27. 27.
    Stanglmaier M, Reis S, Hallek M (2004) Rituximab and alemtuzumab induce a nonclassic, caspase-independent apoptotic pathway in B-lymphoid cell lines and in chronic lymphocytic leukemia cells. Ann Hematol 83:634–645. doi: 10.1007/s00277-004-0917-0 CrossRefPubMedGoogle Scholar
  28. 28.
    Eray M, Postila V, Eeva J et al (2003) Follicular lymphoma cell lines, an in vitro model for antigenic selection and cytokine-mediated growth regulation of germinal centre B cells. Scand J Immunol 57:545–555. doi: 10.1046/j.1365-3083.2003.01264.x CrossRefPubMedGoogle Scholar
  29. 29.
    Nuutinen U, Simelius N, Ropponen A et al (2008) PDTC enables type I TRAIL signaling in type II follicular lymphoma cells. Leuk Res (in press). doi: 10.1016/j.leukres.2008.09.025 CrossRefPubMedGoogle Scholar
  30. 30.
    Pellinen R, Hakkarainen T, Wahlfors T et al (2004) Cancer cells as targets for lentivirus-mediated gene transfer and gene therapy. Int J Oncol 25:1753–1762PubMedGoogle Scholar
  31. 31.
    Nicoletti I, Migliorati G, Pagliacci MC et al (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279. doi: 10.1016/0022-1759(91)90198-O CrossRefPubMedGoogle Scholar
  32. 32.
    Castedo M, Ferri K, Roumier T et al (2002) Quantitation of mitochondrial alterations associated with apoptosis. J Immunol Methods 265:39–47. doi: 10.1016/S0022-1759(02)00069-8 CrossRefPubMedGoogle Scholar
  33. 33.
    Eeva J, Postila V, Matto M et al (2003) Kinetics and signaling requirements of CD40-mediated protection from B cell receptor-induced apoptosis. Eur J Immunol 33:2783–2791. doi: 10.1002/eji.200324227 CrossRefPubMedGoogle Scholar
  34. 34.
    Eeva J, Ropponen A, Nuutinen U et al (2007) The CD40-induced protection against CD95-mediated apoptosis is associated with a rapid upregulation of anti-apoptotic c-FLIP. Mol Immunol 44:1230–1237. doi: 10.1016/j.molimm.2006.06.005 CrossRefPubMedGoogle Scholar
  35. 35.
    Krueger A, Schmitz I, Baumann S et al (2001) Cellular FLICE-inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex. J Biol Chem 276:20633–20640. doi: 10.1074/jbc.M101780200 CrossRefPubMedGoogle Scholar
  36. 36.
    Besnault L, Schrantz N, Auffredou MT et al (2001) B cell receptor cross-linking triggers a caspase-8-dependent apoptotic pathway that is independent of the death effector domain of Fas-associated death domain protein. J Immunol 167:733–740CrossRefPubMedGoogle Scholar
  37. 37.
    Denecker G, Dooms H, Van Loo G et al (2000) Phosphatidyl serine exposure during apoptosis precedes release of cytochrome c and decrease in mitochondrial transmembrane potential. FEBS Lett 465:47–52. doi: 10.1016/S0014-5793(99)01702-0 CrossRefPubMedGoogle Scholar
  38. 38.
    Holder MJ, Barnes NM, Gregory CD et al (2006) Lymphoma cells protected from apoptosis by dysregulated bcl-2 continue to bind annexin V in response to B-cell receptor engagement: a cautionary tale. Leuk Res 30:77–80. doi: 10.1016/j.leukres.2005.05.018 CrossRefPubMedGoogle Scholar
  39. 39.
    Vier J, Furmann C, Hacker G (2000) Baculovirus P35 protein does not inhibit caspase-9 in a cell-free system of apoptosis. Biochem Biophys Res Commun 276:855–861. doi: 10.1006/bbrc.2000.3560 CrossRefPubMedGoogle Scholar
  40. 40.
    Chen M, Guerrero AD, Huang L et al (2007) Caspase-9-induced mitochondrial disruption through cleavage of anti-apoptotic BCL-2 family members. J Biol Chem 282:33888–33895. doi: 10.1074/jbc.M702969200 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Jonna Eeva
    • 1
    Email author
  • Ulla Nuutinen
    • 1
  • Antti Ropponen
    • 1
  • Mikko Mättö
    • 2
  • Mine Eray
    • 3
  • Riikka Pellinen
    • 4
  • Jarmo Wahlfors
    • 5
  • Jukka Pelkonen
    • 1
    • 6
  1. 1.Department of Clinical MicrobiologyUniversity of KuopioKuopioFinland
  2. 2.Department of Clinical ChemistryKuopio University HospitalKuopioFinland
  3. 3.Department of Pathology, Haartman InstituteUniversity of HelsinkiHelsinkiFinland
  4. 4.Department of PharmaceuticsUniversity of KuopioKuopioFinland
  5. 5.Academic Development UnitUniversity of TampereTampereFinland
  6. 6.Department of Clinical MicrobiologyKuopio University HospitalKuopioFinland

Personalised recommendations