, Volume 14, Issue 8, pp 1029–1037

Clearance of apoptotic corpses

  • John F. Fullard
  • Abhijit Kale
  • Nicholas E. Baker
Apoptosis in Drosophila


Apoptotic corpses can be engulfed and cleared by many other cell types in addition to ‘professional’ phagocytes such as macrophage. Studies of several organisms have contributed to the understanding of apoptotic corpse engulfment. Two partially redundant engulfment pathways have been characterized that act even in non-professional phagocytes to promote corpse engulfment. This review summarizes some recent progress in signaling by these pathways, including the exposure of eat-me-signals on apoptotic cells, and insights from Drosophila on the roles of the bridging receptor Six Microns Under, the non-receptor tyrosine kinase Shark, and store-operated calcium release in the Draper/Ced-1 pathway of corpse recognition and internalization. The mechanism of apoptotic phagosome maturation is outlined, and possible connections between corpse engulfment and proliferation, cell competition, and immunity are discussed.


Apoptotic corpse Corpse engulfment Phosphatidylserine Aminophospholipid translocase Phospholipid scramblase Draper Six Microns Under Undertaker Shark 


  1. 1.
    Krieser RJ, White K (2002) Engulfment mechanism of apoptotic cells. Curr Opin Cell Biol 14:734–738. doi:10.1016/S0955-0674(02)00390-3 PubMedCrossRefGoogle Scholar
  2. 2.
    Reddien PW, Horvitz HR (2004) The engulfment process of programmed cell death in Caenorhabditis elegans. Annu Rev Cell Dev Biol 20:193–221. doi:10.1146/annurev.cellbio.20.022003.114619 PubMedCrossRefGoogle Scholar
  3. 3.
    Mangahas PM, Zhou Z (2005) Clearance of apoptotic cells in Caenorhabditis elegans. Semin Cell Dev Biol 16:295–306. doi:10.1016/j.semcdb.2004.12.005 PubMedCrossRefGoogle Scholar
  4. 4.
    Erwig LP, Henson PM (2008) Clearance of apoptotic cells by phagocytes. Cell Death Differ 15:243–250. doi:10.1038/sj.cdd.4402184 PubMedCrossRefGoogle Scholar
  5. 5.
    Fristrom D (1969) Cellular degeneration in the production of some mutant phenotypes in Drosophila melanogaster. Mol Gen Genet 103:363–379. doi:10.1007/BF00383486 PubMedCrossRefGoogle Scholar
  6. 6.
    Franc NC, White K, Ezekowitz RA (1999) Phagocytosis and development: back to the future. Curr Opin Immunol 11:47–52. doi:10.1016/S0952-7915(99)80009-0 PubMedCrossRefGoogle Scholar
  7. 7.
    Crozatier M, Meister M (2007) Drosophila haematopoiesis. Cell Microbiol 9:1117–1126. doi:10.1111/j.1462-5822.2007.00930.x PubMedCrossRefGoogle Scholar
  8. 8.
    Franc NC, Dimarcq JL, Lagueux M, Hoffmann J, Ezekowitz RA (1996) Croquemort, a novel Drosophila hemocyte/macrophage receptor that recognizes apoptotic cells. Immunity 4:431–443. doi:10.1016/S1074-7613(00)80410-0 PubMedCrossRefGoogle Scholar
  9. 9.
    Fadok VA, Voelker DR, Campbell PA, Cohen JJ, Bratton DL, Henson PM (1992) Exposure of phosphatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216PubMedGoogle Scholar
  10. 10.
    Williamson P, Schlegel RA (2002) Transbilayer phospholipid movement and the clearance of apoptotic cells. Biochim Biophys Acta 1585:53–63PubMedGoogle Scholar
  11. 11.
    Bratton DL, Fadok VA, Richter DA, Kailey JM, Guthrie LA, Henson PM (1997) Appearance of phosphatidylserine on apoptotic cells requires calcium-mediated nonspecific flip-flop and is enhanced by loss of the aminophospholipid translocase. J Biol Chem 272:26159–26165. doi:10.1074/jbc.272.42.26159 PubMedCrossRefGoogle Scholar
  12. 12.
    Daleke DL, Lyles JV (2000) Identification and purification of aminophospholipid flippases. Biochim Biophys Acta 1486:108–127PubMedGoogle Scholar
  13. 13.
    Vance JE, Steenbergen R (2005) Metabolism and functions of phosphatidylserine. Prog Lipid Res 44:207–234. doi:10.1016/j.plipres.2005.05.001 PubMedCrossRefGoogle Scholar
  14. 14.
    Gardai SJ, Bratton DL, Ogden CA, Henson PM (2006) Recognition ligands on apoptotic cells: a perspective. J Leukoc Biol 79:896–903. doi:10.1189/jlb.1005550 PubMedCrossRefGoogle Scholar
  15. 15.
    van den Eijnde SM, Boshart L, Baehrecke EH, De Zeeuw CI, Reutelingsperger CP, Vermeij-Keers C (1998) Cell surface exposure of phosphatidylserine during apoptosis is phylogenetically conserved. Apoptosis 3:9–16. doi:10.1023/A:1009650917818 PubMedCrossRefGoogle Scholar
  16. 16.
    Zwaal RF, Comfurius P, Bevers EM (2005) Surface exposure of phosphatidylserine in pathological cells. Cell Mol Life Sci 62:971–988. doi:10.1007/s00018-005-4527-3 PubMedCrossRefGoogle Scholar
  17. 17.
    Wang X, Wang J, Gengyo-Ando K et al (2007) C. elegans mitochondrial factor WAH-1 promotes phosphatidylserine externalization in apoptotic cells through phospholipid scramblase SCRM-1. Nat Cell Biol 9:541–549. doi:10.1038/ncb1574 PubMedCrossRefGoogle Scholar
  18. 18.
    Venegas V, Zhou Z (2007) Two alternative mechanisms that regulate the presentation of apoptotic cell engulfment signal in Caenorhabditis elegans. Mol Biol Cell 18:3180–3192. doi:10.1091/mbc.E07-02-0138 PubMedCrossRefGoogle Scholar
  19. 19.
    Modjtahedi N, Giordanetto F, Madeo F, Kroemer G (2006) Apoptosis-inducing factor: vital and lethal. Trends Cell Biol 16:264–272. doi:10.1016/j.tcb.2006.03.008 PubMedCrossRefGoogle Scholar
  20. 20.
    Susin SA, Lorenzo HK, Zamzami N et al (1999) Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 397:441–446. doi:10.1038/17135 PubMedCrossRefGoogle Scholar
  21. 21.
    Halleck MS, Pradhan D, Blackman C, Berkes C, Williamson P, Schlegel RA (1998) Multiple members of a third subfamily of P-type ATPases identified by genomic sequences and ESTs. Genome Res 8:354–361PubMedGoogle Scholar
  22. 22.
    Ruaud AF, Nilsson L, Richard F, Larsen MK, Bessereau JL, Tuck S (2008) The C. elegans P4-ATPase TAT-1 regulates lysosome biogenesis and endocytosis. Traffic 10:88–100PubMedCrossRefGoogle Scholar
  23. 23.
    Zullig S, Neukomm LJ, Jovanovic M et al (2007) Aminophospholipid translocase TAT-1 promotes phosphatidylserine exposure during C. elegans apoptosis. Curr Biol 17:994–999. doi:10.1016/j.cub.2007.05.024 PubMedCrossRefGoogle Scholar
  24. 24.
    Darland-Ransom M, Wang X, Sun CL et al (2008) Role of C. elegans TAT-1 protein in maintaining plasma membrane phosphatidylserine asymmetry. Science 320:528–531. doi:10.1126/science.1155847 PubMedCrossRefGoogle Scholar
  25. 25.
    Kuraishi T, Manaka J, Kono M et al (2007) Identification of calreticulin as a marker for phagocytosis of apoptotic cells in Drosophila. Exp Cell Res 313:500–510. doi:10.1016/j.yexcr.2006.10.027 PubMedCrossRefGoogle Scholar
  26. 26.
    Gardai SJ, McPhillips KA, Frasch SC et al (2005) Cell-surface calreticulin initiates clearance of viable or apoptotic cells through trans-activation of LRP on the phagocyte. Cell 123:321–334. doi:10.1016/j.cell.2005.08.032 PubMedCrossRefGoogle Scholar
  27. 27.
    Park D, Tosello-Trampont AC, Elliott MR et al (2007) BAI1 is an engulfment receptor for apoptotic cells upstream of the ELMO/Dock180/Rac module. Nature 450:430–434. doi:10.1038/nature06329 PubMedCrossRefGoogle Scholar
  28. 28.
    Zhou Z, Hartwieg E, Horvitz HR (2001) CED-1 is a transmembrane receptor that mediates cell corpse engulfment in C. elegans. Cell 104:43–56. doi:10.1016/S0092-8674(01)00190-8 PubMedCrossRefGoogle Scholar
  29. 29.
    Manaka J, Kuraishi T, Shiratsuchi A et al (2004) Draper-mediated and phosphatidylserine-independent phagocytosis of apoptotic cells by Drosophila hemocytes/macrophages. J Biol Chem 279:48466–48476. doi:10.1074/jbc.M408597200 PubMedCrossRefGoogle Scholar
  30. 30.
    Freeman MR, Delrow J, Kim J, Johnson E, Doe CQ (2003) Unwrapping glial biology: gcm target genes regulating glial development, diversification, and function. Neuron 38:567–580. doi:10.1016/S0896-6273(03)00289-7 PubMedCrossRefGoogle Scholar
  31. 31.
    MacDonald JM, Beach MG, Porpiglia E, Sheehan AE, Watts RJ, Freeman MR (2006) The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 50:869–881. doi:10.1016/j.neuron.2006.04.028 PubMedCrossRefGoogle Scholar
  32. 32.
    Li W, Baker NE (2007) Engulfment is required for cell competition. Cell 129:1215–1225. doi:10.1016/j.cell.2007.03.054 PubMedCrossRefGoogle Scholar
  33. 33.
    Cuttell L, Vaughan A, Silva E et al (2008) Undertaker, a Drosophila junctophilin, links Draper-mediated phagocytosis and calcium homeostasis. Cell 135:524–534. doi:10.1016/j.cell.2008.08.033 PubMedCrossRefGoogle Scholar
  34. 34.
    Su HP, Nakada-Tsukui K, Tosello-Trampont AC et al (2002) Interaction of CED-6/GULP, an adapter protein involved in engulfment of apoptotic cells with CED-1 and CD91/low density lipoprotein receptor-related protein (LRP). J Biol Chem 277:11772–11779. doi:10.1074/jbc.M109336200 PubMedCrossRefGoogle Scholar
  35. 35.
    Awasaki T, Tatsumi R, Takahashi K et al (2006) Essential role of the apoptotic cell engulfment genes Draper and ced-6 in programmed axon pruning during Drosophila metamorphosis. Neuron 50:855–867. doi:10.1016/j.neuron.2006.04.027 PubMedCrossRefGoogle Scholar
  36. 36.
    Kurucz E, Markus R, Zsamboki J et al (2007) Nimrod, a putative phagocytosis receptor with EGF repeats in Drosophila plasmatocytes. Curr Biol 17:649–654. doi:10.1016/j.cub.2007.02.041 PubMedCrossRefGoogle Scholar
  37. 37.
    Kocks C, Cho JH, Nehme N et al (2005) Eater, a transmembrane protein mediating phagocytosis of bacterial pathogens in Drosophila. Cell 123:335–346. doi:10.1016/j.cell.2005.08.034 PubMedCrossRefGoogle Scholar
  38. 38.
    Kurant E, Axelrod S, Leaman D, Gaul U (2008) Six-microns-under acts upstream of Draper in the glial phagocytosis of apoptotic neurons. Cell 133:498–509. doi:10.1016/j.cell.2008.02.052 PubMedCrossRefGoogle Scholar
  39. 39.
    Elliott MR, Ravichandran KS (2008) Death in the CNS: six-microns-under. Cell 133:393–395. doi:10.1016/j.cell.2008.04.014 PubMedCrossRefGoogle Scholar
  40. 40.
    Gumienny TL, Brugnera E, Tosello-Trampont AC et al (2001) CED-12/ELMO, a novel member of the CrkII/Dock180/Rac pathway, is required for phagocytosis and cell migration. Cell 107:27–41. doi:10.1016/S0092-8674(01)00520-7 PubMedCrossRefGoogle Scholar
  41. 41.
    Lu M, Kinchen JM, Rossman KL et al (2004) PH domain of ELMO functions in trans to regulate Rac activation via Dock180. Nat Struct Mol Biol 11:756–762. doi:10.1038/nsmb800 PubMedCrossRefGoogle Scholar
  42. 42.
    Chimini G, Chavrier P (2000) Function of Rho family proteins in actin dynamics during phagocytosis and engulfment. Nat Cell Biol 2:E191–E196. doi:10.1038/35036454 PubMedCrossRefGoogle Scholar
  43. 43.
    Ravichandran KS, Lorenz U (2007) Engulfment of apoptotic cells: signals for a good meal. Nat Rev Immunol 7:964–974. doi:10.1038/nri2214 PubMedCrossRefGoogle Scholar
  44. 44.
    Albert ML, Kim JI, Birge RB (2000) Alphavbeta5 integrin recruits the CrkII-Dock180-rac1 complex for phagocytosis of apoptotic cells. Nat Cell Biol 2:899–905. doi:10.1038/35046549 PubMedCrossRefGoogle Scholar
  45. 45.
    Kinchen JM, Cabello J, Klingele D et al (2005) Two pathways converge at CED-10 to mediate actin rearrangement and corpse removal in C. elegans. Nature 434:93–99. doi:10.1038/nature03263 PubMedCrossRefGoogle Scholar
  46. 46.
    Leverrier Y, Lorenzi R, Blundell MP et al (2001) Cutting edge: the Wiskott–Aldrich syndrome protein is required for efficient phagocytosis of apoptotic cells. J Immunol 166:4831–4834PubMedGoogle Scholar
  47. 47.
    Tsuboi S, Meerloo J (2007) Wiskott–Aldrich syndrome protein is a key regulator of the phagocytic cup formation in macrophages. J Biol Chem 282:34194–34203. doi:10.1074/jbc.M705999200 PubMedCrossRefGoogle Scholar
  48. 48.
    Pearson AM, Baksa K, Ramet M et al (2003) Identification of cytoskeletal regulatory proteins required for efficient phagocytosis in Drosophila. Microbes Infect 5:815–824. doi:10.1016/S1286-4579(03)00157-6 PubMedCrossRefGoogle Scholar
  49. 49.
    Yu X, Odera S, Chuang CH, Lu N, Zhou Z (2006) C. elegans dynamin mediates the signaling of phagocytic receptor CED-1 for the engulfment and degradation of apoptotic cells. Dev Cell 10:743–757. doi:10.1016/j.devcel.2006.04.007 PubMedCrossRefGoogle Scholar
  50. 50.
    Rubartelli A, Poggi A, Zocchi MR (1997) The selective engulfment of apoptotic bodies by dendritic cells is mediated by the alpha(v)beta3 integrin and requires intracellular and extracellular calcium. Eur J Immunol 27:1893–1900. doi:10.1002/eji.1830270812 PubMedCrossRefGoogle Scholar
  51. 51.
    Dewitt S, Hallett MB (2002) Cytosolic free Ca(2+) changes and calpain activation are required for beta integrin-accelerated phagocytosis by human neutrophils. J Cell Biol 159:181–189. doi:10.1083/jcb.200206089 PubMedCrossRefGoogle Scholar
  52. 52.
    Dewitt S, Laffafian I, Hallett MB (2003) Phagosomal oxidative activity during beta2 integrin (CR3)-mediated phagocytosis by neutrophils is triggered by a non-restricted Ca2+ signal: Ca2+ controls time not space. J Cell Sci 116:2857–2865. doi:10.1242/jcs.00499 PubMedCrossRefGoogle Scholar
  53. 53.
    Tejle K, Magnusson KE, Rasmusson B (2002) Phagocytosis and phagosome maturation are regulated by calcium in J774 macrophages interacting with unopsonized prey. Biosci Rep 22:529–540. doi:10.1023/A:1022025903688 PubMedCrossRefGoogle Scholar
  54. 54.
    Roos J, DiGregorio PJ, Yeromin AV et al (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445. doi:10.1083/jcb.200502019 PubMedCrossRefGoogle Scholar
  55. 55.
    Zhang SL, Yu Y, Roos J et al (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905. doi:10.1038/nature04147 PubMedCrossRefGoogle Scholar
  56. 56.
    Vig M, Peinelt C, Beck A et al (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223. doi:10.1126/science.1127883 PubMedCrossRefGoogle Scholar
  57. 57.
    Feske S, Gwack Y, Prakriya M et al (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185. doi:10.1038/nature04702 PubMedCrossRefGoogle Scholar
  58. 58.
    Desjardins M (2003) ER-mediated phagocytosis: a new membrane for new functions. Nat Rev Immunol 3:280–291. doi:10.1038/nri1053 PubMedCrossRefGoogle Scholar
  59. 59.
    Touret N, Paroutis P, Terebiznik M et al (2005) Quantitative and dynamic assessment of the contribution of the ER to phagosome formation. Cell 123:157–170. doi:10.1016/j.cell.2005.08.018 PubMedCrossRefGoogle Scholar
  60. 60.
    Ziegenfuss JS, Biswas R, Avery MA et al (2008) Draper-dependent glial phagocytic activity is mediated by Src and Syk family kinase signalling. Nature 453:935–939. doi:10.1038/nature06901 PubMedCrossRefGoogle Scholar
  61. 61.
    Fernandez R, Takahashi F, Liu Z, Steward R, Stein D, Stanley ER (2000) The Drosophila shark tyrosine kinase is required for embryonic dorsal closure. Genes Dev 14:604–614PubMedGoogle Scholar
  62. 62.
    Biswas R, Stein D, Stanley ER (2006) Drosophila dok is required for embryonic dorsal closure. Development 133:217–227. doi:10.1242/dev.02198 PubMedCrossRefGoogle Scholar
  63. 63.
    Wang X, Sada K, Yanagi S, Yang C, Rezaul K, Yamamura H (1994) Intracellular calcium dependent activation of p72syk in platelets. J Biochem 116:858–861PubMedGoogle Scholar
  64. 64.
    Papp S, Fadel MP, Kim H, McCulloch CA, Opas M (2007) Calreticulin affects fibronectin-based cell-substratum adhesion via the regulation of c-Src activity. J Biol Chem 282:16585–16598. doi:10.1074/jbc.M701011200 PubMedCrossRefGoogle Scholar
  65. 65.
    Feske S (2007) Calcium signalling in lymphocyte activation and disease. Nat Rev Immunol 7:690–702. doi:10.1038/nri2152 PubMedCrossRefGoogle Scholar
  66. 66.
    Yu X, Lu N, Zhou Z (2008) Phagocytic receptor CED-1 initiates a signaling pathway for degrading engulfed apoptotic cells. PLoS Biol 6:e61. doi:10.1371/journal.pbio.0060061 PubMedCrossRefGoogle Scholar
  67. 67.
    Kinchen JM, Ravichandran KS (2008) Phagosome maturation: going through the acid test. Nat Rev Mol Cell Biol 9:781–795. doi:10.1038/nrm2515 PubMedCrossRefGoogle Scholar
  68. 68.
    Stuart LM, Boulais J, Charriere GM et al (2007) A systems biology analysis of the Drosophila phagosome. Nature 445:95–101. doi:10.1038/nature05380 PubMedCrossRefGoogle Scholar
  69. 69.
    Garin J, Diez R, Kieffer S et al (2001) The phagosome proteome: insight into phagosome functions. J Cell Biol 152:165–180. doi:10.1083/jcb.152.1.165 PubMedCrossRefGoogle Scholar
  70. 70.
    Vieira OV, Botelho RJ, Grinstein S (2002) Phagosome maturation: aging gracefully. Biochem J 366:689–704PubMedGoogle Scholar
  71. 71.
    Henry RM, Hoppe AD, Joshi N, Swanson JA (2004) The uniformity of phagosome maturation in macrophages. J Cell Biol 164:185–194. doi:10.1083/jcb.200307080 PubMedCrossRefGoogle Scholar
  72. 72.
    Desjardins M, Huber LA, Parton RG, Griffiths G (1994) Biogenesis of phagolysosomes proceeds through a sequential series of interactions with the endocytic apparatus. J Cell Biol 124:677–688. doi:10.1083/jcb.124.5.677 PubMedCrossRefGoogle Scholar
  73. 73.
    Olkkonen VM, Stenmark H (1997) Role of Rab GTPases in membrane traffic. Int Rev Cytol 176:1–85. doi:10.1016/S0074-7696(08)61608-3 PubMedCrossRefGoogle Scholar
  74. 74.
    Kinchen JM, Doukoumetzidis K, Almendinger J et al (2008) A pathway for phagosome maturation during engulfment of apoptotic cells. Nat Cell Biol 10:556–566. doi:10.1038/ncb1718 PubMedCrossRefGoogle Scholar
  75. 75.
    Booth JW, Trimble WS, Grinstein S (2001) Membrane dynamics in phagocytosis. Semin Immunol 13:357–364. doi:10.1006/smim.2001.0332 PubMedCrossRefGoogle Scholar
  76. 76.
    Botelho RJ, Scott CC, Grinstein S (2004) Phosphoinositide involvement in phagocytosis and phagosome maturation. Curr Top Microbiol Immunol 282:1–30PubMedGoogle Scholar
  77. 77.
    Vieira OV, Bucci C, Harrison RE et al (2003) Modulation of Rab5 and Rab7 recruitment to phagosomes by phosphatidylinositol 3-kinase. Mol Cell Biol 23:2501–2514. doi:10.1128/MCB.23.7.2501-2514.2003 PubMedCrossRefGoogle Scholar
  78. 78.
    Lu Q, Zhang Y, Hu T, Guo P, Li W, Wang X (2008) C. elegans Rab GTPase 2 is required for the degradation of apoptotic cells. Development 135:1069–1080. doi:10.1242/dev.016063 PubMedCrossRefGoogle Scholar
  79. 79.
    Mangahas PM, Yu X, Miller KG, Zhou Z (2008) The small GTPase Rab2 functions in the removal of apoptotic cells in Caenorhabditis elegans. J Cell Biol 180:357–373. doi:10.1083/jcb.200708130 PubMedCrossRefGoogle Scholar
  80. 80.
    Rink J, Ghigo E, Kalaidzidis Y, Zerial M (2005) Rab conversion as a mechanism of progression from early to late endosomes. Cell 122:735–749. doi:10.1016/j.cell.2005.06.043 PubMedCrossRefGoogle Scholar
  81. 81.
    Xiao H, Chen D, Fang Z et al (2009) Lysosome biogenesis mediated by vps-18 affects apoptotic cell degradation in Caenorhabditis elegans. Mol Biol Cell 20:21–32. doi:10.1091/mbc.E08-04-0441 PubMedCrossRefGoogle Scholar
  82. 82.
    Huynh KK, Grinstein S (2008) Phagocytosis: dynamin’s dual role in phagosome biogenesis. Curr Biol 18:R563–R565. doi:10.1016/j.cub.2008.05.032 PubMedCrossRefGoogle Scholar
  83. 83.
    Fan Y, Bergmann A (2008) Apoptosis-induced compensatory proliferation. The cell is dead. Long live the cell!. Trends Cell Biol 18:467–473. doi:10.1016/j.tcb.2008.08.001 PubMedCrossRefGoogle Scholar
  84. 84.
    Russell MA (1974) Pattern formation in the imaginal discs of a temperature-sensitive cell-lethal mutant of Drosophila melanogaster. Dev Biol 40:24–39. doi:10.1016/0012-1606(74)90104-3 PubMedCrossRefGoogle Scholar
  85. 85.
    Simpson P, Schneiderman HA (1975) Isolation of temperature-sensitive mutations blocking clone development in Drosophila melanogaster, and the effects of a temperature-sensitive cell lethal mutation on pattern formation in imaginal discs. Wilhelm Roux Arch Dev Biol 178:247–275. doi:10.1007/BF00848432 CrossRefGoogle Scholar
  86. 86.
    Hoeppner DJ, Hengartner MO, Schnabel R (2001) Engulfment genes cooperate with ced-3 to promote cell death in Caenorhabditis elegans. Nature 412:202–206. doi:10.1038/35084103 PubMedCrossRefGoogle Scholar
  87. 87.
    Reddien PW, Cameron S, Horvitz HR (2001) Phagocytosis promotes programmed cell death in C. elegans. Nature 412:198–202. doi:10.1038/35084096 PubMedCrossRefGoogle Scholar
  88. 88.
    Morata G, Ripoll P (1975) Minutes: mutants of Drosophila autonomously affecting cell division rate. Dev Biol 42:211–221. doi:10.1016/0012-1606(75)90330-9 PubMedCrossRefGoogle Scholar
  89. 89.
    Marygold SJ, Roote J, Reuter G et al (2007) The ribosomal protein genes and minute loci of Drosophila melanogaster. Genome Biol 8:R216. doi:10.1186/gb-2007-8-10-r216 PubMedCrossRefGoogle Scholar
  90. 90.
    de la Cova C, Abril M, Bellosta P, Gallant P, Johnston LA (2004) Drosophila myc regulates organ size by inducing cell competition. Cell 117:107–116. doi:10.1016/S0092-8674(04)00214-4 PubMedCrossRefGoogle Scholar
  91. 91.
    Senoo-Matsuda N, Johnston LA (2007) Soluble factors mediate competitive and cooperative interactions between cells expressing different levels of Drosophila Myc. Proc Natl Acad Sci USA 104:18543–18548. doi:10.1073/pnas.0709021104 PubMedCrossRefGoogle Scholar
  92. 92.
    Moreno E, Basler K (2004) dMyc transforms cells into super-competitors. Cell 117:117–129. doi:10.1016/S0092-8674(04)00262-4 PubMedCrossRefGoogle Scholar
  93. 93.
    Wang X, Wu YC, Fadok VA et al (2003) Cell corpse engulfment mediated by C. elegans phosphatidylserine receptor through CED-5 and CED-12. Science 302:1563–1566. doi:10.1126/science.1087641 PubMedCrossRefGoogle Scholar
  94. 94.
    Kreiser R, Moore FE, Dresnek D et al (2007) The Drosophila homolog of the putative phosphatidylserine receptor functions to inhibit apoptosis. Development 134:2707–2714Google Scholar
  95. 95.
    Wu YC, Tibrewal N, Birge RB (2006) Phosphatidylserine recognition by phagocytosis: a view to kill. Trends Cell Biol 16:189–197. doi:10.1016/j.tcb.2006.02.003 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • John F. Fullard
    • 1
  • Abhijit Kale
    • 1
  • Nicholas E. Baker
    • 1
  1. 1.Department of GeneticsAlbert Einstein College of MedicineBronxUSA

Personalised recommendations