Advertisement

Apoptosis

, Volume 14, Issue 5, pp 674–686 | Cite as

Necrostatin-1 reverts shikonin-induced necroptosis to apoptosis

  • Weidong Han
  • Jiansheng Xie
  • Ling Li
  • Zhen Liu
  • Xun Hu
Original Paper

Abstract

Degterev et al. previously demonstrated that death receptor mediated apoptosis could be diverted to necroptosis when apoptosis signaling was blocked, suggesting that necroptosis may function as a backup mechanism to insure the elimination of damaged cells under certain conditions when apoptosis was inhibited. Here, we show that shikonin-induced necroptosis can be reverted to apoptosis in the presence of necrostatin-1 (Nec-1), a specific necroptosis inhibitor and that the death mode switch is at least partially due to the conversion from mitochondrial inner membrane permeability to mitochondrial outer membrane permeability, which is associated with Bax translocation. The data combined with the previous reports support a notion that apoptosis and necroptosis may function as reciprocal backup mechanisms of cellular demise. To the best of our knowledge, this is the first study to document a conversion from necroptosis to apoptosis.

Keywords

Necroptosis Necrostatin-1 Apoptosis Shikonin 

Abbreviations

DR

Death receptor

Nec-1

Necrostatin-1

SHK

Shikonin

MIMP

Mitochondrial inner membrane permeability

MOMP

Mitochondrial outer membrane permeability

ROS

Reactive oxygen species

RIP1

Receptor-interacting protein 1

P-gp

P-glycoprotein

MRP1

Multidrug-resistance associated protein 1

PT pore

Permeability transition pore

∆ψm

Mitochondrial trans-inner-membrane potential

MMP

Mitochondrial membrane potential

VP16

Etoposide

STS

Staurosporine

CsA

Cyclosporin A

BA

Bongkrekic acid

DIDS

4,4′-Diisothiocyanatostilbene-2,2′-disulfonic acid disodium salt hydrate

MTR

Mitotracker red

JC-1

5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethyl-benzimidazo-lylcarbocyanine iodide

Ro 5-4864

4′-Chlorodiazepam

Notes

Acknowledgments

This work was supported in part by Cheung Kong Scholars Programme (National Ministry of Education, China, and Li Ka Shing Foundation, Hong Kong), China National 863 project (2007AA02Z143), China National Ministry of Health Grant (WKJ2006-2-11), the Bureau for Traditional Chinese Medicine Grant 2006Z013A, Zhejiang Province, China (all to XH).

Supplementary material

10495_2009_334_MOESM1_ESM.tiff.
Supplementary Fig. 1 Death mode induced by shikonin is dose-dependent HL60 cells were treated with shikonin at various concentrations for 12 h, nuclear morphology was detected by Hoechst 33342 staining. (TIFF 1617 kb)
10495_2009_334_MOESM2_ESM.tiff.
Supplementary Fig. 2 Necrostatin-1 converts shikonin-induced necroptosis to apoptosis in K562 or K562/Adr A, Cells were treated with shikonin at 10 μM in the presence or absence of Nec-1 for 12 h, and apoptotic or necrotic death rates was counted by Vital dye exclusion assay and Hoechst-staining. B & C, Activation of caspases 3, 8 and 9 in K562 and K562/Adr cells treated with shikonin for 6 h in absence or presence of Nec-1. Data are mean ±SD or representative of at least 3 independent experiments. (TIFF 1414 kb)
10495_2009_334_MOESM3_ESM.tiff.
Supplementary Fig. 3 Plasma membrane of apoptotic cells is not necessarily permeable to trypan blue HL60 Cells were treated with 2.5 μM shikonin for 12 h. Apoptotic or necrotic death rates was counted by vital dye exclusion assay and Hoechst-staining. Data are mean ± SD. (TIFF 114 kb)

References

  1. 1.
    Degterev A, Huang Z, Boyce M et al (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat Chem Biol 1:112–119. doi: 10.1038/nchembio711 CrossRefPubMedGoogle Scholar
  2. 2.
    Degterev A, Hitomi J, Germscheid M et al (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat Chem Biol 4:313–321. doi: 10.1038/nchembio.83 CrossRefPubMedGoogle Scholar
  3. 3.
    Mehta SL, Manhas N, Raghubir R (2007) Molecular targets in cerebral ischemia for developing novel therapeutics. Brain Res Brain Res Rev 54:34–66. doi: 10.1016/j.brainresrev.2006.11.003 CrossRefGoogle Scholar
  4. 4.
    Smith CC, Davidson SM, Lim SY et al (2007) Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther 21:227–233. doi: 10.1007/s10557-007-6035-1 CrossRefPubMedGoogle Scholar
  5. 5.
    Han W, Li L, Qiu S et al (2007) Shikonin circumvents cancer drug resistance by induction of a necroptotic death. Mol Cancer Ther 6:1641–1649. doi: 10.1158/1535-7163.MCT-06-0511 CrossRefPubMedGoogle Scholar
  6. 6.
    Xu X, Chua CC, Kong J et al (2007) Necrostatin-1 protects against glutamate-induced glutathione depletion and caspase-independent cell death in HT-22 cells. J Neurochem 103:2004–2014. doi: 10.1111/j.1471-4159.2007.04884.x CrossRefPubMedGoogle Scholar
  7. 7.
    Bao L, Li Y, Deng SX et al (2006) Sitosterol-containing lipoproteins trigger free sterol-induced caspase-independent death in ACAT-competent macrophages. J Biol Chem 281:33635–33649. doi: 10.1074/jbc.M606339200 CrossRefPubMedGoogle Scholar
  8. 8.
    Xuan Y, Hu X (2009) Naturally-occurring shikonin analogues—a class of necroptotic inducers that circumvent cancer drug resistance. Cancer Lett 274:233–242. doi: 10.1016/j.canlet.2008.09.029 CrossRefPubMedGoogle Scholar
  9. 9.
    Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163. doi: 10.1152/physrev.00013.2006 CrossRefPubMedGoogle Scholar
  10. 10.
    Sun M, Xu X, Lu Q et al (2007) Schisandrin B: a dual inhibitor of P-glycoprotein and multidrug resistance-associated protein 1. Cancer Lett 246:300–307. doi: 10.1016/j.canlet.2006.03.009 CrossRefPubMedGoogle Scholar
  11. 11.
    Pan Q, Lu Q, Zhang K et al (2006) Dibenzocyclooctadiene lingnans: a class of novel inhibitors of P-glycoprotein. Cancer Chemother Pharmacol 58:99–106. doi: 10.1007/s00280-005-0133-1 CrossRefPubMedGoogle Scholar
  12. 12.
    Samali A, Nordgren H, Zhivotovsky B et al (1999) A comparative study of apoptosis and necrosis in HepG2 cells: oxidant-induced caspase inactivation leads to necrosis. Biochem Biophys Res Commun 255:6–11. doi: 10.1006/bbrc.1998.0139 CrossRefPubMedGoogle Scholar
  13. 13.
    Zhivotosky B, Orrenius S (2001) Assessment of apoptosis and necrosis by DNA fragmentation and morphological criteria. Curr Protoc Cell Biol 18: Unit 18.3Google Scholar
  14. 14.
    Murphy KM, Ranganathan V, Farnsworth ML et al (2000) Bcl-2 inhibits Bax translocation from cytosol to mitochondria during drug-induced apoptosis of human tumor cells. Cell Death Differ 7:102–111. doi: 10.1038/sj.cdd.4400597 CrossRefPubMedGoogle Scholar
  15. 15.
    Zinkel S, Gross A, Yang E (2006) BCL2 family in DNA damage and cell cycle control. Cell Death Differ 13:1351–1359. doi: 10.1038/sj.cdd.4401987 CrossRefPubMedGoogle Scholar
  16. 16.
    Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656. doi: 10.1038/nrc883 CrossRefPubMedGoogle Scholar
  17. 17.
    Grimm S, Brdiczka D (2007) The permeability transition pore in cell death. Apoptosis 12:841–855. doi: 10.1007/s10495-007-0747-3 CrossRefPubMedGoogle Scholar
  18. 18.
    Halestrap AP, Connern CP, Griffiths EJ et al (1997) Cyclosporin A binding to mitochondrial cyclophilin inhibits the permeability transition pore and protects hearts from ischaemia/reperfusion injury. Mol Cell Biochem 174:167–172. doi: 10.1023/A:1006879618176 CrossRefPubMedGoogle Scholar
  19. 19.
    Halestrap AP, Brennerb C (2003) The adenine nucleotide translocase: a central component of the mitochondrial permeability transition pore and key player in cell death. Curr Med Chem 10:1507–1525. doi: 10.2174/0929867033457278 CrossRefPubMedGoogle Scholar
  20. 20.
    Bono F, Lamarche I, Prabonnaud V et al (1999) Peripheral benzodiazepine receptor agonists exhibit potent antiapoptotic activities. Biochem Biophys Res Commun 265:457–461. doi: 10.1006/bbrc.1999.1683 CrossRefPubMedGoogle Scholar
  21. 21.
    Cesura AM, Pinard E, Schubenel R et al (2003) The voltage-dependent anion channel is the target for a new class of inhibitors of the mitochondrial permeability transition pore. J Biol Chem 278:49812–49818. doi: 10.1074/jbc.M304748200 CrossRefPubMedGoogle Scholar
  22. 22.
    Li L, Han W, Gu Y et al (2007) Honokiol induces a necrotic cell death through the mitochondrial permeability transition pore. Cancer Res 67:4894–4903. doi: 10.1158/0008-5472.CAN-06-3818 CrossRefPubMedGoogle Scholar
  23. 23.
    Furre IE, Shahzidi S, Luksiene Z et al (2005) Targeting PBR by hexaminolevulinate-mediated photodynamic therapy induces apoptosis through translocation of apoptosis-inducing factor in human leukemia cells. Cancer Res 65:11051–11060. doi: 10.1158/0008-5472.CAN-05-0510 CrossRefPubMedGoogle Scholar
  24. 24.
    Panduri V, Weitzman SA, Chandel NS et al (2004) Mitochondrial-derived free radicals mediate asbestos-induced alveolar epithelial cell apoptosis. Am J Physiol 286:L1220–L1227Google Scholar
  25. 25.
    Lim SY, Davidson SM, Mocanu MM et al (2007) The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc Drugs Ther 21:467–469. doi: 10.1007/s10557-007-6067-6 CrossRefPubMedGoogle Scholar
  26. 26.
    Antignani A, Youle RJ (2006) How do Bax and Bak lead to permeabilization of the outer mitochondrial membrane? Curr Opin Cell Biol 18:685–689. doi: 10.1016/j.ceb.2006.10.004 CrossRefPubMedGoogle Scholar
  27. 27.
    Loeffler M, Kroemer G (2000) The mitochondrion in cell death control: certainties and incognita. Exp Cell Res 256:19–26. doi: 10.1006/excr.2000.4833 CrossRefPubMedGoogle Scholar
  28. 28.
    Galluzzi L, Zamzami N, de La Motte Rouge T et al (2007) Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis 12:803–813. doi: 10.1007/s10495-007-0720-1 CrossRefPubMedGoogle Scholar
  29. 29.
    Knudson CM, Brown NM (2008) Mitochondria potential, bax “activation”, and programmed cell death. Methods Mol Biol 414:95–108CrossRefPubMedGoogle Scholar
  30. 30.
    Marzo I, Brenner C, Zamzami N et al (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281:2027–2031. doi: 10.1126/science.281.5385.2027 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Weidong Han
    • 1
    • 2
  • Jiansheng Xie
    • 1
  • Ling Li
    • 1
  • Zhen Liu
    • 1
  • Xun Hu
    • 1
  1. 1.Cancer Institute (Key Laboratory of Cancer Prevention & Intervention, National Ministry of Education, Provincial Key Laboratory of Molecular Biology in Medical Sciences)The Second Affiliated Hospital, Zhejiang University School of MedicineHangzhouChina
  2. 2.Department of Medical Oncology, Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina

Personalised recommendations