, Volume 14, Issue 5, pp 729–740 | Cite as

Furano-sesquiterpene from soft coral, Sinularia kavarittiensis: induces apoptosis via the mitochondrial-mediated caspase-dependent pathway in THP-1, leukemia cell line

  • S. K. Arepalli
  • V. Sridhar
  • J. Venkateswara RaoEmail author
  • P. Kavin Kennady
  • Y. Venkateswarlu
Original Paper


Bioassay directed fractionation and purification led to the successful isolation of a furano sesquiterpene, Methyl 5-[(1E,5E)-2,6-Dimethyl octa-1,5,7-trienyl] furan-3-carboxylate (MDTFC), a bioactive component from a soft coral, Sinularia kavarittiensis. Its structure was determined by analyzing 1H, 13C NMR and FAB-MS. The results show that MDTFC could efficiently and selectively inhibit the proliferation of several human cancer cell lines. Among all the cell lines, THP-1 was found to be most sensitive (IC50 29.59 μM), whereas the peripheral blood mononuclear cells were least effected (IC50 464.16 μM). The molecular mechanism of MDTFC mediated apoptosis was investigated for the first time. Induction of apoptosis in THP-1 cells was characterized by cell membrane blebbing, chromatin condensation, DNA fragmentation, and decrease in level of pro-caspases 3, 9 and increase in Bax/Bcl-2 ratio. Our results were further strengthened through cleavage of poly (ADP-ribose) polymerase, reduction of mitochondrial membrane potential (Ψm) and cytosolic release of cytochrome c, which are key events during apoptosis. Moreover, phosphatidyl serine exposure and appearance of sub-G1 peak also demonstrated cell death, when analyzed by flow cytometry. DNA fragmentation was prevented moderately when pretreated with caspase-9 inhibitor (Z-LEHD-FMK) and largely with caspase-3 inhibitor (Z-DEVD-FMK). In summary, MDTFC mediated apoptosis involves mitochondria-dependent pathway and the present compound of marine origin might have a therapeutic value against human cancer cell lines and especially on leukemia cells.


Apoptosis Sesquiterpenes Morphology Caspases Membrane potential Leukemia cells 



Authors are thankful to the Directors of Indian Institute of Chemical Technology (IICT) and Centre for Cellular and Molecular Biology (CCMB), Hyderabad for providing the facilities and constant encouragement throughout the study. S. K. Arepalli, and V. Sridhar are also thankful to Council of Scientific and Industrial Research (CSIR), Govt. of India, New Delhi for the grant of senior research fellowship.


  1. 1.
    Donia M, Hamann MT (2003) Marine natural products and their potential applications as anti-infective agents. Lancet Infect Dis 3:338–348. doi: 10.1016/S1473-3099(03)00655-8 CrossRefPubMedGoogle Scholar
  2. 2.
    Randazzo A, Bifulco G, Giannini C, Bucci M, Debitus C, Cirino G, Gomez-Paloma L (2001) Halipeptins A and B: two novel potent anti-inflammatory cyclic depsipeptides from the Vanuatu marine sponge Haliclona species. J Am Chem Soc 123:10870–10876. doi: 10.1021/ja010015c CrossRefPubMedGoogle Scholar
  3. 3.
    Simmons TL, Andrianasolo E, McPhail K, Flatt P, Gerwick WH (2005) Marine natural products as anticancer drugs. Mol Cancer Ther 4:333–342PubMedGoogle Scholar
  4. 4.
    Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354. doi: 10.1016/S0092-8674(00)81873-5 CrossRefPubMedGoogle Scholar
  5. 5.
    Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462. doi: 10.1126/science.7878464 CrossRefPubMedGoogle Scholar
  6. 6.
    Choi YH, Kong KR, Kim YA, Jung KO, Kil JH, Rhee SH, Park KY (2003) Induction of Bax and activation of caspases during beta-sitosterol-mediated apoptosis in human colon cancer cells. Int J Oncol 23:1657–1662PubMedGoogle Scholar
  7. 7.
    Rosse T, Olivier R, Monney L, Rager M, Conus S, Fellay I, Jansen B, Borner C (1998) Bcl-2 prolongs cell survival after Bax-induced release of cytochrome c. Nature 391:496–499. doi: 10.1038/35160 CrossRefPubMedGoogle Scholar
  8. 8.
    Stennicke HR, Salvesen GS (1999) Catalytic properties of the caspases. Cell Death Differ 6:1054–1059. doi: 10.1038/sj.cdd.4400599 CrossRefPubMedGoogle Scholar
  9. 9.
    Ashkenazi A, Dixit VM (1998) Death receptors: signaling and modulation. Science 281:1305–1308. doi: 10.1126/science.281.5381.1305 CrossRefGoogle Scholar
  10. 10.
    Hakem R, Hakem A, Duncan GS, Henderson JT, Woo M, Soengas MS, Elia A, de la Pompa JL, Kagi D, Khoo W, Potter J, Yoshida R, Kaufman SA, Lowe SW, Penninger JM, Mak TW (1998) Differential requirement for caspase 9 in apoptotic pathways in vivo. Cell 94:339–352. doi: 10.1016/S0092-8674(00)81477-4 CrossRefPubMedGoogle Scholar
  11. 11.
    Yu S, Deng Z, van Ofwegen L, Proksch P, Lin W (2006) 5, 8-Epidioxysterols and related derivatives from a Chinese soft coral Sinularia flexibilis. Steroids 71:955–959. doi: 10.1016/j.steroids.2006.07.002 CrossRefPubMedGoogle Scholar
  12. 12.
    Bowden BF, Coll JC, de Silva ED, de Costa MSL, Djura PJ, Mahendron M, Tapiolas DM (1983) Studies of Australian soft corals. XXXI. Novel furanosesquiterpenes from several sinularian soft corals (Coelenterata, Octocorallia, Alcyonacea). Aust J Chem 36:371–376CrossRefGoogle Scholar
  13. 13.
    Anjaneyulu ASR, Krishnamurthy MVR, Rao GV (1997) Rare aromadendrane diterpenoids from a new soft coral species of Sinularia genus of the Indian Ocean. Tetrahedron 53:9301–9312. doi: 10.1016/S0040-4020(97)00584-X CrossRefGoogle Scholar
  14. 14.
    Faulkner DJ (2001) Marine natural products. Nat Prod Rep 18:1–49. doi: 10.1039/b006897g CrossRefPubMedGoogle Scholar
  15. 15.
    Goud TV, Reddy NS, Krishnaiah P, Venkateswarlu Y (2002) Spathulenol: a rare sesquiterpene from soft coral Sinularia kavarattiensis. Biochem Syst Ecol 30:493–495. doi: 10.1016/S0305-1978(01)00094-1 CrossRefGoogle Scholar
  16. 16.
    Venkateswarlu Y, Sridevi KV, Rama Rao M (1999) New Furanocembranoid Diterpenes from the soft coral Sinularia maxima. J Nat Prod 62:756–758. doi: 10.1021/np9804076 CrossRefPubMedGoogle Scholar
  17. 17.
    Jin P, Deng Z, Pei Y, Fu H, Li J, Ofwegen LV, Proksch P, Lin W (2005) Polyhydroxylated steroids from the soft coral Sinularia dissecta. Steroids 70:487–493. doi: 10.1016/j.steroids.2005.01.001 CrossRefPubMedGoogle Scholar
  18. 18.
    Spivey AC, Weston M, Woohead S (2002) Celastraceae sesquiterpenoids: biological activity and synthesis. Chem Soc Rev 31:43–59. doi: 10.1039/b000678p CrossRefPubMedGoogle Scholar
  19. 19.
    Ojika M, Islam MK, Shintani T, Zhang Y, Okamoto T, Sakagami Y (2003) Three new cytotoxic acylspermidines from the soft coral, Sinularia sp. Biosci Biotechnol Biochem 67:1410–1412. doi: 10.1271/bbb.67.1410 CrossRefPubMedGoogle Scholar
  20. 20.
    Das B, Reddy SV, Krishnaiah M, Sharma AVS, Ravi Kumar K, Venkateswara Rao J, Sridhar V (2007) Acetylated pseudoguaianolides from Parthenium hysterophorus and their cytotoxic activity. Phytochemistry 68:2029–2034. doi: 10.1016/j.phytochem.2007.05.002 CrossRefPubMedGoogle Scholar
  21. 21.
    Chandrika PM, Yakaiah T, Raghu Ram Rao A, Narsaiah B, Chakra Reddy N, Sridhar V, Venkateshwara Rao J (2008) Synthesis of novel 4, 6-disubstituted quinazoline derivatives, their anti-inflammatory and anti-cancer activity (cytotoxic) against U937 leukemia cell lines. Eur J Med Chem 43:846–852. doi: 10.1016/j.ejmech.2007.06.010 CrossRefPubMedGoogle Scholar
  22. 22.
    Coll JC, Mitchell SJ, Stokie GJ (1977) Studies of Australian soft corals. V. Novel furanosesquiterpene acid from soft coral sinularia-gonatodes (kolonko). Tetrahedron Lett 18:1539–1542. doi: 10.1016/S0040-4039(01)93097-7 CrossRefGoogle Scholar
  23. 23.
    Anjaneyulu ASR, Rao GV, Rao NSK (1996) Sesqui and diterpenoids of the soft coral Sinularia hirta of the Andaman and Nicobar Island. Indian J Chem 35:815–818Google Scholar
  24. 24.
    Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63. doi: 10.1016/0022-1759(83)90303-4 CrossRefPubMedGoogle Scholar
  25. 25.
    Baskic D, Popovic S, Ristic P, Arsenijevic NN (2006) Analysis of cycloheximideinduced apoptosis in human leukocytes: fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide. Cell Biol Int 30:924–932. doi: 10.1016/j.cellbi.2006.06.016 CrossRefPubMedGoogle Scholar
  26. 26.
    Pan MH, Chang WL, Lin-Shiau SY, Ho CT, Lin JK (2001) Induction of apoptosis by garcinol and curcumin through cytochrome c release and activation of caspases in human leukemia HL-60 cells. J Agric Food Chem 49:1464–1474. doi: 10.1021/jf001129v CrossRefPubMedGoogle Scholar
  27. 27.
    Schyschka L, Rudy A, Jeremias I, Barth N, Pettit GR, Vollmar AM (2008) Spongistatin 1: a new chemosensitizing marine compound that degrades XIAP. Leukemia 22:1737–1745. doi: 10.1038/leu.2008.146 CrossRefPubMedGoogle Scholar
  28. 28.
    Broggini M, Marchini SV, Galliera E, Borsotti P, Taraboletti G, Erba E, Sironi M, Jimeno J, Faircloth GT, Giavazzi R, d’Incalci M (2003) Aplidine a new anticancer agent of marine origin, inhibits vascular endothelial growth factor (VEGF) secretion and blocks VEGF-VEGFR-1 (flt-1) autocrine loop in human leukemia cells MOLT-4. Leukemia 17:52–59. doi: 10.1038/sj.leu.2402788 CrossRefPubMedGoogle Scholar
  29. 29.
    Pettersson F, Colston KW, Dalgleish AG (2000) Differential and antagonistic effects of 9-cis-retinoic acid and vitamin D analogues on pancreatic cancer cells in vitro. Br J Cancer 83:239–245. doi: 10.1054/bjoc.2000.1281 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tamatani T, Azuma M, Motegi K, Takamaru N, Kawashima Y, Bando T (2007) Cepharanthin-enhanced radiosensitivity through the inhibition of radiation-induced nuclear factor-kappaB activity in human oral squamous cell carcinoma cells. Int J Oncol 31:761–768PubMedGoogle Scholar
  31. 31.
    Miyauchi S, Moroyama T, Kyoizumi S, Asakawa J, Okamoto T, Takada K (1988) Malignant tumor cell lines produce interleukin-1-like factor. In Vitro Cell Dev Biol 24:753–758. doi: 10.1007/BF02623644 CrossRefPubMedGoogle Scholar
  32. 32.
    Lopéz L, Villavicencio MA, Albores A, Martínez M, de la Garza J, Meléndez-Zajgla J, Maldonado V (2002) Cupressus lusitanica (Cupressaceae) leaf extract induces apoptosis in cancer cells. J Ethnopharmacol 80:115–120. doi: 10.1016/S0378-8741(01)00417-2 CrossRefPubMedGoogle Scholar
  33. 33.
    Nojima H (1997) Cell cycle checkpoints, chromosome stability, and the progression of cancer. Hum Cell 10:221–230PubMedGoogle Scholar
  34. 34.
    Lazebnik YA, Kaufmann SH, Desnoyers S, Poirier GG, Earnshaw WC (1994) Cleavage of poly (ADP-ribose) polymerase by a proteinase with properties like ICE. Nature 371:346–347. doi: 10.1038/371346a0 CrossRefPubMedGoogle Scholar
  35. 35.
    Chan SL, Yu VC (2004) Proteins of the Bcl-2 family in apoptosis signaling: from mechanistic insights to therapeutic opportunities. Clin Exp Pharmacol Physiol 31:119–128. doi: 10.1111/j.1440-1681.2004.03975.x CrossRefPubMedGoogle Scholar
  36. 36.
    Jacobson MD, Raff MC (1995) Programmed cell death and Bcl-2 protection in very low oxygen. Nature 374:814–816. doi: 10.1038/374814a0 CrossRefPubMedGoogle Scholar
  37. 37.
    Renz A, Berdel WE, Kreuter M, Belka C, Schulze-Osthoff K, Los M (2001) Rapid extracellular release of cytochrome c is specific extracellular release of cytochrome c is specific for apoptosis and marks cell death in vivo. Blood 98:1542–1548. doi: 10.1182/blood.V98.5.1542 CrossRefPubMedGoogle Scholar
  38. 38.
    Costantini P, Jacotot E, Decaudin D, Kroemer G (2000) Mitochondrion as a novel target of anticancer chemotherapy. J Natl Cancer Inst 92:1042–1053. doi: 10.1093/jnci/92.13.1042 CrossRefPubMedGoogle Scholar
  39. 39.
    Sancho P, Troyano A, Fernandez C, De Blas E, Aller P (2003) Differential effects of catalase on apoptosis induction in human promonocytic cells. Relationships with heatshock protein expression. Mol Pharmacol 63:581–589. doi: 10.1124/mol.63.3.581 CrossRefPubMedGoogle Scholar
  40. 40.
    Towle MJ, Salvato KA, Budrow J, Wels BF, Kuznetsov G, Aalfs KK, Welsh S, Zheng W, Seletsky BM, Palme MH, Habgood GJ, Singer LA, DiPietro LV, Wang Y, Chen JJ, Quincy DA, Davis A, Yoshimatsu K, Kishi Y, Yu MJ, Littlefield BA (2001) In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res 61:1013–1021PubMedGoogle Scholar
  41. 41.
    Hood KA, West LM, Rouwe B, Northcote PT, Berridge MV, Wakefield SJ, Miller JH (2002) Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule stabilizing activity. Cancer Res 62:3356–3360PubMedGoogle Scholar
  42. 42.
    Zuco V, Supino R, Righetti SC, Cleris L, Marchesi E, Passerine Gambacorti C, Formelli F (2002) Selective cytotoxicity of betulinic acid on tumor cell lines, but not on normal cells. Cancer Lett 175:17–25. doi: 10.1016/S0304-3835(01)00718-2 CrossRefPubMedGoogle Scholar
  43. 43.
    Anazetti MC, Melo PS, Duran N, Haun M (2003) Comparative cytotoxicity of dimethylamide-crotonin in the promyelocytic leukemia cell line (HL60) and human peripheral blood mononuclear cells. Toxicology 188:261–274CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • S. K. Arepalli
    • 1
  • V. Sridhar
    • 1
  • J. Venkateswara Rao
    • 1
    Email author
  • P. Kavin Kennady
    • 2
  • Y. Venkateswarlu
    • 3
  1. 1.Toxicology Unit, Biology DivisionIndian Institute of Chemical TechnologyHyderabadIndia
  2. 2.Flow-Cytometry FacilityCentre for Cellular and Molecular BiologyHyderabadIndia
  3. 3.Natural Products Laboratory, Organic Division-IIndian Institute of Chemical TechnologyHyderabadIndia

Personalised recommendations