Advertisement

Apoptosis

, Volume 14, Issue 4, pp 549–569 | Cite as

Cell death in the skin

  • Saskia Lippens
  • Esther Hoste
  • Peter Vandenabeele
  • Patrizia Agostinis
  • Wim Declercq
Cell Death and Disease

Abstract

The skin is the largest organ of the body and protects the organism against external physical, chemical and biological insults, such as wounding, ultraviolet radiation and micro-organisms. The epidermis is the upper part of the skin that is continuously renewed. The keratinocytes are the major cell type in the epidermis and undergo a specialized form of programmed cell death, called cornification, which is different from classical apoptosis. In keep with this view, several lines of evidence indicate that NF-kB is an important factor providing protection against keratinocyte apoptosis in homeostatic and inflammatory conditions. In contrast, the hair follicle is an epidermal appendage that shows cyclic apoptosis-driven involution, as part of the normal hair cycle. The different cell death programs need to be well orchestrated to maintain skin homeostasis. One of the major environmental insults to the skin is UVB radiation, causing the occurrence of apoptotic sunburn cells. Deregulation of cell death mechanisms in the skin can lead to diseases such as cancer, necrolysis and graft-versus-host disease. Here we review the apoptotic and the anti-apoptotic mechanisms in skin homeostasis and disease.

Keywords

Skin Apoptosis Survival Keratinocytes UV Cancer 

Notes

Acknowledgments

We thank A. Bredan for editing the manuscript. This research has been supported by Flanders Institute for Biotechnology (VIB) and several grants. European grants: FP6 ApopTrain, MRTN-CT-035624; EC RTD Integrated Project, FP6 Epistem, LSHB-CT-2005-019067; EC RTD Integrated Project, Apo-Sys, FP7-200767. Belgian grants: Interuniversity attraction poles, IAP 6/18. Flemish grants: Fonds Wetenschappelijke Onderzoek Vlaanderen, 3G.0218.06 and G.0133.05; Ghent University grants: BOF-GOA -12.0505.02. S.L. holds a grant of the ‘Fonds voor Wetenschappelijk Onderzoek’. E.H. holds a grant of the ‘Instituut voor de Aanmoediging van Innovatie door Wetenschap en Technologie’ in Vlaanderen’.

References

  1. 1.
    Lippens S, Denecker G, Ovaere P, Vandenabeele P, Declercq W (2005) Death penalty for keratinocytes: apoptosis versus cornification. Cell Death Differ 12(Suppl 2):1497–1508. doi: 10.1038/sj.cdd.4401722 PubMedCrossRefGoogle Scholar
  2. 2.
    Lippens S, Kockx M, Knaapen M et al (2000) Epidermal differentiation does not involve the pro-apoptotic executioner caspases, but is associated with caspase-14 induction and processing. Cell Death Differ 7:1218–1224. doi: 10.1038/sj.cdd.4400785 PubMedCrossRefGoogle Scholar
  3. 3.
    Raj D, Brash DE, Grossman D (2006) Keratinocyte apoptosis in epidermal development and disease. J Invest Dermatol 126:243–257. doi: 10.1038/sj.jid.5700008 PubMedCrossRefGoogle Scholar
  4. 4.
    Candi E, Schmidt R, Melino G (2005) The cornified envelope: a model of cell death in the skin. Nat Rev Mol Cell Biol 6:328–340. doi: 10.1038/nrm1619 PubMedCrossRefGoogle Scholar
  5. 5.
    Zeeuwen PL (2004) Epidermal differentiation: the role of proteases and their inhibitors. Eur J Cell Biol 83:761–773. doi: 10.1078/0171-9335-00388 PubMedCrossRefGoogle Scholar
  6. 6.
    Raymond AA, Mechin MC, Nachat R et al (2007) Nine procaspases are expressed in normal human epidermis, but only caspase-14 is fully processed. Br J Dermatol 156:420–427. doi: 10.1111/j.1365-2133.2006.07656.x PubMedCrossRefGoogle Scholar
  7. 7.
    Okuyama R, Nguyen BC, Talora C et al (2004) High commitment of embryonic keratinocytes to terminal differentiation through a Notch1-caspase 3 regulatory mechanism. Dev Cell 6:551–562. doi: 10.1016/S1534-5807(04)00098-X PubMedCrossRefGoogle Scholar
  8. 8.
    Fischer H, Rossiter H, Ghannadan M et al (2005) Caspase-14 but not caspase-3 is processed during the development of fetal mouse epidermis. Differentiation 73:406–413PubMedGoogle Scholar
  9. 9.
    Fischer H, Stichenwirth M, Dockal M et al (2004) Stratum corneum-derived caspase-14 is catalytically active. FEBS Lett 577:446–450. doi: 10.1016/j.febslet.2004.10.046 PubMedCrossRefGoogle Scholar
  10. 10.
    Lippens S, VandenBroecke C, Van Damme E, Tschachler E, Vandenabeele P, Declercq W (2003) Caspase-14 is expressed in the epidermis, the choroid plexus, the retinal pigment epithelium and thymic Hassall’s bodies. Cell Death Differ 10:257–259. doi: 10.1038/sj.cdd.4401141 PubMedCrossRefGoogle Scholar
  11. 11.
    Denecker G, Hoste E, Gilbert B et al (2007) Caspase-14 protects against epidermal UVB photodamage and water loss. Nat Cell Biol 9:666–674. doi: 10.1038/ncb1597 PubMedCrossRefGoogle Scholar
  12. 12.
    Smith FJ, Irvine AD, Terron-Kwiatkowski A et al (2006) Loss-of-function mutations in the gene encoding filaggrin cause ichthyosis vulgaris. Nat Genet 38:337–342. doi: 10.1038/ng1743 PubMedCrossRefGoogle Scholar
  13. 13.
    Rawlings AV, Harding CR (2004) Moisturization and skin barrier function. Dermatol Ther 17(Suppl 1):43–48. doi: 10.1111/j.1396-0296.2004.04S1005.x PubMedCrossRefGoogle Scholar
  14. 14.
    Allombert-Blaise C, Tamiji S, Mortier L et al (2003) Terminal differentiation of human epidermal keratinocytes involves mitochondria- and caspase-dependent cell death pathway. Cell Death Differ 10:850–852. doi: 10.1038/sj.cdd.4401245 PubMedCrossRefGoogle Scholar
  15. 15.
    Chaturvedi V, Qin JZ, Denning MF, Choubey D, Diaz MO, Nickoloff BJ (1999) Apoptosis in proliferating, senescent, and immortalized keratinocytes. J Biol Chem 274:23358–23367. doi: 10.1074/jbc.274.33.23358 PubMedCrossRefGoogle Scholar
  16. 16.
    Qin JZ, Chaturvedi V, Denning MF et al (2002) Regulation of apoptosis by p53 in UV-irradiated human epidermis, psoriatic plaques and senescent keratinocytes. Oncogene 21:2991–3002. doi: 10.1038/sj.onc.1205404 PubMedCrossRefGoogle Scholar
  17. 17.
    Grether-Beck S, Felsner I, Brenden H, Krutmann J (2003) Mitochondrial cytochrome c release mediates ceramide-induced activator protein 2 activation and gene expression in keratinocytes. J Biol Chem 278:47498–47507. doi: 10.1074/jbc.M309511200 PubMedCrossRefGoogle Scholar
  18. 18.
    Krajewski S, Krajewska M, Reed JC (1996) Immunohistochemical analysis of in vivo patterns of Bak expression, a proapoptotic member of the Bcl-2 protein family. Cancer Res 56:2849–2855PubMedGoogle Scholar
  19. 19.
    Krajewski S, Krajewska M, Shabaik A et al (1994) Immunohistochemical analysis of in vivo patterns of Bcl-X expression. Cancer Res 54:5501–5507PubMedGoogle Scholar
  20. 20.
    Lu QL, Poulsom R, Wong L, Hanby AM (1993) Bcl-2 expression in adult and embryonic non-haematopoietic tissues. J Pathol 169:431–437. doi: 10.1002/path.1711690408 PubMedCrossRefGoogle Scholar
  21. 21.
    Droin NM, Green DR (2004) Role of Bcl-2 family members in immunity and disease. Biochim Biophys Acta 1644:179–188. doi: 10.1016/j.bbamcr.2003.10.011 PubMedCrossRefGoogle Scholar
  22. 22.
    Botchkareva NV, Ahluwalia G, Shander D (2006) Apoptosis in the hair follicle. J Invest Dermatol 126:258–264. doi: 10.1038/sj.jid.5700007 PubMedCrossRefGoogle Scholar
  23. 23.
    Stenn KS, Paus R (2001) Controls of hair follicle cycling. Physiol Rev 81:449–494PubMedGoogle Scholar
  24. 24.
    Veis DJ, Sorenson CM, Shutter JR, Korsmeyer SJ (1993) Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell 75:229–240. doi: 10.1016/0092-8674(93)80065-M PubMedCrossRefGoogle Scholar
  25. 25.
    Muller-Rover S, Rossiter H, Paus R et al (2000) Overexpression of Bcl-2 protects from ultraviolet B-induced apoptosis but promotes hair follicle regression and chemotherapy-induced alopecia. Am J Pathol 156:1395–1405PubMedGoogle Scholar
  26. 26.
    Bouillet P, Cory S, Zhang LC, Strasser A, Adams JM (2001) Degenerative disorders caused by Bcl-2 deficiency prevented by loss of its BH3-only antagonist Bim. Dev Cell 1:645–653. doi: 10.1016/S1534-5807(01)00083-1 PubMedCrossRefGoogle Scholar
  27. 27.
    Ito M, Kawa Y, Ono H et al (1999) Removal of stem cell factor or addition of monoclonal anti-c-KIT antibody induces apoptosis in murine melanocyte precursors. J Invest Dermatol 112:796–801. doi: 10.1046/j.1523-1747.1999.00552.x PubMedCrossRefGoogle Scholar
  28. 28.
    Botchkarev VA, Botchkareva NV, Albers KM, Chen LH, Welker P, Paus R (2000) A role for p75 neurotrophin receptor in the control of apoptosis-driven hair follicle regression. FASEB J 14:1931–1942. doi: 10.1096/fj.99-0930com PubMedCrossRefGoogle Scholar
  29. 29.
    Foitzik K, Lindner G, Mueller-Roever S et al (2000) Control of murine hair follicle regression (catagen) by TGF-beta1 in vivo. FASEB J 14:752–760PubMedGoogle Scholar
  30. 30.
    Peters EM, Hansen MG, Overall RW et al (2005) Control of human hair growth by neurotrophins: brain-derived neurotrophic factor inhibits hair shaft elongation, induces catagen, and stimulates follicular transforming growth factor beta2 expression. J Invest Dermatol 124:675–685. doi: 10.1111/j.0022-202X.2005.23648.x PubMedCrossRefGoogle Scholar
  31. 31.
    Soma T, Tsuji Y, Hibino T (2002) Involvement of transforming growth factor-beta2 in catagen induction during the human hair cycle. J Invest Dermatol 118:993–997. doi: 10.1046/j.1523-1747.2002.01746.x PubMedCrossRefGoogle Scholar
  32. 32.
    Tsuji Y, Denda S, Soma T, Raftery L, Momoi T, Hibino T (2003) A potential suppressor of TGF-beta delays catagen progression in hair follicles. J Investig Dermatol Symp Proc 8:65–68. doi: 10.1046/j.1523-1747.2003.12173.x PubMedCrossRefGoogle Scholar
  33. 33.
    McGowan KM, Tong X, Colucci-Guyon E, Langa F, Babinet C, Coulombe PA (2002) Keratin 17 null mice exhibit age- and strain-dependent alopecia. Genes Dev 16:1412–1422. doi: 10.1101/gad.979502 PubMedCrossRefGoogle Scholar
  34. 34.
    Puthalakath H, Huang DC, O’Reilly LA, King SM, Strasser A (1999) The proapoptotic activity of the Bcl-2 family member Bim is regulated by interaction with the dynein motor complex. Mol Cell 3:287–296. doi: 10.1016/S1097-2765(00)80456-6 PubMedCrossRefGoogle Scholar
  35. 35.
    Puthalakath H, Villunger A, O’Reilly LA et al (2001) Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 293:1829–1832PubMedCrossRefGoogle Scholar
  36. 36.
    Levy L, Broad S, Diekmann D, Evans RD, Watt FM (2000) Beta1 integrins regulate keratinocyte adhesion and differentiation by distinct mechanisms. Mol Biol Cell 11:453–466PubMedGoogle Scholar
  37. 37.
    Mitra RS, Wrone-Smith T, Simonian P, Foreman KE, Nunez G, Nickoloff BJ (1997) Apoptosis in keratinocytes is not dependent on induction of differentiation. Lab Invest 76:99–107PubMedGoogle Scholar
  38. 38.
    Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62. doi: 10.1038/nrm2083 PubMedCrossRefGoogle Scholar
  39. 39.
    Seitz CS, Lin Q, Deng H, Khavari PA (1998) Alterations in NF-kappaB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-kappaB. Proc Natl Acad Sci USA 95:2307–2312. doi: 10.1073/pnas.95.5.2307 PubMedCrossRefGoogle Scholar
  40. 40.
    Rebholz B, Haase I, Eckelt B et al (2007) Crosstalk between keratinocytes and adaptive immune cells in an IkappaBalpha protein-mediated inflammatory disease of the skin. Immunity 27:296–307. doi: 10.1016/j.immuni.2007.05.024 PubMedCrossRefGoogle Scholar
  41. 41.
    Zhang JY, Green CL, Tao S, Khavari PA (2004) NF-kappaB RelA opposes epidermal proliferation driven by TNFR1 and JNK. Genes Dev 18:17–22. doi: 10.1101/gad.1160904 PubMedCrossRefGoogle Scholar
  42. 42.
    Gugasyan R, Voss A, Varigos G et al (2004) The transcription factors c-rel and RelA control epidermal development and homeostasis in embryonic and adult skin via distinct mechanisms. Mol Cell Biol 24:5733–5745. doi: 10.1128/MCB.24.13.5733-5745.2004 PubMedCrossRefGoogle Scholar
  43. 43.
    Seitz CS, Freiberg RA, Hinata K, Khavari PA (2000) NF-kappaB determines localization and features of cell death in epidermis. J Clin Invest 105:253–260. doi: 10.1172/JCI7630 PubMedCrossRefGoogle Scholar
  44. 44.
    Schmidt-Supprian M, Bloch W, Courtois G et al (2000) NEMO/IKK gamma-deficient mice model incontinentia pigmenti. Mol Cell 5:981–992. doi: 10.1016/S1097-2765(00)80263-4 PubMedCrossRefGoogle Scholar
  45. 45.
    Makris C, Godfrey VL, Krahn-Senftleben G et al (2000) Female mice heterozygous for IKK gamma/NEMO deficiencies develop a dermatopathy similar to the human X-linked disorder incontinentia pigmenti. Mol Cell 5:969–979. doi: 10.1016/S1097-2765(00)80262-2 PubMedCrossRefGoogle Scholar
  46. 46.
    Smahi A, Courtois G, Vabres P et al (2000) Genomic rearrangement in NEMO impairs NF-kappaB activation and is a cause of incontinentia pigmenti. The international incontinentia pigmenti (IP) consortium. Nature 405:466–472. doi: 10.1038/35013114 PubMedCrossRefGoogle Scholar
  47. 47.
    Omori E, Matsumoto K, Sanjo H et al (2006) TAK1 is a master regulator of epidermal homeostasis involving skin inflammation and apoptosis. J Biol Chem 281:19610–19617. doi: 10.1074/jbc.M603384200 PubMedCrossRefGoogle Scholar
  48. 48.
    Sayama K, Hanakawa Y, Nagai H et al (2006) Transforming growth factor-beta-activated kinase 1 is essential for differentiation and the prevention of apoptosis in epidermis. J Biol Chem 281:22013–22020. doi: 10.1074/jbc.M601065200 PubMedCrossRefGoogle Scholar
  49. 49.
    Nenci A, Huth M, Funteh A et al (2006) Skin lesion development in a mouse model of incontinentia pigmenti is triggered by NEMO deficiency in epidermal keratinocytes and requires TNF signaling. Hum Mol Genet 15:531–542. doi: 10.1093/hmg/ddi470 PubMedCrossRefGoogle Scholar
  50. 50.
    Pasparakis M, Courtois G, Hafner M et al (2002) TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417:861–866. doi: 10.1038/nature00820 PubMedCrossRefGoogle Scholar
  51. 51.
    Hu Y, Baud V, Delhase M et al (1999) Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science 284:316–320PubMedCrossRefGoogle Scholar
  52. 52.
    Gareus R, Huth M, Breiden B et al (2007) Normal epidermal differentiation but impaired skin-barrier formation upon keratinocyte-restricted IKK1 ablation. Nat Cell Biol 9:461–469. doi: 10.1038/ncb1560 PubMedCrossRefGoogle Scholar
  53. 53.
    Hu Y, Baud V, Oga T, Kim KI, Yoshida K, Karin M (2001) IKKalpha controls formation of the epidermis independently of NF-kappaB. Nature 410:710–714. doi: 10.1038/35070605 PubMedCrossRefGoogle Scholar
  54. 54.
    Klement JF, Rice NR, Car BD et al (1996) IkappaBalpha deficiency results in a sustained NF-kappaB response and severe widespread dermatitis in mice. Mol Cell Biol 16:2341–2349PubMedGoogle Scholar
  55. 55.
    Sayama K, Hanakawa Y, Shirakata Y et al (2001) Apoptosis signal-regulating kinase 1 (ASK1) is an intracellular inducer of keratinocyte differentiation. J Biol Chem 276:999–1004. doi: 10.1074/jbc.M003425200 PubMedCrossRefGoogle Scholar
  56. 56.
    Osaka N, Takahashi T, Murakami S et al (2007) ASK1-dependent recruitment and activation of macrophages induce hair growth in skin wounds. J Cell Biol 176:903–909. doi: 10.1083/jcb.200611015 PubMedCrossRefGoogle Scholar
  57. 57.
    Sayama K, Komatsuzawa H, Yamasaki K et al (2005) New mechanisms of skin innate immunity: ASK1-mediated keratinocyte differentiation regulates the expression of beta-defensins, LL37, and TLR2. Eur J Immunol 35:1886–1895. doi: 10.1002/eji.200425827 PubMedCrossRefGoogle Scholar
  58. 58.
    Wan YS, Wang ZQ, Voorhees J, Fisher G (2001) EGF receptor crosstalks with cytokine receptors leading to the activation of c-Jun kinase in response to UV irradiation in human keratinocytes. Cell Signal 13:139–144. doi: 10.1016/S0898-6568(00)00146-7 PubMedCrossRefGoogle Scholar
  59. 59.
    DiGiovanni J, Bol DK, Wilker E et al (2000) Constitutive expression of insulin-like growth factor-1 in epidermal basal cells of transgenic mice leads to spontaneous tumor promotion. Cancer Res 60:1561–1570PubMedGoogle Scholar
  60. 60.
    Peng XD, Xu PZ, Chen ML et al (2003) Dwarfism, impaired skin development, skeletal muscle atrophy, delayed bone development, and impeded adipogenesis in mice lacking Akt1 and Akt2. Genes Dev 17:1352–1365. doi: 10.1101/gad.1089403 PubMedCrossRefGoogle Scholar
  61. 61.
    Yang ZZ, Tschopp O, Di-Poi N et al (2005) Dosage-dependent effects of Akt1/protein kinase Balpha (PKBalpha) and Akt3/PKBgamma on thymus, skin, and cardiovascular and nervous system development in mice. Mol Cell Biol 25:10407–10418. doi: 10.1128/MCB.25.23.10407-10418.2005 PubMedCrossRefGoogle Scholar
  62. 62.
    Stachelscheid H, Ibrahim H, Koch L et al (2008) Epidermal insulin/IGF-1 signalling control interfollicular morphogenesis and proliferative potential through Rac activation. EMBO J 27:2091–2101. doi: 10.1038/emboj.2008.141 PubMedCrossRefGoogle Scholar
  63. 63.
    Thrash BR, Menges CW, Pierce RH, McCance DJ (2006) AKT1 provides an essential survival signal required for differentiation and stratification of primary human keratinocytes. J Biol Chem 281:12155–12162. doi: 10.1074/jbc.M512116200 PubMedCrossRefGoogle Scholar
  64. 64.
    Saegusa J, Hsu DK, Liu W et al (2008) Galectin-3 protects keratinocytes from UVB-induced apoptosis by enhancing AKT activation and suppressing ERK activation. J Invest Dermatol 128:2403–2411. doi: 10.1038/jid.2008.119 PubMedCrossRefGoogle Scholar
  65. 65.
    Larribere L, Khaled M, Tartare-Deckert S et al (2004) PI3K mediates protection against TRAIL-induced apoptosis in primary human melanocytes. Cell Death Differ 11:1084–1091. doi: 10.1038/sj.cdd.4401475 PubMedCrossRefGoogle Scholar
  66. 66.
    Datta SR, Dudek H, Tao X et al (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241. doi: 10.1016/S0092-8674(00)80405-5 PubMedCrossRefGoogle Scholar
  67. 67.
    Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401:82–85. doi: 10.1038/43466 PubMedCrossRefGoogle Scholar
  68. 68.
    Romashkova JA, Makarov SS (1999) NF-kappaB is a target of AKT in anti-apoptotic PDGF signalling. Nature 401:86–90. doi: 10.1038/43474 PubMedCrossRefGoogle Scholar
  69. 69.
    Meng F, Liu L, Chin PC, D’Mello SR (2002) Akt is a downstream target of NF-kappa B. J Biol Chem 277:29674–29680. doi: 10.1074/jbc.M112464200 PubMedCrossRefGoogle Scholar
  70. 70.
    Rygiel TP, Mertens AE, Strumane K, van der Kammen R, Collard JG (2008) The Rac activator Tiam1 prevents keratinocyte apoptosis by controlling ROS-mediated ERK phosphorylation. J Cell Sci 121:1183–1192. doi: 10.1242/jcs.017194 PubMedCrossRefGoogle Scholar
  71. 71.
    Bokoch GM (2003) Biology of the p21-activated kinases. Annu Rev Biochem 72:743–781. doi: 10.1146/annurev.biochem.72.121801.161742 PubMedCrossRefGoogle Scholar
  72. 72.
    Jin S, Zhuo Y, Guo W, Field J (2005) p21-activated Kinase 1 (Pak1)-dependent phosphorylation of Raf-1 regulates its mitochondrial localization, phosphorylation of BAD, and Bcl-2 association. J Biol Chem 280:24698–24705. doi: 10.1074/jbc.M413374200 PubMedCrossRefGoogle Scholar
  73. 73.
    Locksley RM, Killeen N, Lenardo MJ (2001) The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501. doi: 10.1016/S0092-8674(01)00237-9 PubMedCrossRefGoogle Scholar
  74. 74.
    Viard-Leveugle I, Bullani RR, Meda P et al (2003) Intracellular localization of keratinocyte Fas ligand explains lack of cytolytic activity under physiological conditions. J Biol Chem 278:16183–16188. doi: 10.1074/jbc.M212188200 PubMedCrossRefGoogle Scholar
  75. 75.
    Bayes M, Hartung AJ, Ezer S et al (1998) The anhidrotic ectodermal dysplasia gene (EDA) undergoes alternative splicing and encodes ectodysplasin—a with deletion mutations in collagenous repeats. Hum Mol Genet 7:1661–1669. doi: 10.1093/hmg/7.11.1661 PubMedCrossRefGoogle Scholar
  76. 76.
    Bossen C, Ingold K, Tardivel A et al (2006) Interactions of tumor necrosis factor (TNF) and TNF receptor family members in the mouse and human. J Biol Chem 281:13964–13971. doi: 10.1074/jbc.M601553200 PubMedCrossRefGoogle Scholar
  77. 77.
    Yan M, Wang LC, Hymowitz SG et al (2000) Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. Science 290:523–527PubMedCrossRefGoogle Scholar
  78. 78.
    Headon DJ, Overbeek PA (1999) Involvement of a novel Tnf receptor homologue in hair follicle induction. Nat Genet 22:370–374. doi: 10.1038/11943 PubMedCrossRefGoogle Scholar
  79. 79.
    Srivastava AK, Pispa J, Hartung AJ et al (1997) The tabby phenotype is caused by mutation in a mouse homologue of the EDA gene that reveals novel mouse and human exons and encodes a protein (ectodysplasin-A) with collagenous domains. Proc Natl Acad Sci USA 94:13069–13074. doi: 10.1073/pnas.94.24.13069 PubMedCrossRefGoogle Scholar
  80. 80.
    Ferguson BM, Brockdorff N, Formstone E, Ngyuen T, Kronmiller JE, Zonana J (1997) Cloning of tabby, the murine homolog of the human EDA gene: evidence for a membrane-associated protein with a short collagenous domain. Hum Mol Genet 6:1589–1594. doi: 10.1093/hmg/6.9.1589 PubMedCrossRefGoogle Scholar
  81. 81.
    Ohazama A, Courtney JM, Tucker AS et al (2004) Traf6 is essential for murine tooth cusp morphogenesis. Dev Dyn 229:131–135. doi: 10.1002/dvdy.10400 PubMedCrossRefGoogle Scholar
  82. 82.
    Headon DJ, Emmal SA, Ferguson BM et al (2001) Gene defect in ectodermal dysplasia implicates a death domain adapter in development. Nature 414:913–916. doi: 10.1038/414913a PubMedCrossRefGoogle Scholar
  83. 83.
    Yan M, Zhang Z, Brady JR, Schilbach S, Fairbrother WJ, Dixit VM (2002) Identification of a novel death domain-containing adaptor molecule for ectodysplasin-A receptor that is mutated in crinkled mice. Curr Biol 12:409–413. doi: 10.1016/S0960-9822(02)00687-5 PubMedCrossRefGoogle Scholar
  84. 84.
    Naito A, Yoshida H, Nishioka E et al (2002) TRAF6-deficient mice display hypohidrotic ectodermal dysplasia. Proc Natl Acad Sci USA 99:8766–8771PubMedGoogle Scholar
  85. 85.
    Fessing MY, Sharova TY, Sharov AA, Atoyan R, Botchkarev VA (2006) Involvement of the Edar signaling in the control of hair follicle involution (catagen). Am J Pathol 169:2075–2084. doi: 10.2353/ajpath.2006.060227 PubMedCrossRefGoogle Scholar
  86. 86.
    Schneider P, Street SL, Gaide O et al (2001) Mutations leading to X-linked hypohidrotic ectodermal dysplasia affect three major functional domains in the tumor necrosis factor family member ectodysplasin-A. J Biol Chem 276:18819–18827. doi: 10.1074/jbc.M101280200 PubMedCrossRefGoogle Scholar
  87. 87.
    Srivastava AK, Durmowicz MC, Hartung AJ et al (2001) Ectodysplasin-A1 is sufficient to rescue both hair growth and sweat glands in tabby mice. Hum Mol Genet 10:2973–2981. doi: 10.1093/hmg/10.26.2973 PubMedCrossRefGoogle Scholar
  88. 88.
    Gaide O, Schneider P (2003) Permanent correction of an inherited ectodermal dysplasia with recombinant EDA. Nat Med 9:614–618. doi: 10.1038/nm861 PubMedCrossRefGoogle Scholar
  89. 89.
    Casal ML, Lewis JR, Mauldin EA et al (2007) Significant correction of disease after postnatal administration of recombinant ectodysplasin A in canine X-linked ectodermal dysplasia. Am J Hum Genet 81:1050–1056. doi: 10.1086/521988 PubMedCrossRefGoogle Scholar
  90. 90.
    Greenlee RT, Hill-Harmon MB, Murray T, Thun M (2001) Cancer statistics, 2001. CA Cancer J Clin 51:15–36PubMedCrossRefGoogle Scholar
  91. 91.
    Matsunaga T, Hieda K, Nikaido O (1991) Wavelength dependent formation of thymine dimers and (6–4) photoproducts in DNA by monochromatic ultraviolet light ranging from 150 to 365 nm. Photochem Photobiol 54:403–410. doi: 10.1111/j.1751-1097.1991.tb02034.x PubMedCrossRefGoogle Scholar
  92. 92.
    Marchese C, Maresca V, Cardinali G et al (2003) UVB-induced activation and internalization of keratinocyte growth factor receptor. Oncogene 22:2422–2431. doi: 10.1038/sj.onc.1206301 PubMedCrossRefGoogle Scholar
  93. 93.
    Sancar A (1995) DNA repair in humans. Annu Rev Genet 29:69–105. doi: 10.1146/annurev.ge.29.120195.000441 PubMedCrossRefGoogle Scholar
  94. 94.
    Daniels F Jr, Brophy D, Lobitz WC Jr (1961) Histochemical responses of human skin following ultraviolet irradiation. J Invest Dermatol 37:351–357PubMedGoogle Scholar
  95. 95.
    Efeyan A, Serrano M (2007) p53: guardian of the genome and policeman of the oncogenes. Cell Cycle 6:1006–1010PubMedGoogle Scholar
  96. 96.
    Balint EE, Vousden KH (2001) Activation and activities of the p53 tumour suppressor protein. Br J Cancer 85:1813–1823. doi: 10.1054/bjoc.2001.2128 CrossRefGoogle Scholar
  97. 97.
    Vousden KH, Lane DP (2007) p53 in health and disease. Nat Rev Mol Cell Biol 8:275–283. doi: 10.1038/nrm2147 PubMedCrossRefGoogle Scholar
  98. 98.
    Ehrhart JC, Gosselet FP, Culerrier RM, Sarasin A (2003) UVB-induced mutations in human key gatekeeper genes governing signalling pathways and consequences for skin tumourigenesis. Photochem Photobiol Sci 2:825–834. doi: 10.1039/b302281a PubMedCrossRefGoogle Scholar
  99. 99.
    Shiloh Y (2003) ATM and related protein kinases: safeguarding genome integrity. Nat Rev 3:155–168Google Scholar
  100. 100.
    Ziegler A, Jonason AS, Leffell DJ et al (1994) Sunburn and p53 in the onset of skin cancer. Nature 372:773–776. doi: 10.1038/372773a0 PubMedCrossRefGoogle Scholar
  101. 101.
    Bruins W, Zwart E, Attardi LD et al (2004) Increased sensitivity to UV radiation in mice with a p53 point mutation at Ser389. Mol Cell Biol 24:8884–8894. doi: 10.1128/MCB.24.20.8884-8894.2004 PubMedCrossRefGoogle Scholar
  102. 102.
    Caelles C, Helmberg A, Karin M (1994) p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370:220–223. doi: 10.1038/370220a0 PubMedCrossRefGoogle Scholar
  103. 103.
    Wagner AJ, Kokontis JM, Hay N (1994) Myc-mediated apoptosis requires wild-type p53 in a manner independent of cell cycle arrest and the ability of p53 to induce p21waf1/cip1. Genes Dev 8:2817–2830. doi: 10.1101/gad.8.23.2817 PubMedCrossRefGoogle Scholar
  104. 104.
    Erster S, Moll UM (2005) Stress-induced p53 runs a transcription-independent death program. Biochem Biophys Res Commun 331:843–850. doi: 10.1016/j.bbrc.2005.03.187 PubMedCrossRefGoogle Scholar
  105. 105.
    Thornborrow EC, Patel S, Mastropietro AE, Schwartzfarb EM, Manfredi JJ (2002) A conserved intronic response element mediates direct p53-dependent transcriptional activation of both the human and murine bax genes. Oncogene 21:990–999. doi: 10.1038/sj.onc.1205069 PubMedCrossRefGoogle Scholar
  106. 106.
    Mathai JP, Germain M, Marcellus RC, Shore GC (2002) Induction and endoplasmic reticulum location of BIK/NBK in response to apoptotic signaling by E1A and p53. Oncogene 21:2534–2544. doi: 10.1038/sj.onc.1205340 PubMedCrossRefGoogle Scholar
  107. 107.
    Zilfou JT, Spector MS, Lowe SW (2005) Slugging it out: fine tuning the p53-PUMA death connection. Cell 123:545–548. doi: 10.1016/j.cell.2005.11.003 PubMedCrossRefGoogle Scholar
  108. 108.
    Naik E, Michalak EM, Villunger A, Adams JM, Strasser A (2007) Ultraviolet radiation triggers apoptosis of fibroblasts and skin keratinocytes mainly via the BH3-only protein Noxa. J Cell Biol 176:415–424. doi: 10.1083/jcb.200608070 PubMedCrossRefGoogle Scholar
  109. 109.
    Lakhani SA, Masud A, Kuida K et al (2006) Caspases 3 and 7: key mediators of mitochondrial events of apoptosis. Science 311:847–851PubMedCrossRefGoogle Scholar
  110. 110.
    Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11:1306–1313. doi: 10.1038/nm1320 PubMedCrossRefGoogle Scholar
  111. 111.
    Cui R, Widlund HR, Feige E et al (2007) Central role of p53 in the suntan response and pathologic hyperpigmentation. Cell 128:853–864. doi: 10.1016/j.cell.2006.12.045 PubMedCrossRefGoogle Scholar
  112. 112.
    Hsieh JK, Yap D, O’Connor DJ et al (2002) Novel function of the cyclin A binding site of E2F in regulating p53-induced apoptosis in response to DNA damage. Mol Cell Biol 22:78–93. doi: 10.1128/MCB.22.1.78-93.2002 PubMedCrossRefGoogle Scholar
  113. 113.
    Nahle Z, Polakoff J, Davuluri RV et al (2002) Direct coupling of the cell cycle and cell death machinery by E2F. Nat Cell Biol 4:859–864. doi: 10.1038/ncb868 PubMedCrossRefGoogle Scholar
  114. 114.
    Berton TR, Mitchell DL, Guo R, Johnson DG (2005) Regulation of epidermal apoptosis and DNA repair by E2F1 in response to ultraviolet B radiation. Oncogene 24:2449–2460. doi: 10.1038/sj.onc.1208462 PubMedCrossRefGoogle Scholar
  115. 115.
    Wikonkal NM, Remenyik E, Knezevic D et al (2003) Inactivating E2f1 reverts apoptosis resistance and cancer sensitivity in Trp53-deficient mice. Nat Cell Biol 5:655–660. doi: 10.1038/ncb1001 PubMedCrossRefGoogle Scholar
  116. 116.
    Rodier F, Campisi J, Bhaumik D (2007) Two faces of p53: aging and tumor suppression. Nucleic Acids Res 35:7475–7484. doi: 10.1093/nar/gkm744 PubMedCrossRefGoogle Scholar
  117. 117.
    Yang A, Schweitzer R, Sun D et al (1999) p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 398:714–718. doi: 10.1038/19539 PubMedCrossRefGoogle Scholar
  118. 118.
    Ferguson-Yates BE, Li H, Dong TK, Hsiao JL, Oh DH (2008) Impaired repair of cyclobutane pyrimidine dimers in human keratinocytes deficient in p53 and p63. Carcinogenesis 29:70–75. doi: 10.1093/carcin/bgm244 PubMedCrossRefGoogle Scholar
  119. 119.
    Yang A, Walker N, Bronson R et al (2000) p73-deficient mice have neurological, pheromonal and inflammatory defects but lack spontaneous tumours. Nature 404:99–103. doi: 10.1038/35003607 PubMedCrossRefGoogle Scholar
  120. 120.
    Mills AA, Zheng B, Wang XJ, Vogel H, Roop DR, Bradley A (1999) p63 is a p53 homologue required for limb and epidermal morphogenesis. Nature 398:708–713. doi: 10.1038/19531 PubMedCrossRefGoogle Scholar
  121. 121.
    Yang A, Kaghad M, Wang Y et al (1998) p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2:305–316. doi: 10.1016/S1097-2765(00)80275-0 PubMedCrossRefGoogle Scholar
  122. 122.
    Candi E, Cipollone R, Rivetti di Val Cervo P, Gonfloni S, Melino G, Knight R (2008) p63 in epithelial development. Cell Mol Life Sci 65:3126–3133Google Scholar
  123. 123.
    Nylander K, Coates PJ, Hall PA (2000) Characterization of the expression pattern of p63 alpha and delta Np63 alpha in benign and malignant oral epithelial lesions. Int J Cancer 87:368–372. doi: 10.1002/1097-0215(20000801)87:3<368::AID-IJC9>3.0.CO;2-J PubMedCrossRefGoogle Scholar
  124. 124.
    Papoutsaki M, Moretti F, Lanza M et al (2005) A p38-dependent pathway regulates DeltaNp63 DNA binding to p53-dependent promoters in UV-induced apoptosis of keratinocytes. Oncogene 24:6970–6975. doi: 10.1038/sj.onc.1208835 PubMedCrossRefGoogle Scholar
  125. 125.
    Bulavin DV, Saito S, Hollander MC et al (1999) Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18:6845–6854. doi: 10.1093/emboj/18.23.6845 PubMedCrossRefGoogle Scholar
  126. 126.
    Hildesheim J, Bulavin DV, Anver MR et al (2002) Gadd45a protects against UV irradiation-induced skin tumors, and promotes apoptosis and stress signaling via MAPK and p53. Cancer Res 62:7305–7315PubMedGoogle Scholar
  127. 127.
    Assefa Z, Van Laethem A, Garmyn M, Agostinis P (2005) Ultraviolet radiation-induced apoptosis in keratinocytes: on the role of cytosolic factors. Biochim Biophys Acta 1755:90–106PubMedGoogle Scholar
  128. 128.
    Knezevic D, Zhang W, Rochette PJ, Brash DE (2007) Bcl-2 is the target of a UV-inducible apoptosis switch and a node for UV signaling. Proc Natl Acad Sci USA 104:11286–11291. doi: 10.1073/pnas.0701318104 PubMedCrossRefGoogle Scholar
  129. 129.
    Chaturvedi V, Qin JZ, Stennett L, Choubey D, Nickoloff BJ (2004) Resistance to UV-induced apoptosis in human keratinocytes during accelerated senescence is associated with functional inactivation of p53. J Cell Physiol 198:100–109. doi: 10.1002/jcp.10392 PubMedCrossRefGoogle Scholar
  130. 130.
    Mandinova A, Lefort K, Tommasi di Vignano A et al (2008) The FoxO3a gene is a key negative target of canonical Notch signalling in the keratinocyte UVB response. EMBO J 27:1243–1254. doi: 10.1038/emboj.2008.45 PubMedCrossRefGoogle Scholar
  131. 131.
    Contassot E, Gaide O, French LE (2007) Death receptors and apoptosis. Dermatol Clin 25:487–501. doi: 10.1016/j.det.2007.06.010 viiPubMedGoogle Scholar
  132. 132.
    Takahashi H, Ishida-Yamamoto A (2001) Iizuka H Ultraviolet B irradiation induces apoptosis of keratinocytes by direct activation of Fas antigen. J Investig Dermatol Symp Proc 6:64–68PubMedCrossRefGoogle Scholar
  133. 133.
    Schwarz A, Bhardwaj R, Aragane Y et al (1995) Ultraviolet-B-induced apoptosis of keratinocytes: evidence for partial involvement of tumor necrosis factor-alpha in the formation of sunburn cells. J Invest Dermatol 104:922–927. doi: 10.1111/1523-1747.ep12606202 PubMedCrossRefGoogle Scholar
  134. 134.
    Aragane Y, Kulms D, Metze D et al (1998) Ultraviolet light induces apoptosis via direct activation of CD95 (Fas/APO-1) independently of its ligand CD95L. J Cell Biol 140:171–182. doi: 10.1083/jcb.140.1.171 PubMedCrossRefGoogle Scholar
  135. 135.
    Maeda T, Hao C, Tron VA (2001) Ultraviolet light (UV) regulation of the TNF family decoy receptors DcR2 and DcR3 in human keratinocytes. J Cutan Med Surg 5:294–298. doi: 10.1007/s102270000030 PubMedGoogle Scholar
  136. 136.
    Hill LL, Shreedhar VK, Kripke ML, Owen-Schaub LB (1999) A critical role for Fas ligand in the active suppression of systemic immune responses by ultraviolet radiation. J Exp Med 189:1285–1294. doi: 10.1084/jem.189.8.1285 PubMedCrossRefGoogle Scholar
  137. 137.
    Zhuang L, Wang B, Shinder GA, Shivji GM, Mak TW, Sauder DN (1999) TNF receptor p55 plays a pivotal role in murine keratinocyte apoptosis induced by ultraviolet B irradiation. J Immunol 162:1440–1447PubMedGoogle Scholar
  138. 138.
    Sitailo LA, Tibudan SS, Denning MF (2002) Activation of caspase-9 is required for UV-induced apoptosis of human keratinocytes. J Biol Chem 277:19346–19352. doi: 10.1074/jbc.M200401200 PubMedCrossRefGoogle Scholar
  139. 139.
    Grossman D, Kim PJ, Blanc-Brude OP et al (2001) Transgenic expression of survivin in keratinocytes counteracts UVB-induced apoptosis and cooperates with loss of p53. J Clin Invest 108:991–999PubMedGoogle Scholar
  140. 140.
    Takahashi H, Honma M, Ishida-Yamamoto A et al (2001) In vitro and in vivo transfer of bcl-2 gene into keratinocytes suppresses UVB-induced apoptosis. Photochem Photobiol 74:579–586. doi: 10.1562/0031-8655(2001)074<0579:IVAIVT>2.0.CO;2 PubMedCrossRefGoogle Scholar
  141. 141.
    Assefa Z, Garmyn M, Vantieghem A et al (2003) Ultraviolet B radiation-induced apoptosis in human keratinocytes: cytosolic activation of procaspase-8 and the role of Bcl-2. FEBS Lett 540:125–132. doi: 10.1016/S0014-5793(03)00238-2 PubMedCrossRefGoogle Scholar
  142. 142.
    Nickoloff BJ, Qin JZ, Chaturvedi V, Bacon P, Panella J, Denning MF (2002) Life and death signaling pathways contributing to skin cancer. J Investig Dermatol Symp Proc 7:27–35. doi: 10.1046/j.1523-1747.2002.19633.x PubMedCrossRefGoogle Scholar
  143. 143.
    Denning MF, Wang Y, Nickoloff BJ, Wrone-Smith T (1998) Protein kinase Cdelta is activated by caspase-dependent proteolysis during ultraviolet radiation-induced apoptosis of human keratinocytes. J Biol Chem 273:29995–30002. doi: 10.1074/jbc.273.45.29995 PubMedCrossRefGoogle Scholar
  144. 144.
    D’Costa AM, Denning MF (2005) A caspase-resistant mutant of PKC-delta protects keratinocytes from UV-induced apoptosis. Cell Death Differ 12:224–232. doi: 10.1038/sj.cdd.4401558 PubMedCrossRefGoogle Scholar
  145. 145.
    Sitailo LA, Tibudan SS, Denning MF (2004) Bax activation and induction of apoptosis in human keratinocytes by the protein kinase C delta catalytic domain. J Invest Dermatol 123:434–443. doi: 10.1111/j.0022-202X.2004.23403.x PubMedCrossRefGoogle Scholar
  146. 146.
    Sitailo LA, Tibudan SS, Denning MF (2006) The protein kinase C delta catalytic fragment targets Mcl-1 for degradation to trigger apoptosis. J Biol Chem 281:29703–29710. doi: 10.1074/jbc.M607351200 PubMedCrossRefGoogle Scholar
  147. 147.
    Van Laethem A, Van Kelst S, Lippens S et al (2004) Activation of p38 MAPK is required for Bax translocation to mitochondria, cytochrome c release and apoptosis induced by UVB irradiation in human keratinocytes. FASEB J 18:1946–1948PubMedGoogle Scholar
  148. 148.
    Bickers DR, Athar M (2006) Oxidative stress in the pathogenesis of skin disease. J Invest Dermatol 126:2565–2575. doi: 10.1038/sj.jid.5700340 PubMedCrossRefGoogle Scholar
  149. 149.
    Bode AM, Dong Z (2003) Mitogen-activated protein kinase activation in UV-induced signal transduction. Sci STKE 2003(167):RE2PubMedCrossRefGoogle Scholar
  150. 150.
    Gross S, Knebel A, Tenev T et al (1999) Inactivation of protein-tyrosine phosphatases as mechanism of UV-induced signal transduction. J Biol Chem 274:26378–26386. doi: 10.1074/jbc.274.37.26378 PubMedCrossRefGoogle Scholar
  151. 151.
    Gulati P, Markova B, Gottlicher M, Bohmer FD, Herrlich PA (2004) UVA inactivates protein tyrosine phosphatases by calpain-mediated degradation. EMBO Rep 5:812–817. doi: 10.1038/sj.embor.7400190 PubMedCrossRefGoogle Scholar
  152. 152.
    Wang H, Kochevar IE (2005) Involvement of UVB-induced reactive oxygen species in TGF-beta biosynthesis and activation in keratinocytes. Free Radic Biol Med 38:890–897. doi: 10.1016/j.freeradbiomed.2004.12.005 PubMedCrossRefGoogle Scholar
  153. 153.
    Van Laethem A, Nys K, Van Kelst S et al (2006) Apoptosis signal regulating kinase-1 connects reactive oxygen species to p38 MAPK-induced mitochondrial apoptosis in UVB-irradiated human keratinocytes. Free Radic Biol Med 41:1361–1371. doi: 10.1016/j.freeradbiomed.2006.07.007 PubMedCrossRefGoogle Scholar
  154. 154.
    Qin JZ, Chaturvedi V, Denning MF, Choubey D, Diaz MO, Nickoloff BJ (1999) Role of NF-kappaB in the apoptotic-resistant phenotype of keratinocytes. J Biol Chem 274:37957–37964. doi: 10.1074/jbc.274.53.37957 PubMedCrossRefGoogle Scholar
  155. 155.
    van Hogerlinden M, Rozell BL, Ahrlund-Richter L, Toftgard R (1999) Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-kappaB signaling. Cancer Res 59:3299–3303PubMedGoogle Scholar
  156. 156.
    Herrlich P, Karin M, Weiss C (2008) Supreme EnLIGHTenment: damage recognition and signaling in the mammalian UV response. Mol Cell 29:279–290. doi: 10.1016/j.molcel.2008.01.001 PubMedCrossRefGoogle Scholar
  157. 157.
    Lewis DA, Spandau DF (2008) UVB-induced activation of NF-kappaB is regulated by the IGF-1R and dependent on p38 MAPK. J Invest Dermatol 128:1022–1029. doi: 10.1038/sj.jid.5701127 PubMedCrossRefGoogle Scholar
  158. 158.
    Claerhout S, Decraene D, Van Laethem A, Van Kelst S, Agostinis P, Garmyn M (2007) AKT delays the early-activated apoptotic pathway in UVB-irradiated keratinocytes via BAD translocation. J Invest Dermatol 127:429–438. doi: 10.1038/sj.jid.5700533 PubMedCrossRefGoogle Scholar
  159. 159.
    Fritsche E, Schafer C, Calles C et al (2007) Lightening up the UV response by identification of the arylhydrocarbon receptor as a cytoplasmatic target for ultraviolet B radiation. Proc Natl Acad Sci USA 104:8851–8856. doi: 10.1073/pnas.0701764104 PubMedCrossRefGoogle Scholar
  160. 160.
    Akunda JK, Chun KS, Sessoms AR, Lao HC, Fischer SM, Langenbach R (2007) Cyclooxygenase-2 deficiency increases epidermal apoptosis and impairs recovery following acute UVB exposure. Mol Carcinog 46:354–362. doi: 10.1002/mc.20290 PubMedCrossRefGoogle Scholar
  161. 161.
    Chun KS, Akunda JK, Langenbach R (2007) Cyclooxygenase-2 inhibits UVB-induced apoptosis in mouse skin by activating the prostaglandin E2 receptors, EP2 and EP4. Cancer Res 67:2015–2021. doi: 10.1158/0008-5472.CAN-06-3617 PubMedCrossRefGoogle Scholar
  162. 162.
    Fischer SM, Pavone A, Mikulec C, Langenbach R, Rundhaug JE (2007) Cyclooxygenase-2 expression is critical for chronic UV-induced murine skin carcinogenesis. Mol Carcinog 46:363–371. doi: 10.1002/mc.20284 PubMedCrossRefGoogle Scholar
  163. 163.
    Fukuda I, Mukai R, Kawase M, Yoshida K, Ashida H (2007) Interaction between the aryl hydrocarbon receptor and its antagonists, flavonoids. Biochem Biophys Res Commun 359:822–827. doi: 10.1016/j.bbrc.2007.05.199 PubMedCrossRefGoogle Scholar
  164. 164.
    Ellison TI, Smith MK, Gilliam AC, MacDonald PN (2008) Inactivation of the vitamin D receptor enhances susceptibility of murine skin to UV-induced tumorigenesis. J Invest Dermatol 128:2508–2517. doi: 10.1038/jid.2008.131 PubMedCrossRefGoogle Scholar
  165. 165.
    Feldmeyer L, Keller M, Niklaus G, Hohl D, Werner S, Beer HD (2007) The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes. Curr Biol 17:1140–1145. doi: 10.1016/j.cub.2007.05.074 PubMedCrossRefGoogle Scholar
  166. 166.
    Faustin B, Reed JC (2008) Sunburned skin activates inflammasomes. Trends Cell Biol 18:4–8. doi: 10.1016/j.tcb.2007.10.004 PubMedCrossRefGoogle Scholar
  167. 167.
    Nakagaki T, Oda J, Koizumi H, Fukaya T, Yasui C, Ueda T (1990) Ultraviolet action spectrum for intracellular free Ca2+ increase in human epidermal keratinocytes. Cell Struct Funct 15:175–179PubMedCrossRefGoogle Scholar
  168. 168.
    Gibbs NK, Tye J, Norval M (2008) Recent advances in urocanic acid photochemistry, photobiology and photoimmunology. Photochem Photobiol Sci 7:655–667. doi: 10.1039/b717398a PubMedCrossRefGoogle Scholar
  169. 169.
    Denecker G, Ovaere P, Vandenabeele P, Declercq W (2008) Caspase-14 reveals its secrets. J Cell Biol 180:451–458. doi: 10.1083/jcb.200709098 PubMedCrossRefGoogle Scholar
  170. 170.
    Eckhart L, Ballaun C, Hermann M et al (2008) Identification of novel mammalian caspases reveals an important role of gene loss in shaping the human caspase repertoire. Mol Biol Evol 25:831–841. doi: 10.1093/molbev/msn012 PubMedCrossRefGoogle Scholar
  171. 171.
    Fesik SW (2005) Promoting apoptosis as a strategy for cancer drug discovery. Nat Rev 5:876–885Google Scholar
  172. 172.
    Brash DE, Rudolph JA, Simon JA et al (1991) A role for sunlight in skin cancer: UV-induced p53 mutations in squamous cell carcinoma. Proc Natl Acad Sci USA 88:10124–10128. doi: 10.1073/pnas.88.22.10124 PubMedCrossRefGoogle Scholar
  173. 173.
    Lacour JP (2002) Carcinogenesis of basal cell carcinomas: genetics and molecular mechanisms. Br J Dermatol 146(Suppl 61):17–19. doi: 10.1046/j.1365-2133.146.s61.5.x PubMedCrossRefGoogle Scholar
  174. 174.
    Jiang W, Ananthaswamy HN, Muller HK, Kripke ML (1999) p53 protects against skin cancer induction by UV-B radiation. Oncogene 18:4247–4253. doi: 10.1038/sj.onc.1202789 PubMedCrossRefGoogle Scholar
  175. 175.
    Li G, Tron V, Ho V (1998) Induction of squamous cell carcinoma in p53-deficient mice after ultraviolet irradiation. J Invest Dermatol 110:72–75. doi: 10.1046/j.1523-1747.1998.00090.x PubMedCrossRefGoogle Scholar
  176. 176.
    Ganguli G, Abecassis J, Wasylyk B (2000) MDM2 induces hyperplasia and premalignant lesions when expressed in the basal layer of the epidermis. EMBO J 19:5135–5147. doi: 10.1093/emboj/19.19.5135 PubMedCrossRefGoogle Scholar
  177. 177.
    Ball NJ, Yohn JJ, Morelli JG, Norris DA, Golitz LE, Hoeffler JP (1994) Ras mutations in human melanoma: a marker of malignant progression. J Invest Dermatol 102:285–290. doi: 10.1111/1523-1747.ep12371783 PubMedCrossRefGoogle Scholar
  178. 178.
    Hahne M, Rimoldi D, Schroter M et al (1996) Melanoma cell expression of Fas(Apo-1/CD95) ligand: implications for tumor immune escape. Science 274:1363–1366PubMedCrossRefGoogle Scholar
  179. 179.
    Jafari M, Papp T, Kirchner S et al (1995) Analysis of ras mutations in human melanocytic lesions: activation of the ras gene seems to be associated with the nodular type of human malignant melanoma. J Cancer Res Clin Oncol 121:23–30. doi: 10.1007/BF01202725 PubMedCrossRefGoogle Scholar
  180. 180.
    Sprecher E, Bergman R, Meilick A et al (1999) Apoptosis, Fas and Fas-ligand expression in melanocytic tumors. J Cutan Pathol 26:72–77. doi: 10.1111/j.1600-0560.1999.tb01805.x PubMedCrossRefGoogle Scholar
  181. 181.
    Wagner SN, Ockenfels HM, Wagner C, Hofler H, Goos M (1995) Ras gene mutations: a rare event in nonmetastatic primary malignant melanoma. J Invest Dermatol 104:868–871. doi: 10.1111/1523-1747.ep12607039 PubMedCrossRefGoogle Scholar
  182. 182.
    Shin MS, Park WS, Kim SY et al (1999) Alterations of Fas (Apo-1/CD95) gene in cutaneous malignant melanoma. Am J Pathol 154:1785–1791PubMedGoogle Scholar
  183. 183.
    Buechner SA, Wernli M, Harr T, Hahn S, Itin P, Erb P (1997) Regression of basal cell carcinoma by intralesional interferon-alpha treatment is mediated by CD95 (Apo-1/Fas)-CD95 ligand-induced suicide. J Clin Invest 100:2691–2696. doi: 10.1172/JCI119814 PubMedCrossRefGoogle Scholar
  184. 184.
    Moers C, Warskulat U, Muschen M et al (1999) Regulation of CD95 (Apo-1/Fas) ligand and receptor expression in squamous-cell carcinoma by interferon-gamma and cisplatin. Int J Cancer 80:564–572. doi: 10.1002/(SICI)1097-0215(19990209)80:4<564::AID-IJC14>3.0.CO;2-X PubMedCrossRefGoogle Scholar
  185. 185.
    Humphreys RC, Halpern W (2008) TRAIL receptors: targets for cancer therapy. Adv Exp Med Biol 615:127–158. doi: 10.1007/978-1-4020-6554-5_7 PubMedCrossRefGoogle Scholar
  186. 186.
    Kruyt FA (2008) TRAIL and cancer therapy. Cancer Lett 263:14–25. doi: 10.1016/j.canlet.2008.02.003 PubMedCrossRefGoogle Scholar
  187. 187.
    Griffith TS, Chin WA, Jackson GC, Lynch DH, Kubin MZ (1998) Intracellular regulation of TRAIL-induced apoptosis in human melanoma cells. J Immunol 161:2833–2840PubMedGoogle Scholar
  188. 188.
    Griffith TS, Lynch DH (1998) TRAIL: a molecule with multiple receptors and control mechanisms. Curr Opin Immunol 10:559–563. doi: 10.1016/S0952-7915(98)80224-0 PubMedCrossRefGoogle Scholar
  189. 189.
    Thomas WD, Hersey P (1998) TNF-related apoptosis-inducing ligand (TRAIL) induces apoptosis in Fas ligand-resistant melanoma cells and mediates CD4 T cell killing of target cells. J Immunol 161:2195–2200PubMedGoogle Scholar
  190. 190.
    Djerbi M, Screpanti V, Catrina AI, Bogen B, Biberfeld P, Grandien A (1999) The inhibitor of death receptor signaling, FLICE-inhibitory protein defines a new class of tumor progression factors. J Exp Med 190:1025–1032. doi: 10.1084/jem.190.7.1025 PubMedCrossRefGoogle Scholar
  191. 191.
    Medema JP, de Jong J, van Hall T, Melief CJ, Offringa R (1999) Immune escape of tumors in vivo by expression of cellular FLICE-inhibitory protein. J Exp Med 190:1033–1038. doi: 10.1084/jem.190.7.1033 PubMedCrossRefGoogle Scholar
  192. 192.
    Bowen AR, Hanks AN, Murphy KJ, Florell SR, Grossman D (2004) Proliferation, apoptosis, and survivin expression in keratinocytic neoplasms and hyperplasias. Am J Dermatopathol 26:177–181. doi: 10.1097/00000372-200406000-00001 PubMedCrossRefGoogle Scholar
  193. 193.
    Pena JC, Rudin CM, Thompson CBA (1998) Bcl-xL transgene promotes malignant conversion of chemically initiated skin papillomas. Cancer Res 58:2111–2116PubMedGoogle Scholar
  194. 194.
    Rodriguez-Villanueva J, Greenhalgh D, Wang XJ et al (1998) Human keratin-1.bcl-2 transgenic mice aberrantly express keratin 6, exhibit reduced sensitivity to keratinocyte cell death induction, and are susceptible to skin tumor formation. Oncogene 16:853–863. doi: 10.1038/sj.onc.1201610 PubMedCrossRefGoogle Scholar
  195. 195.
    Chawla-Sarkar M, Bae SI, Reu FJ, Jacobs BS, Lindner DJ, Borden EC (2004) Downregulation of Bcl-2, FLIP or IAPs (XIAP and survivin) by siRNAs sensitizes resistant melanoma cells to Apo2L/TRAIL-induced apoptosis. Cell Death Differ 11:915–923. doi: 10.1038/sj.cdd.4401416 PubMedCrossRefGoogle Scholar
  196. 196.
    Klasa RJ, Gillum AM, Klem RE, Frankel SR (2002) Oblimersen Bcl-2 antisense: facilitating apoptosis in anticancer treatment. Antisense Nucleic Acid Drug Dev 12:193–213. doi: 10.1089/108729002760220798 PubMedCrossRefGoogle Scholar
  197. 197.
    Cummings J, Ward TH, Ranson M, Dive C (2004) Apoptosis pathway-targeted drugs—from the bench to the clinic. Biochim Biophys Acta 1705:53–66PubMedGoogle Scholar
  198. 198.
    Gleave ME, Monia BP (2005) Antisense therapy for cancer. Nat Rev 5:468–479Google Scholar
  199. 199.
    Zhang L, Ming L, Yu J (2007) BH3 mimetics to improve cancer therapy; mechanisms and examples. Drug Resist Updat 10:207–217. doi: 10.1016/j.drup.2007.08.002 PubMedCrossRefGoogle Scholar
  200. 200.
    Fulda S, Debatin KM (2006) Targeting inhibitor of apoptosis proteins (IAPs) for diagnosis and treatment of human diseases. Recent Pat Anticancer Drug Discov 1:81–89. doi: 10.2174/157489206775246539 PubMedCrossRefGoogle Scholar
  201. 201.
    Hafner C, Lopez-Knowles E, Luis NM et al (2007) Oncogenic PIK3CA mutations occur in epidermal nevi and seborrheic keratoses with a characteristic mutation pattern. Proc Natl Acad Sci USA 104:13450–13454. doi: 10.1073/pnas.0705218104 PubMedCrossRefGoogle Scholar
  202. 202.
    Segrelles C, Lu J, Hammann B et al (2007) Deregulated activity of Akt in epithelial basal cells induces spontaneous tumors and heightened sensitivity to skin carcinogenesis. Cancer Res 67:10879–10888. doi: 10.1158/0008-5472.CAN-07-2564 PubMedCrossRefGoogle Scholar
  203. 203.
    Segrelles C, Ruiz S, Perez P et al (2002) Functional roles of Akt signaling in mouse skin tumorigenesis. Oncogene 21:53–64. doi: 10.1038/sj.onc.1205032 PubMedCrossRefGoogle Scholar
  204. 204.
    Eferl R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev 3:859–868CrossRefGoogle Scholar
  205. 205.
    Zenz R, Wagner EF (2006) Jun signalling in the epidermis: from developmental defects to psoriasis and skin tumors. Int J Biochem Cell Biol 38:1043–1049. doi: 10.1016/j.biocel.2005.11.011 PubMedCrossRefGoogle Scholar
  206. 206.
    Yamamoto Y, Gaynor RB (2001) Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest 107:135–142. doi: 10.1172/JCI11914 PubMedCrossRefGoogle Scholar
  207. 207.
    Brummelkamp TR, Nijman SM, Dirac AM, Bernards R (2003) Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 424:797–801. doi: 10.1038/nature01811 PubMedCrossRefGoogle Scholar
  208. 208.
    Massoumi R, Podda M, Fassler R, Paus R (2006) Cylindroma as tumor of hair follicle origin. J Invest Dermatol 126:1182–1184. doi: 10.1038/sj.jid.5700218 PubMedCrossRefGoogle Scholar
  209. 209.
    Regamey A, Hohl D, Liu JW et al (2003) The tumor suppressor CYLD interacts with TRIP and regulates negatively nuclear factor kappaB activation by tumor necrosis factor. J Exp Med 198:1959–1964. doi: 10.1084/jem.20031187 PubMedCrossRefGoogle Scholar
  210. 210.
    Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G (2003) CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 424:793–796. doi: 10.1038/nature01803 PubMedCrossRefGoogle Scholar
  211. 211.
    Khavari PA (2006) Modelling cancer in human skin tissue. Nat Rev 6:270–280Google Scholar
  212. 212.
    Dajee M, Lazarov M, Zhang JY et al (2003) NF-kappaB blockade and oncogenic Ras trigger invasive human epidermal neoplasia. Nature 421:639–643. doi: 10.1038/nature01283 PubMedCrossRefGoogle Scholar
  213. 213.
    Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776:86–107PubMedGoogle Scholar
  214. 214.
    Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev 3:380–387Google Scholar
  215. 215.
    Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev 6:535–545Google Scholar
  216. 216.
    Babilas P, Landthaler M, Szeimies RM (2006) Photodynamic therapy in dermatology. Eur J Dermatol 16:340–348PubMedGoogle Scholar
  217. 217.
    Almeida RD, Manadas BJ, Carvalho AP, Duarte CB (2004) Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta 1704:59–86PubMedGoogle Scholar
  218. 218.
    Lyell A (1956) Toxic epidermal necrolysis: an eruption resembling scalding of the skin. Br J Dermatol 68:355–361. doi: 10.1111/j.1365-2133.1956.tb12766.x PubMedCrossRefGoogle Scholar
  219. 219.
    Paul C, Wolkenstein P, Adle H et al (1996) Apoptosis as a mechanism of keratinocyte death in toxic epidermal necrolysis. Br J Dermatol 134:710–714. doi: 10.1111/j.1365-2133.1996.tb06976.x PubMedCrossRefGoogle Scholar
  220. 220.
    Nassif A, Bensussan A, Boumsell L et al (2004) Toxic epidermal necrolysis: effector cells are drug-specific cytotoxic T cells. J Allergy Clin Immunol 114:1209–1215. doi: 10.1016/j.jaci.2004.07.047 PubMedCrossRefGoogle Scholar
  221. 221.
    Viard I, Wehrli P, Bullani R et al (1998) Inhibition of toxic epidermal necrolysis by blockade of CD95 with human intravenous immunoglobulin. Science 282:490–493PubMedCrossRefGoogle Scholar
  222. 222.
    Diessenbacher P, Hupe M, Sprick MR et al (2008) NF-kappaB inhibition reveals differential mechanisms of TNF versus TRAIL-induced apoptosis upstream or at the level of caspase-8 activation independent of cIAP2. J Invest Dermatol 128:1134–1147. doi: 10.1038/sj.jid.5701141 PubMedCrossRefGoogle Scholar
  223. 223.
    Ito K, Hara H, Okada T, Shimojima H, Suzuki H (2004) Toxic epidermal necrolysis treated with low-dose intravenous immunoglobulin: immunohistochemical study of Fas and Fas-ligand expression. Clin Exp Dermatol 29:679–680. doi: 10.1111/j.1365-2230.2004.01635.x PubMedCrossRefGoogle Scholar
  224. 224.
    Lamoreux MR, Sternbach MR, Hsu WT (2006) Erythema multiforme. Am Fam Physician 74:1883–1888PubMedGoogle Scholar
  225. 225.
    Wang X, Bregegere F, Frusic-Zlotkin M, Feinmesser M, Michel B, Milner Y (2004) Possible apoptotic mechanism in epidermal cell acantholysis induced by pemphigus vulgaris autoimmunoglobulins. Apoptosis 9:131–143. doi: 10.1023/B:APPT.0000018795.05766.1f PubMedCrossRefGoogle Scholar
  226. 226.
    Puviani M, Marconi A, Cozzani E, Pincelli C (2003) Fas ligand in pemphigus sera induces keratinocyte apoptosis through the activation of caspase-8. J Invest Dermatol 120:164–167. doi: 10.1046/j.1523-1747.2003.12014.x PubMedCrossRefGoogle Scholar
  227. 227.
    Trautmann A, Akdis M, Blaser K, Akdis CA (2000) Role of dysregulated apoptosis in atopic dermatitis. Apoptosis 5:425–429. doi: 10.1023/A:1009620329213 PubMedCrossRefGoogle Scholar
  228. 228.
    Trautmann A, Akdis M, Kleemann D et al (2000) T cell-mediated Fas-induced keratinocyte apoptosis plays a key pathogenetic role in eczematous dermatitis. J Clin Invest 106:25–35. doi: 10.1172/JCI9199 PubMedCrossRefGoogle Scholar
  229. 229.
    Farley SM, Dotson AD, Purdy DE et al (2006) Fas ligand elicits a caspase-independent proinflammatory response in human keratinocytes: implications for dermatitis. J Invest Dermatol 126:2438–2451. doi: 10.1038/sj.jid.5700477 PubMedCrossRefGoogle Scholar
  230. 230.
    Farley SM, Purdy DE, Ryabinina OP, Schneider P, Magun BE, Iordanov MS (2008) Fas ligand-induced proinflammatory transcriptional responses in reconstructed human epidermis. Recruitment of the epidermal growth factor receptor and activation of MAP kinases. J Biol Chem 283:919–928. doi: 10.1074/jbc.M705852200 PubMedCrossRefGoogle Scholar
  231. 231.
    Ferrara JL, Levy R, Chao NJ (1999) Pathophysiologic mechanisms of acute graft vs. host disease. Biol Blood Marrow Transplant 5:347–356. doi: 10.1016/S1083-8791(99)70011-X PubMedCrossRefGoogle Scholar
  232. 232.
    Gilliam AC, Whitaker-Menezes D, Korngold R, Murphy GF (1996) Apoptosis is the predominant form of epithelial target cell injury in acute experimental graft-versus-host disease. J Invest Dermatol 107:377–383. doi: 10.1111/1523-1747.ep12363361 PubMedCrossRefGoogle Scholar
  233. 233.
    Baker MB, Altman NH, Podack ER, Levy RB (1996) The role of cell-mediated cytotoxicity in acute GVHD after MHC-matched allogeneic bone marrow transplantation in mice. J Exp Med 183:2645–2656. doi: 10.1084/jem.183.6.2645 PubMedCrossRefGoogle Scholar
  234. 234.
    Braun MY, Lowin B, French L, Acha-Orbea H, Tschopp J (1996) Cytotoxic T cells deficient in both functional fas ligand and perforin show residual cytolytic activity yet lose their capacity to induce lethal acute graft-versus-host disease. J Exp Med 183:657–661. doi: 10.1084/jem.183.2.657 PubMedCrossRefGoogle Scholar
  235. 235.
    Hattori K, Hirano T, Miyajima H et al (1998) Differential effects of anti-Fas ligand and anti-tumor necrosis factor alpha antibodies on acute graft-versus-host disease pathologies. Blood 91:4051–4055PubMedGoogle Scholar
  236. 236.
    Iotsova V, Caamano J, Loy J, Yang Y, Lewin A, Bravo R (1997) Osteopetrosis in mice lacking NF-kappaB1 and NF-kappaB2. Nat Med 3:1285–1289. doi: 10.1038/nm1197-1285 PubMedCrossRefGoogle Scholar
  237. 237.
    Pohl T, Gugasyan R, Grumont RJ et al (2002) The combined absence of NF-kappa B1 and c-Rel reveals that overlapping roles for these transcription factors in the B cell lineage are restricted to the activation and function of mature cells. Proc Natl Acad Sci USA 99:4514–4519. doi: 10.1073/pnas.072071599 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Saskia Lippens
    • 1
    • 2
  • Esther Hoste
    • 1
    • 2
  • Peter Vandenabeele
    • 1
    • 2
  • Patrizia Agostinis
    • 3
  • Wim Declercq
    • 1
    • 2
  1. 1.Molecular Signaling and Cell Death Unit, Department for Molecular Biomedical ResearchVIBGhentBelgium
  2. 2.Department of Biomedical Molecular BiologyGhent UniversityGhentBelgium
  3. 3.Department Molecular and Cell Biology, Faculty of MedicineCatholic University of LeuvenLeuvenBelgium

Personalised recommendations