, Volume 14, Issue 4, pp 348–363 | Cite as

NFκB signaling in carcinogenesis and as a potential molecular target for cancer therapy

  • Han-Ming Shen
  • Vinay Tergaonkar
Cell Death and Disease


It has become increasingly clear that deregulation of the NFκB signaling cascade is a common underlying feature of many human ailments including cancers. The past two decades of intensive research on NFκB has identified the basic mechanisms that govern the functioning of this pathway but uncovering the details of why this pathway works differently in different cellular contexts or how it interacts with other signaling pathways remains a challenge. A thorough understanding of these processes is needed to design better and more efficient therapeutic approaches to treat complex diseases like cancer. In this review, we summarize the literature documenting the involvement of NFκB in cancer, and then focus on the approaches that are being undertaken to develop NFκB inhibitors towards treatment of human cancers.


NFκB p65 Kinase Inhibitors Signaling Cancer IKK 



The work in HMS’s Lab is in part supported by research grants from Singapore Biomedical Research Council (BMRC), Singapore National Medical Research Council (NMRC), and University Research Council (URC), NUS.


  1. 1.
    Hayden MS, Ghosh S (2008) Shared principles in NF-kappaB signaling. Cell 132:344–362PubMedCrossRefGoogle Scholar
  2. 2.
    Sethi G, Sung B, Aggarwal BB (2008) Nuclear factor-kappaB activation: from bench to bedside. Exp Biol Med (Maywood) 233:21–31CrossRefGoogle Scholar
  3. 3.
    Tergaonkar V, Correa RG, Ikawa M, Verma IM (2005) Distinct roles of IkappaB proteins in regulating constitutive NF-kappaB activity. Nat Cell Biol 7:921–923PubMedCrossRefGoogle Scholar
  4. 4.
    Basak S, Kim H, Kearns JD et al (2007) A fourth IkappaB protein within the NF-kappaB signaling module. Cell 128:369–381PubMedCrossRefGoogle Scholar
  5. 5.
    Karin M, Ben-Neriah Y (2000) Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 18:621–663PubMedCrossRefGoogle Scholar
  6. 6.
    Ghosh S, Karin M (2002) Missing pieces in the NF-kappaB puzzle. Cell 109(Suppl.):S81–96Google Scholar
  7. 7.
    Perkins ND (2007) Integrating cell-signalling pathways with NF-kappaB and IKK function. Nat Rev Mol Cell Biol 8:49–62PubMedCrossRefGoogle Scholar
  8. 8.
    Sarkar FH, Li Y (2008) NF-kappaB: a potential target for cancer chemoprevention and therapy. Front Biosci 13:2950–2959PubMedCrossRefGoogle Scholar
  9. 9.
    Natoli G, Chiocca S (2008) Nuclear ubiquitin ligases, NF-kappaB degradation, and the control of inflammation. Sci Signal 1:pe1PubMedCrossRefGoogle Scholar
  10. 10.
    Li H, Lin X (2008) Positive and negative signaling components involved in TNFalpha-induced NF-kappaB activation. Cytokine 41:1–8PubMedCrossRefGoogle Scholar
  11. 11.
    Mantovani A, Allavena P, Sica A, Balkwill F (2008) Cancer-related inflammation. Nature 454:436–444PubMedCrossRefGoogle Scholar
  12. 12.
    Hu Y, Baud V, Delhase M et al (1999) Abnormal morphogenesis but intact IKK activation in mice lacking the IKKalpha subunit of IkappaB kinase. Science 284:316–320PubMedCrossRefGoogle Scholar
  13. 13.
    Karin M, Greten FR (2005) NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol 5:749–759PubMedCrossRefGoogle Scholar
  14. 14.
    Pikarsky E, Porat RM, Stein I et al (2004) NF-kappaB functions as a tumour promoter in inflammation-associated cancer. Nature 431:461–466PubMedCrossRefGoogle Scholar
  15. 15.
    Li Q, Withoff S, Verma IM (2005) Inflammation-associated cancer: NF-kappaB is the lynchpin. Trends Immunol 26:318–325PubMedCrossRefGoogle Scholar
  16. 16.
    Yamamoto Y, Gaynor RB (2001) Therapeutic potential of inhibition of the NF-kappaB pathway in the treatment of inflammation and cancer. J Clin Invest 107:135–142PubMedCrossRefGoogle Scholar
  17. 17.
    Sur I, Ulvmar M, Toftgard R (2008) The two-faced NF-kappaB in the skin. Int Rev Immunol 27:205–223PubMedCrossRefGoogle Scholar
  18. 18.
    Pasparakis M, Luedde T, Schmidt-Supprian M (2006) Dissection of the NF-kappaB signalling cascade in transgenic and knockout mice. Cell Death Differ 13:861–872PubMedCrossRefGoogle Scholar
  19. 19.
    Pasparakis M, Courtois G, Hafner M et al (2002) TNF-mediated inflammatory skin disease in mice with epidermis-specific deletion of IKK2. Nature 417:861–866PubMedCrossRefGoogle Scholar
  20. 20.
    Lind MH, Rozell B, Wallin RP et al (2004) Tumor necrosis factor receptor 1-mediated signaling is required for skin cancer development induced by NF-kappaB inhibition. Proc Natl Acad Sci USA 101:4972–4977PubMedCrossRefGoogle Scholar
  21. 21.
    Greten FR, Eckmann L, Greten TF et al (2004) IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer. Cell 118:285–296PubMedCrossRefGoogle Scholar
  22. 22.
    Nenci A, Becker C, Wullaert A et al (2007) Epithelial NEMO links innate immunity to chronic intestinal inflammation. Nature 446:557–561PubMedCrossRefGoogle Scholar
  23. 23.
    Luedde T, Beraza N, Kotsikoris V et al (2007) Deletion of NEMO/IKKgamma in liver parenchymal cells causes steatohepatitis and hepatocellular carcinoma. Cancer Cell 11:119–132PubMedCrossRefGoogle Scholar
  24. 24.
    Eckmann L, Nebelsiek T, Fingerle AA et al (2008) Opposing functions of IKKbeta during acute and chronic intestinal inflammation. Proc Natl Acad Sci USA 105:15058–15063PubMedCrossRefGoogle Scholar
  25. 25.
    Aggarwal BB (2004) Nuclear factor-kappaB: the enemy within. Cancer Cell 6:203–208PubMedCrossRefGoogle Scholar
  26. 26.
    Okamoto T, Sanda T, Asamitsu K (2007) NF-kappa B signaling and carcinogenesis. Curr Pharm Des 13:447–462PubMedCrossRefGoogle Scholar
  27. 27.
    Joyce D, Albanese C, Steer J, Fu M, Bouzahzah B, Pestell RG (2001) NF-kappaB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev 12:73–90PubMedCrossRefGoogle Scholar
  28. 28.
    Naugler WE, Karin M (2008) NF-kappaB and cancer-identifying targets and mechanisms. Curr Opin Genet Dev 18:19–26PubMedCrossRefGoogle Scholar
  29. 29.
    Guertin DA, Sabatini DM (2007) Defining the role of mTOR in cancer. Cancer Cell 12:9–22PubMedCrossRefGoogle Scholar
  30. 30.
    Inoki K, Guan KL (2006) Complexity of the TOR signaling network. Trends Cell Biol 16:206–212PubMedCrossRefGoogle Scholar
  31. 31.
    Sabatini DM (2006) mTOR and cancer: insights into a complex relationship. Nat Rev Cancer 6:729–734PubMedCrossRefGoogle Scholar
  32. 32.
    Gulati P, Thomas G (2007) Nutrient sensing in the mTOR/S6K1 signalling pathway. Biochem Soc Trans 35:236–238PubMedCrossRefGoogle Scholar
  33. 33.
    Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB (1999) NF-kappaB activation by tumour necrosis factor requires the Akt serine-threonine kinase. Nature 401:82–85PubMedCrossRefGoogle Scholar
  34. 34.
    Delhase M, Li N, Karin M (2000) Kinase regulation in inflammatory response. Nature 406:367–368PubMedCrossRefGoogle Scholar
  35. 35.
    Madrid LV, Mayo MW, Reuther JY, Baldwin AS Jr (2001) Akt stimulates the transactivation potential of the RelA/p65 subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen-activated protein kinase p38. J Biol Chem 276:18934–18940PubMedCrossRefGoogle Scholar
  36. 36.
    Sizemore N, Lerner N, Dombrowski N, Sakurai H, Stark GR (2002) Distinct roles of the Ikappa B kinase alpha and beta subunits in liberating nuclear factor kappa B (NF-kappa B) from Ikappa B and in phosphorylating the p65 subunit of NF-kappa B. J Biol Chem 277:3863–3869PubMedCrossRefGoogle Scholar
  37. 37.
    Dan HC, Cooper MJ, Cogswell PC, Duncan JA, Ting JP, Baldwin AS (2008) Akt-dependent regulation of NF-{kappa}B is controlled by mTOR and Raptor in association with IKK. Genes Dev 22:1490–1500PubMedCrossRefGoogle Scholar
  38. 38.
    Ghosh S, Tergaonkar V, Rothlin CV et al (2006) Essential role of tuberous sclerosis genes TSC1 and TSC2 in NF-kappaB activation and cell survival. Cancer Cell 10:215–226PubMedCrossRefGoogle Scholar
  39. 39.
    Lee DF, Kuo HP, Chen CT et al (2007) IKK beta suppression of TSC1 links inflammation and tumor angiogenesis via the mTOR pathway. Cell 130:440–455PubMedCrossRefGoogle Scholar
  40. 40.
    Lee DF, Hung MC (2007) All roads lead to mTOR: integrating inflammation and tumor angiogenesis. Cell Cycle 6:3011–3014PubMedGoogle Scholar
  41. 41.
    Beyaert R, Heyninck K, Van Huffel S (2000) A20 and A20-binding proteins as cellular inhibitors of nuclear factor-kappa B-dependent gene expression and apoptosis. Biochem Pharmacol 60:1143–1151PubMedCrossRefGoogle Scholar
  42. 42.
    Hyer ML, Samuel T, Reed JC (2006) The FLIP-side of Fas signaling. Clin Cancer Res 12:5929–5931PubMedCrossRefGoogle Scholar
  43. 43.
    Srinivasula SM, Ashwell JD (2008) IAPs: what’s in a name? Mol Cell 30:123–135PubMedCrossRefGoogle Scholar
  44. 44.
    Luo JL, Kamata H, Karin M (2005) IKK/NF-kappaB signaling: balancing life and death—a new approach to cancer therapy. J Clin Invest 115:2625–2632PubMedCrossRefGoogle Scholar
  45. 45.
    Tergaonkar V (2006) NFkappaB pathway: a good signaling paradigm and therapeutic target. Int J Biochem Cell Biol 38:1647–1653PubMedCrossRefGoogle Scholar
  46. 46.
    Denecker G, Vercammen D, Steemans M et al (2001) Death receptor-induced apoptotic and necrotic cell death: differential role of caspases and mitochondria. Cell Death Differ 8:829–840PubMedCrossRefGoogle Scholar
  47. 47.
    Fiers W, Beyaert R, Declercq W, Vandenabeele P (1999) More than one way to die: apoptosis, necrosis and reactive oxygen damage. Oncogene 18:7719–7730PubMedCrossRefGoogle Scholar
  48. 48.
    Jaattela M, Tschopp J (2003) Caspase-independent cell death in T lymphocytes. Nat Immunol 4:416–423PubMedCrossRefGoogle Scholar
  49. 49.
    Lin Y, Choksi S, Shen HM et al (2004) Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem 279:10822–10828PubMedCrossRefGoogle Scholar
  50. 50.
    Sakon S, Xue X, Takekawa M et al (2003) NF-kappaB inhibits TNF-induced accumulation of ROS that mediate prolonged MAPK activation and necrotic cell death. EMBO J 22:3898–3909PubMedCrossRefGoogle Scholar
  51. 51.
    Ventura JJ, Cogswell P, Flavell RA, Baldwin AS Jr, Davis RJ (2004) JNK potentiates TNF-stimulated necrosis by increasing the production of cytotoxic reactive oxygen species. Genes Dev 18:2905–2915PubMedCrossRefGoogle Scholar
  52. 52.
    Shen HM, Lin Y, Choksi S et al (2004) Essential roles of receptor-interacting protein and TRAF2 in oxidative stress-induced cell death. Mol Cell Biol 24:5914–5922PubMedCrossRefGoogle Scholar
  53. 53.
    Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–661PubMedCrossRefGoogle Scholar
  54. 54.
    Zhang S, Lin Y, Kim YS, Hande MP, Liu ZG, Shen HM (2007) c-Jun N-terminal kinase mediates hydrogen peroxide-induced cell death via sustained poly(ADP-ribose) polymerase-1 activation. Cell Death Differ 14:1001–1010PubMedCrossRefGoogle Scholar
  55. 55.
    Bubici C, Papa S, Dean K, Franzoso G (2006) Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: molecular basis and biological significance. Oncogene 25:6731–6748PubMedCrossRefGoogle Scholar
  56. 56.
    Nakano H, Nakajima A, Sakon-Komazawa S, Piao JH, Xue X, Okumura K (2006) Reactive oxygen species mediate crosstalk between NF-kappaB and JNK. Cell Death Differ 13:730–737PubMedCrossRefGoogle Scholar
  57. 57.
    Shen HM, Liu ZG (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med 40:928–939PubMedCrossRefGoogle Scholar
  58. 58.
    Papa S, Bubici C, Zazzeroni F et al (2006) The NF-kappaB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ 13:712–729PubMedCrossRefGoogle Scholar
  59. 59.
    De Smaele E, Zazzeroni F, Papa S et al (2001) Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414:308–313PubMedCrossRefGoogle Scholar
  60. 60.
    Tang G, Minemoto Y, Dibling B et al (2001) Inhibition of JNK activation through NF-kappaB target genes. Nature 414:313–317PubMedCrossRefGoogle Scholar
  61. 61.
    Delhalle S, Deregowski V, Benoit V, Merville MP, Bours V (2002) NF-kappaB-dependent MnSOD expression protects adenocarcinoma cells from TNF-alpha-induced apoptosis. Oncogene 21:3917–3924PubMedCrossRefGoogle Scholar
  62. 62.
    Pham CG, Bubici C, Zazzeroni F et al (2004) Ferritin heavy chain upregulation by NF-kappaB inhibits TNFalpha-induced apoptosis by suppressing reactive oxygen species. Cell 119:529–542PubMedCrossRefGoogle Scholar
  63. 63.
    Shen HM, Pervaiz S (2006) TNF receptor superfamily-induced cell death: redox-dependent execution. FASEB J 20:1589–1598PubMedCrossRefGoogle Scholar
  64. 64.
    Degenhardt K, Mathew R, Beaudoin B et al (2006) Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell 10:51–64PubMedCrossRefGoogle Scholar
  65. 65.
    Mathew R, Karantza-Wadsworth V, White E (2007) Role of autophagy in cancer. Nat Rev Cancer 7:961–967PubMedCrossRefGoogle Scholar
  66. 66.
    Klionsky DJ, Emr SD (2000) Autophagy as a regulated pathway of cellular degradation. Science 290:1717–1721PubMedCrossRefGoogle Scholar
  67. 67.
    Kundu M, Thompson CB (2008) Autophagy: basic principles and relevance to disease. Annu Rev Pathol 3:427–455PubMedCrossRefGoogle Scholar
  68. 68.
    Mizushima N (2007) Autophagy: process and function. Genes Dev 21:2861–2873PubMedCrossRefGoogle Scholar
  69. 69.
    Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42PubMedCrossRefGoogle Scholar
  70. 70.
    Gozuacik D, Kimchi A (2007) Autophagy and cell death. Curr Top Dev Biol 78:217–245PubMedCrossRefGoogle Scholar
  71. 71.
    White E (2008) Autophagic cell death unraveled: pharmacological inhibition of apoptosis and autophagy enables necrosis. Autophagy 4:399–401PubMedGoogle Scholar
  72. 72.
    Djavaheri-Mergny M, Amelotti M, Mathieu J et al (2006) NF-kappaB activation represses tumor necrosis factor-alpha-induced autophagy. J Biol Chem 281:30373–30382PubMedCrossRefGoogle Scholar
  73. 73.
    Fabre C, Carvalho G, Tasdemir E et al (2007) NF-kappaB inhibition sensitizes to starvation-induced cell death in high-risk myelodysplastic syndrome and acute myeloid leukemia. Oncogene 26:4071–4083PubMedCrossRefGoogle Scholar
  74. 74.
    Djavaheri-Mergny M, Amelotti M, Mathieu J, Besancon F, Bauvy C, Codogno P (2007) Regulation of autophagy by NFkappaB transcription factor and reactive oxygen species. Autophagy 3:390–392PubMedGoogle Scholar
  75. 75.
    Djavaheri-Mergny M, Codogno P (2007) Autophagy joins the game to regulate NF-kappaB signaling pathways. Cell Res 17:576–577PubMedCrossRefGoogle Scholar
  76. 76.
    Qing G, Yan P, Xiao G (2006) Hsp90 inhibition results in autophagy-mediated proteasome-independent degradation of IkappaB kinase (IKK). Cell Res 16:895–901PubMedCrossRefGoogle Scholar
  77. 77.
    Qing G, Yan P, Qu Z, Liu H, Xiao G (2007) Hsp90 regulates processing of NF-kappaB2 p100 involving protection of NF-kappaB-inducing kinase (NIK) from autophagy-mediated degradation. Cell Res 17:520–530PubMedCrossRefGoogle Scholar
  78. 78.
    Levine B (2007) Cell biology: autophagy and cancer. Nature 446:745–747PubMedCrossRefGoogle Scholar
  79. 79.
    Jin S, White E (2008) Tumor suppression by autophagy through the management of metabolic stress. Autophagy 4:563–566PubMedGoogle Scholar
  80. 80.
    Kashatus D, Cogswell P, Baldwin AS (2006) Expression of the Bcl-3 proto-oncogene suppresses p53 activation. Genes Dev 20:225–235PubMedCrossRefGoogle Scholar
  81. 81.
    Tergaonkar V, Pando M, Vafa O, Wahl G, Verma I (2002) p53 stabilization is decreased upon NFkappaB activation: a role for NFkappaB in acquisition of resistance to chemotherapy. Cancer Cell 1:493–503PubMedCrossRefGoogle Scholar
  82. 82.
    Webster GA, Perkins ND (1999) Transcriptional cross talk between NF-kappaB and p53. Mol Cell Biol 19:3485–3495PubMedGoogle Scholar
  83. 83.
    Tergaonkar V, Perkins ND (2007) p53 and NF-kappaB crosstalk: IKKalpha tips the balance. Mol Cell 26:158–159PubMedCrossRefGoogle Scholar
  84. 84.
    Schumm K, Rocha S, Caamano J, Perkins ND (2006) Regulation of p53 tumour suppressor target gene expression by the p52 NF-kappaB subunit. EMBO J 25:4820–4832PubMedCrossRefGoogle Scholar
  85. 85.
    Dey A, Wong ET, Bist P, Tergaonkar V, Lane DP (2007) Nutlin-3 inhibits the NFkappaB pathway in a p53-dependent manner: implications in lung cancer therapy. Cell Cycle 6:2178–2185PubMedGoogle Scholar
  86. 86.
    Dey A, Wong ET, Cheok CF, Tergaonkar V, Lane DP (2008) R-Roscovitine simultaneously targets both the p53 and NF-kappaB pathways and causes potentiation of apoptosis: implications in cancer therapy. Cell Death Differ 15:263–273PubMedCrossRefGoogle Scholar
  87. 87.
    Dey A, Tergaonkar V, Lane DP (2008) Double-edged swords as cancer therapeutics: simultaneously targeting p53 and NF-kappaB pathways. Nat Rev Drug Discov 7:1031–1040PubMedCrossRefGoogle Scholar
  88. 88.
    Schmidt D, Textor B, Pein OT et al (2007) Critical role for NF-kappaB-induced JunB in VEGF regulation and tumor angiogenesis. EMBO J 26:710–719PubMedCrossRefGoogle Scholar
  89. 89.
    Stifter S (2006) The role of nuclear factor kappaB on angiogenesis regulation through monocyte chemotactic protein-1 in myeloma. Med Hypotheses 66:384–386PubMedCrossRefGoogle Scholar
  90. 90.
    Choi IK, Shin HJ, Lee HS, Kwon HJ (2007) Streptochlorin, a marine natural product, inhibits NF-kappaB activation and suppresses angiogenesis in vitro. J Microbiol Biotechnol 17:1338–1343PubMedGoogle Scholar
  91. 91.
    Dell’Eva R, Ambrosini C, Minghelli S, Noonan DM, Albini A, Ferrari N (2007) The Akt inhibitor deguelin, is an angiopreventive agent also acting on the NF-kappaB pathway. Carcinogenesis 28:404–413PubMedCrossRefGoogle Scholar
  92. 92.
    Xiong HQ, Abbruzzese JL, Lin E, Wang L, Zheng L, Xie K (2004) NF-kappaB activity blockade impairs the angiogenic potential of human pancreatic cancer cells. Int J Cancer 108:181–188PubMedCrossRefGoogle Scholar
  93. 93.
    Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ (2001) Blockade of NF-kappaB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 20:4188–4197PubMedCrossRefGoogle Scholar
  94. 94.
    Kisseleva T, Song L, Vorontchikhina M, Feirt N, Kitajewski J, Schindler C (2006) NF-kappaB regulation of endothelial cell function during LPS-induced toxemia and cancer. J Clin Invest 116:2955–2963PubMedCrossRefGoogle Scholar
  95. 95.
    Tabruyn SP, Sabatel C, Nguyen NQ et al (2007) The angiostatic 16K human prolactin overcomes endothelial cell anergy and promotes leukocyte infiltration via nuclear factor-kappaB activation. Mol Endocrinol 21:1422–1429PubMedCrossRefGoogle Scholar
  96. 96.
    Tabruyn SP, Griffioen AW (2008) NF-kappa B: a new player in angiostatic therapy. Angiogenesis 11:101–106PubMedCrossRefGoogle Scholar
  97. 97.
    Gingras D, Nyalendo C, Di Tomasso G, Annabi B, Beliveau R (2004) Activation of tissue plasminogen activator gene transcription by Neovastat, a multifunctional antiangiogenic agent. Biochem Biophys Res Commun 320:205–212PubMedCrossRefGoogle Scholar
  98. 98.
    Tabruyn SP, Griffioen AW (2007) A new role for NF-kappaB in angiogenesis inhibition. Cell Death Differ 14:1393–1397PubMedCrossRefGoogle Scholar
  99. 99.
    Huber MA, Kraut N, Beug H (2005) Molecular requirements for epithelial-mesenchymal transition during tumor progression. Curr Opin Cell Biol 17:548–558PubMedCrossRefGoogle Scholar
  100. 100.
    Basseres DS, Baldwin AS (2006) Nuclear factor-kappaB and inhibitor of kappaB kinase pathways in oncogenic initiation and progression. Oncogene 25:6817–6830PubMedCrossRefGoogle Scholar
  101. 101.
    Sliva D (2004) Signaling pathways responsible for cancer cell invasion as targets for cancer therapy. Curr Cancer Drug Targets 4:327–336PubMedCrossRefGoogle Scholar
  102. 102.
    Helbig G, Christopherson KWII, Bhat-Nakshatri P et al (2003) NF-kappaB promotes breast cancer cell migration and metastasis by inducing the expression of the chemokine receptor CXCR4. J Biol Chem 278:21631–21638PubMedCrossRefGoogle Scholar
  103. 103.
    Huber MA, Azoitei N, Baumann B et al (2004) NF-kappaB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression. J Clin Invest 114:569–581PubMedGoogle Scholar
  104. 104.
    Luo JL, Tan W, Ricono JM et al (2007) Nuclear cytokine-activated IKKalpha controls prostate cancer metastasis by repressing Maspin. Nature 446:690–694PubMedCrossRefGoogle Scholar
  105. 105.
    Huang Q, Lu G, Shen HM, Chung MC, Ong CN (2007) Anti-cancer properties of anthraquinones from rhubarb. Med Res Rev 27:609–630PubMedCrossRefGoogle Scholar
  106. 106.
    Zhang S, Won YK, Ong CN, Shen HM (2005) Anti-cancer potential of sesquiterpene lactones: bioactivity and molecular mechanisms. Curr Med Chem Anticancer Agents 5:239–249PubMedCrossRefGoogle Scholar
  107. 107.
    Bhaumik D, Scott GK, Schokrpur S, Patil CK, Campisi J, Benz CC (2008) Expression of microRNA-146 suppresses NF-kappaB activity with reduction of metastatic potential in breast cancer cells. Oncogene 27:5643–5647CrossRefGoogle Scholar
  108. 108.
    Armstrong BK, Kricker A (2001) The epidemiology of UV induced skin cancer. J Photochem Photobiol B 63:8–18PubMedCrossRefGoogle Scholar
  109. 109.
    Melnikova VO, Ananthaswamy HN (2005) Cellular and molecular events leading to the development of skin cancer. Mutat Res 571:91–106PubMedGoogle Scholar
  110. 110.
    Cooper SJ, Bowden GT (2007) Ultraviolet B regulation of transcription factor families: roles of nuclear factor-kappa B (NF-kappaB) and activator protein-1 (AP-1) in UVB-induced skin carcinogenesis. Curr Cancer Drug Targets 7:325–334PubMedCrossRefGoogle Scholar
  111. 111.
    Muotri AR, Bottero V, Tergaonkar V, Correa RG (2006) UV-mediated NF-kappaB activation is abolished in deficient XPC/D primary fibroblasts. Cell Cycle 5:1085–1089PubMedGoogle Scholar
  112. 112.
    Tergaonkar V, Bottero V, Ikawa M, Li Q, Verma IM (2003) IkappaB kinase-independent IkappaBalpha degradation pathway: functional NF-kappaB activity and implications for cancer therapy. Mol Cell Biol 23:8070–8083PubMedCrossRefGoogle Scholar
  113. 113.
    Bender K, Gottlicher M, Whiteside S, Rahmsdorf HJ, Herrlich P (1998) Sequential DNA damage-independent and -dependent activation of NF-kappaB by UV. EMBO J 17:5170–5181PubMedCrossRefGoogle Scholar
  114. 114.
    Li N, Karin M (1998) Ionizing radiation and short wavelength UV activate NF-kappaB through two distinct mechanisms. Proc Natl Acad Sci USA 95:13012–13017PubMedCrossRefGoogle Scholar
  115. 115.
    Kato T Jr, Delhase M, Hoffmann A, Karin M (2003) CK2 Is a C-terminal IkappaB kinase responsible for NF-kappaB activation during the UV response. Mol Cell 12:829–839PubMedCrossRefGoogle Scholar
  116. 116.
    Won YK, Ong CN, Shi X, Shen HM (2004) Chemopreventive activity of parthenolide against UVB-induced skin cancer and its mechanisms. Carcinogenesis 25:1449–1458PubMedCrossRefGoogle Scholar
  117. 117.
    Bair WBIII, Hart N, Einspahr J et al (2002) Inhibitory effects of sodium salicylate and acetylsalicylic acid on UVB-induced mouse skin carcinogenesis. Cancer Epidemiol Biomarkers Prev 11:1645–1652PubMedGoogle Scholar
  118. 118.
    Hong JT, Kim EJ, Ahn KS et al (2001) Inhibitory effect of glycolic acid on ultraviolet-induced skin tumorigenesis in SKH-1 hairless mice and its mechanism of action. Mol Carcinog 31:152–160PubMedCrossRefGoogle Scholar
  119. 119.
    van Hogerlinden M, Rozell BL, Ahrlund-Richter L, Toftgard R (1999) Squamous cell carcinomas and increased apoptosis in skin with inhibited Rel/nuclear factor-kappaB signaling. Cancer Res 59:3299–3303PubMedGoogle Scholar
  120. 120.
    Descargues P, Sil AK, Karin M (2008) IKKalpha, a critical regulator of epidermal differentiation and a suppressor of skin cancer. EMBO J 27:2639–2647PubMedCrossRefGoogle Scholar
  121. 121.
    Takeda K, Takeuchi O, Tsujimura T et al (1999) Limb and skin abnormalities in mice lacking IKKalpha. Science 284:313–316PubMedCrossRefGoogle Scholar
  122. 122.
    Li Q, Lu Q, Hwang JY et al (1999) IKK1-deficient mice exhibit abnormal development of skin and skeleton. Genes Dev 13:1322–1328PubMedCrossRefGoogle Scholar
  123. 123.
    Park E, Zhu F, Liu B et al (2007) Reduction in IkappaB kinase alpha expression promotes the development of skin papillomas and carcinomas. Cancer Res 67:9158–9168PubMedCrossRefGoogle Scholar
  124. 124.
    Liu B, Xia X, Zhu F et al (2008) IKKalpha is required to maintain skin homeostasis and prevent skin cancer. Cancer Cell 14:212–225PubMedCrossRefGoogle Scholar
  125. 125.
    Bosch FX, Ribes J, Diaz M, Cleries R (2004) Primary liver cancer: worldwide incidence and trends. Gastroenterology 127:S5–S16PubMedCrossRefGoogle Scholar
  126. 126.
    Maeda S, Kamata H, Luo JL, Leffert H, Karin M (2005) IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis. Cell 121:977–990PubMedCrossRefGoogle Scholar
  127. 127.
    Sakurai T, He G, Matsuzawa A et al (2008) Hepatocyte necrosis induced by oxidative stress and IL-1 alpha release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 14:156–165PubMedCrossRefGoogle Scholar
  128. 128.
    Karin M, Delhase M (2000) The I kappa B kinase (IKK) and NF-kappa B: key elements of proinflammatory signalling. Semin Immunol 12:85–98PubMedCrossRefGoogle Scholar
  129. 129.
    Ohsugi T, Koito A (2008) Current topics in prevention of human T-cell leukemia virus type i infection: NF-kappa B inhibitors and APOBEC3. Int Rev Immunol 27:225–253PubMedCrossRefGoogle Scholar
  130. 130.
    Horie R (2007) NF-kappaB in pathogenesis and treatment of adult T-cell leukemia/lymphoma. Int Rev Immunol 26:269–281PubMedCrossRefGoogle Scholar
  131. 131.
    Sun SC, Yamaoka S (2005) Activation of NF-kappaB by HTLV-I and implications for cell transformation. Oncogene 24:5952–5964PubMedCrossRefGoogle Scholar
  132. 132.
    Peloponese JM, Yeung ML, Jeang KT (2006) Modulation of nuclear factor-kappaB by human T cell leukemia virus type 1 Tax protein: implications for oncogenesis and inflammation. Immunol Res 34:1–12PubMedCrossRefGoogle Scholar
  133. 133.
    Li XH, Gaynor RB (1999) Regulation of NF-kappaB by the HTLV-1 Tax protein. Gene Expr 7:233–245PubMedGoogle Scholar
  134. 134.
    Yoshida M (2001) Multiple viral strategies of HTLV-1 for dysregulation of cell growth control. Annu Rev Immunol 19:475–496PubMedCrossRefGoogle Scholar
  135. 135.
    Sun SC, Ballard DW (1999) Persistent activation of NF-kappaB by the tax transforming protein of HTLV-1: hijacking cellular IkappaB kinases. Oncogene 18:6948–6958PubMedCrossRefGoogle Scholar
  136. 136.
    Xiao G, Cvijic ME, Fong A et al (2001) Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells: evidence for the involvement of IKKalpha. EMBO J 20:6805–6815PubMedCrossRefGoogle Scholar
  137. 137.
    Robek MD, Ratner L (1999) Immortalization of CD4(+) and CD8(+) T lymphocytes by human T-cell leukemia virus type 1 Tax mutants expressed in a functional molecular clone. J Virol 73:4856–4865PubMedGoogle Scholar
  138. 138.
    Miyazato A, Sheleg S, Iha H, Li Y, Jeang KT (2005) Evidence for NF-kappaB- and CBP-independent repression of p53’s transcriptional activity by human T-cell leukemia virus type 1 Tax in mouse embryo and primary human fibroblasts. J Virol 79:9346–9350PubMedCrossRefGoogle Scholar
  139. 139.
    Jeong SJ, Pise-Masison CA, Radonovich MF, Park HU, Brady JN (2005) Activated AKT regulates NF-kappaB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene 24:6719–6728PubMedCrossRefGoogle Scholar
  140. 140.
    Watanabe M, Ohsugi T, Shoda M et al (2005) Dual targeting of transformed and untransformed HTLV-1-infected T cells by DHMEQ, a potent and selective inhibitor of NF-kappaB, as a strategy for chemoprevention and therapy of adult T-cell leukemia. Blood 106:2462–2471PubMedCrossRefGoogle Scholar
  141. 141.
    Mori N, Yamada Y, Ikeda S et al (2002) Bay 11-7082 inhibits transcription factor NF-kappaB and induces apoptosis of HTLV-I-infected T-cell lines and primary adult T-cell leukemia cells. Blood 100:1828–1834PubMedCrossRefGoogle Scholar
  142. 142.
    Satou Y, Nosaka K, Koya Y, Yasunaga JI, Toyokuni S, Matsuoka M (2004) Proteasome inhibitor, bortezomib, potently inhibits the growth of adult T-cell leukemia cells both in vivo and in vitro. Leukemia 18:1357–1363PubMedCrossRefGoogle Scholar
  143. 143.
    Horie R, Watanabe T, Umezawa K (2006) Blocking NF-kappaB as a potential strategy to treat adult T-cell leukemia/lymphoma. Drug News Perspect 19:201–209PubMedCrossRefGoogle Scholar
  144. 144.
    Ohsugi T, Kumasaka T, Okada S et al (2007) Dehydroxymethylepoxyquinomicin (DHMEQ) therapy reduces tumor formation in mice inoculated with tax-deficient adult T-cell leukemia-derived cell lines. Cancer Lett 257:206–215PubMedCrossRefGoogle Scholar
  145. 145.
    Sharma V, Hupp CD, Tepe JJ (2007) Enhancement of chemotherapeutic efficacy by small molecule inhibition of NF-kappaB and checkpoint kinases. Curr Med Chem 14:1061–1074PubMedCrossRefGoogle Scholar
  146. 146.
    D’Acquisto F, Ianaro A (2006) From willow bark to peptides: the ever widening spectrum of NF-kappaB inhibitors. Curr Opin Pharmacol 6:387–392PubMedCrossRefGoogle Scholar
  147. 147.
    Lee CH, Jeon YT, Kim SH, Song YS (2007) NF-kappaB as a potential molecular target for cancer therapy. Biofactors 29:19–35PubMedCrossRefGoogle Scholar
  148. 148.
    Olivier S, Robe P, Bours V (2006) Can NF-kappaB be a target for novel and efficient anti-cancer agents? Biochem Pharmacol 72:1054–1068PubMedCrossRefGoogle Scholar
  149. 149.
    Richardson PG, Mitsiades C, Schlossman R et al (2008) Bortezomib in the front-line treatment of multiple myeloma. Expert Rev Anticancer Ther 8:1053–1072PubMedCrossRefGoogle Scholar
  150. 150.
    Baldwin AS (2001) Control of oncogenesis and cancer therapy resistance by the transcription factor NF-kappaB. J Clin Invest 107:241–246PubMedCrossRefGoogle Scholar
  151. 151.
    Van Waes C (2007) Nuclear factor-kappaB in development, prevention, and therapy of cancer. Clin Cancer Res 13:1076–1082PubMedCrossRefGoogle Scholar
  152. 152.
    Kim HJ, Hawke N, Baldwin AS (2006) NF-kappaB and IKK as therapeutic targets in cancer. Cell Death Differ 13:738–747PubMedCrossRefGoogle Scholar
  153. 153.
    Nakanishi C, Toi M (2005) Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5:297–309PubMedCrossRefGoogle Scholar
  154. 154.
    Caponigro F, Lacombe D, Twelves C et al (2009) An EORTC phase I study of Bortezomib in combination with oxaliplatin, leucovorin and 5-fluorouracil in patients with advanced colorectal cancer. Eur J Cancer 45:48–55PubMedCrossRefGoogle Scholar
  155. 155.
    Reece DE, Rodriguez GP, Chen C et al (2008) Phase I–II trial of bortezomib plus oral cyclophosphamide and prednisone in relapsed and refractory multiple myeloma. J Clin Oncol 26:4777–4783PubMedCrossRefGoogle Scholar
  156. 156.
    Loconte NK, Thomas JP, Alberti D et al (2008) A phase I pharmacodynamic trial of bortezomib in combination with doxorubicin in patients with advanced cancer. Cancer Chemother Pharmacol 63:109–115PubMedCrossRefGoogle Scholar
  157. 157.
    Dees EC, O’Neil BH, Lindley CM et al (2008) A phase I and pharmacologic study of the combination of bortezomib and pegylated liposomal doxorubicin in patients with refractory solid tumors. Cancer Chemother Pharmacol 63:99–107PubMedCrossRefGoogle Scholar
  158. 158.
    Bertazza L, Mocellin S (2008) Tumor necrosis factor (TNF) biology and cell death. Front Biosci 13:2736–2743PubMedCrossRefGoogle Scholar
  159. 159.
    Falschlehner C, Emmerich CH, Gerlach B, Walczak H (2007) TRAIL signalling: decisions between life and death. Int J Biochem Cell Biol 39:1462–1475PubMedCrossRefGoogle Scholar
  160. 160.
    Schaefer U, Voloshanenko O, Willen D, Walczak H (2007) TRAIL: a multifunctional cytokine. Front Biosci 12:3813–3824PubMedCrossRefGoogle Scholar
  161. 161.
    van Horssen R, Ten Hagen TL, Eggermont AM (2006) TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist 11:397–408PubMedCrossRefGoogle Scholar
  162. 162.
    Harms-Ringdahl M, Nicotera P, Radford IR (1996) Radiation induced apoptosis. Mutat Res 366:171–179PubMedGoogle Scholar
  163. 163.
    Gupta S, Ahmed MM (2004) A global perspective of radiation-induced signal transduction pathways in cancer therapeutics. Indian J Exp Biol 42:1153–1176PubMedGoogle Scholar
  164. 164.
    Ahmed KM, Li JJ (2008) NF-kappa B-mediated adaptive resistance to ionizing radiation. Free Radic Biol Med 44:1–13PubMedCrossRefGoogle Scholar
  165. 165.
    Milas L, Raju U, Liao Z, Ajani J (2005) Targeting molecular determinants of tumor chemo-radioresistance. Semin Oncol 32:S78–S81PubMedCrossRefGoogle Scholar
  166. 166.
    Petersen SL, Wang L, Yalcin-Chin A et al (2007) Autocrine TNFalpha signaling renders human cancer cells susceptible to Smac-mimetic-induced apoptosis. Cancer Cell 12:445–456PubMedCrossRefGoogle Scholar
  167. 167.
    Vince JE, Wong WW, Khan N et al (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131:682–693PubMedCrossRefGoogle Scholar
  168. 168.
    Ang HL, Tergaonkar V (2007) Notch and NFkappaB signaling pathways: do they collaborate in normal vertebrate brain development and function? Bioessays 29:1039–1047PubMedCrossRefGoogle Scholar
  169. 169.
    Correa RG, Matsui T, Tergaonkar V, Rodriguez-Esteban C, Izpisua-Belmonte JC, Verma IM (2005) Zebrafish IkappaB kinase 1 negatively regulates NF-kappaB activity. Curr Biol 15:1291–1295PubMedCrossRefGoogle Scholar
  170. 170.
    Correa RG, Tergaonkar V, Ng JK, Dubova I, Izpisua-Belmonte JC, Verma IM (2004) Characterization of NF-kappa B/I kappa B proteins in zebra fish and their involvement in notochord development. Mol Cell Biol 24:5257–5268PubMedCrossRefGoogle Scholar
  171. 171.
    Banerjee S, Zhang Y, Wang Z et al (2007) In vitro and in vivo molecular evidence of genistein action in augmenting the efficacy of cisplatin in pancreatic cancer. Int J Cancer 120:906–917PubMedCrossRefGoogle Scholar
  172. 172.
    Li Y, Ahmed F, Ali S, Philip PA, Kucuk O, Sarkar FH (2005) Inactivation of nuclear factor kappaB by soy isoflavone genistein contributes to increased apoptosis induced by chemotherapeutic agents in human cancer cells. Cancer Res 65:6934–6942PubMedCrossRefGoogle Scholar
  173. 173.
    Li Y, Ellis KL, Ali S et al (2004) Apoptosis-inducing effect of chemotherapeutic agents is potentiated by soy isoflavone genistein, a natural inhibitor of NF-kappaB in BxPC-3 pancreatic cancer cell line. Pancreas 28:e90–e95PubMedCrossRefGoogle Scholar
  174. 174.
    Aggarwal BB, Shishodia S, Takada Y et al (2005) Curcumin suppresses the paclitaxel-induced nuclear factor-kappaB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin Cancer Res 11:7490–7498PubMedCrossRefGoogle Scholar
  175. 175.
    Kamat AM, Sethi G, Aggarwal BB (2007) Curcumin potentiates the apoptotic effects of chemotherapeutic agents and cytokines through down-regulation of nuclear factor-kappaB and nuclear factor-kappaB-regulated gene products in IFN-alpha-sensitive and IFN-alpha-resistant human bladder cancer cells. Mol Cancer Ther 6:1022–1030PubMedCrossRefGoogle Scholar
  176. 176.
    Bava SV, Puliappadamba VT, Deepti A, Nair A, Karunagaran D, Anto RJ (2005) Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem 280:6301–6308PubMedCrossRefGoogle Scholar
  177. 177.
    Bhardwaj A, Sethi G, Vadhan-Raj S et al (2007) Resveratrol inhibits proliferation, induces apoptosis, and overcomes chemoresistance through down-regulation of STAT3 and nuclear factor-kappaB-regulated antiapoptotic and cell survival gene products in human multiple myeloma cells. Blood 109:2293–2302PubMedCrossRefGoogle Scholar
  178. 178.
    Patel NM, Nozaki S, Shortle NH et al (2000) Paclitaxel sensitivity of breast cancer cells with constitutively active NF-kappaB is enhanced by IkappaBalpha super-repressor and parthenolide. Oncogene 19:4159–4169PubMedCrossRefGoogle Scholar
  179. 179.
    Sweeney CJ, Mehrotra S, Sadaria MR et al (2005) The sesquiterpene lactone parthenolide in combination with docetaxel reduces metastasis and improves survival in a xenograft model of breast cancer. Mol Cancer Ther 4:1004–1012PubMedCrossRefGoogle Scholar
  180. 180.
    Ralstin MC, Gage EA, Yip-Schneider MT, Klein PJ, Wiebke EA, Schmidt CM (2006) Parthenolide cooperates with NS398 to inhibit growth of human hepatocellular carcinoma cells through effects on apoptosis and G0–G1 cell cycle arrest. Mol Cancer Res 4:387–399PubMedCrossRefGoogle Scholar
  181. 181.
    Duechler M, Stanczyk M, Czyz M, Stepnik M (2008) Potentiation of arsenic trioxide cytotoxicity by Parthenolide and buthionine sulfoximine in murine and human leukemic cells. Cancer Chemother Pharmacol 61:727–737PubMedCrossRefGoogle Scholar
  182. 182.
    Shanmugam R, Jayaprakasan V, Gokmen-Polar Y et al (2006) Restoring chemotherapy and hormone therapy sensitivity by parthenolide in a xenograft hormone refractory prostate cancer model. Prostate 66:1498–1511PubMedCrossRefGoogle Scholar
  183. 183.
    Poma P, Notarbartolo M, Labbozzetta M et al (2006) Antitumor effects of the novel NF-kappaB inhibitor dehydroxymethyl-epoxyquinomicin on human hepatic cancer cells: analysis of synergy with cisplatin and of possible correlation with inhibition of pro-survival genes and IL-6 production. Int J Oncol 28:923–930PubMedGoogle Scholar
  184. 184.
    Meng Z, Mitsutake N, Nakashima M et al (2008) DHMEQ, a novel NF-{kappa}B inhibitor, enhances anti-tumor activity of taxanes in anaplastic thyroid cancer cells. Endocrinology 149:5357–5365PubMedCrossRefGoogle Scholar
  185. 185.
    Weng JR, Tsai CH, Kulp SK, Chen CS (2008) Indole-3-carbinol as a chemopreventive and anti-cancer agent. Cancer Lett 262:153–163PubMedCrossRefGoogle Scholar
  186. 186.
    Rahman KM, Ali S, Aboukameel A et al (2007) Inactivation of NF-kappaB by 3, 3’-diindolylmethane contributes to increased apoptosis induced by chemotherapeutic agent in breast cancer cells. Mol Cancer Ther 6:2757–2765PubMedCrossRefGoogle Scholar
  187. 187.
    Ali S, Banerjee S, Ahmad A, El-Rayes BF, Philip PA, Sarkar FH (2008) Apoptosis-inducing effect of erlotinib is potentiated by 3, 3’-diindolylmethane in vitro and in vivo using an orthotopic model of pancreatic cancer. Mol Cancer Ther 7:1708–1719PubMedCrossRefGoogle Scholar
  188. 188.
    Mabuchi S, Ohmichi M, Nishio Y et al (2004) Inhibition of NFkappaB increases the efficacy of cisplatin in in vitro and in vivo ovarian cancer models. J Biol Chem 279:23477–23485PubMedCrossRefGoogle Scholar
  189. 189.
    Mabuchi S, Ohmichi M, Nishio Y et al (2004) Inhibition of inhibitor of nuclear factor-kappaB phosphorylation increases the efficacy of paclitaxel in in vitro and in vivo ovarian cancer models. Clin Cancer Res 10:7645–7654PubMedCrossRefGoogle Scholar
  190. 190.
    Garcia MG, Alaniz L, Lopes EC, Blanco G, Hajos SE, Alvarez E (2005) Inhibition of NF-kappaB activity by BAY 11-7082 increases apoptosis in multidrug resistant leukemic T-cell lines. Leuk Res 29:1425–1434PubMedCrossRefGoogle Scholar
  191. 191.
    Dai Y, Rahmani M, Dent P, Grant S (2005) Blockade of histone deacetylase inhibitor-induced RelA/p65 acetylation and NF-kappaB activation potentiates apoptosis in leukemia cells through a process mediated by oxidative damage, XIAP downregulation, and c-Jun N-terminal kinase 1 activation. Mol Cell Biol 25:5429–5444PubMedCrossRefGoogle Scholar
  192. 192.
    Dai Y, Pei XY, Rahmani M, Conrad DH, Dent P, Grant S (2004) Interruption of the NF-kappaB pathway by Bay 11-7082 promotes UCN-01-mediated mitochondrial dysfunction and apoptosis in human multiple myeloma cells. Blood 103:2761–2770PubMedCrossRefGoogle Scholar
  193. 193.
    Duan J, Friedman J, Nottingham L, Chen Z, Ara G, Van Waes C (2007) Nuclear factor-kappaB p65 small interfering RNA or proteasome inhibitor bortezomib sensitizes head and neck squamous cell carcinomas to classic histone deacetylase inhibitors and novel histone deacetylase inhibitor PXD101. Mol Cancer Ther 6:37–50PubMedCrossRefGoogle Scholar
  194. 194.
    Cusack JC Jr, Liu R, Houston M et al (2001) Enhanced chemosensitivity to CPT-11 with proteasome inhibitor PS-341: implications for systemic nuclear factor-kappaB inhibition. Cancer Res 61:3535–3540PubMedGoogle Scholar
  195. 195.
    Chen JJ, Chou CW, Chang YF, Chen CC (2008) Proteasome inhibitors enhance TRAIL-induced apoptosis through the intronic regulation of DR5: involvement of NF-kappa B and reactive oxygen species-mediated p53 activation. J Immunol 180:8030–8039PubMedGoogle Scholar
  196. 196.
    Baritaki S, Suzuki E, Umezawa K et al (2008) Inhibition of Yin Yang 1-dependent repressor activity of DR5 transcription and expression by the novel proteasome inhibitor NPI-0052 contributes to its TRAIL-enhanced apoptosis in cancer cells. J Immunol 180:6199–6210PubMedGoogle Scholar
  197. 197.
    Ganten TM, Koschny R, Haas TL et al (2005) Proteasome inhibition sensitizes hepatocellular carcinoma cells, but not human hepatocytes, to TRAIL. Hepatology 42:588–597PubMedCrossRefGoogle Scholar
  198. 198.
    Kasuga C, Ebata T, Kayagaki N et al (2004) Sensitization of human glioblastomas to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) by NF-kappaB inhibitors. Cancer Sci 95:840–844PubMedCrossRefGoogle Scholar
  199. 199.
    Khanbolooki S, Nawrocki ST, Arumugam T et al (2006) Nuclear factor-kappaB maintains TRAIL resistance in human pancreatic cancer cells. Mol Cancer Ther 5:2251–2260PubMedCrossRefGoogle Scholar
  200. 200.
    Nagy K, Szekely-Szuts K, Izeradjene K et al (2006) Proteasome inhibitors sensitize colon carcinoma cells to TRAIL-induced apoptosis via enhanced release of Smac/DIABLO from the mitochondria. Pathol Oncol Res 12:133–142PubMedCrossRefGoogle Scholar
  201. 201.
    Sayers TJ, Brooks AD, Koh CY et al (2003) The proteasome inhibitor PS-341 sensitizes neoplastic cells to TRAIL-mediated apoptosis by reducing levels of c-FLIP. Blood 102:303–310PubMedCrossRefGoogle Scholar
  202. 202.
    Voortman J, Resende TP, Abou El Hassan MA, Giaccone G, Kruyt FA (2007) TRAIL therapy in non-small cell lung cancer cells: sensitization to death receptor-mediated apoptosis by proteasome inhibitor bortezomib. Mol Cancer Ther 6:2103–2112PubMedCrossRefGoogle Scholar
  203. 203.
    Deeb D, Jiang H, Gao X et al (2007) Curcumin [1, 7-bis(4-hydroxy-3-methoxyphenyl)-1-6-heptadine-3, 5-dione; C21H20O6] sensitizes human prostate cancer cells to tumor necrosis factor-related apoptosis-inducing ligand/Apo2L-induced apoptosis by suppressing nuclear factor-kappaB via inhibition of the prosurvival Akt signaling pathway. J Pharmacol Exp Ther 321:616–625PubMedCrossRefGoogle Scholar
  204. 204.
    Deeb DD, Jiang H, Gao X, Divine G, Dulchavsky SA, Gautam SC (2005) Chemosensitization of hormone-refractory prostate cancer cells by curcumin to TRAIL-induced apoptosis. J Exp Ther Oncol 5:81–91PubMedGoogle Scholar
  205. 205.
    Shankar S, Ganapathy S, Chen Q, Srivastava RK (2008) Curcumin sensitizes TRAIL-resistant xenografts: molecular mechanisms of apoptosis, metastasis and angiogenesis. Mol Cancer 7:16PubMedCrossRefGoogle Scholar
  206. 206.
    Ivanov VN, Partridge MA, Johnson GE, Huang SX, Zhou H, Hei TK (2008) Resveratrol sensitizes melanomas to TRAIL through modulation of antiapoptotic gene expression. Exp Cell Res 314:1163–1176PubMedCrossRefGoogle Scholar
  207. 207.
    Ju W, Wang X, Shi H, Chen W, Belinsky SA, Lin Y (2007) A critical role of luteolin-induced reactive oxygen species in blockage of tumor necrosis factor-activated nuclear factor-kappaB pathway and sensitization of apoptosis in lung cancer cells. Mol Pharmacol 71:1381–1388PubMedCrossRefGoogle Scholar
  208. 208.
    Shi RX, Ong CN, Shen HM (2004) Luteolin sensitizes tumor necrosis factor-alpha-induced apoptosis in human tumor cells. Oncogene 23:7712–7721PubMedCrossRefGoogle Scholar
  209. 209.
    Nakshatri H, Rice SE, Bhat-Nakshatri P (2004) Antitumor agent parthenolide reverses resistance of breast cancer cells to tumor necrosis factor-related apoptosis-inducing ligand through sustained activation of c-Jun N-terminal kinase. Oncogene 23:7330–7344PubMedCrossRefGoogle Scholar
  210. 210.
    Suvannasankha A, Crean CD, Shanmugam R et al (2008) Antimyeloma effects of a sesquiterpene lactone parthenolide. Clin Cancer Res 14:1814–1822PubMedCrossRefGoogle Scholar
  211. 211.
    Zhang S, Lin ZN, Yang CF, Shi X, Ong CN, Shen HM (2004) Suppressed NF-kappaB and sustained JNK activation contribute to the sensitization effect of parthenolide to TNF-alpha-induced apoptosis in human cancer cells. Carcinogenesis 25:2191–2199PubMedCrossRefGoogle Scholar
  212. 212.
    Zhang S, Shen HM, Ong CN (2005) Down-regulation of c-FLIP contributes to the sensitization effect of 3, 3’-diindolylmethane on TRAIL-induced apoptosis in cancer cells. Mol Cancer Ther 4:1972–1981PubMedCrossRefGoogle Scholar
  213. 213.
    Aravindan N, Madhusoodhanan R, Ahmad S, Johnson D, Herman TS (2008) Curcumin inhibits NFkappaB mediated radioprotection and modulate apoptosis related genes in human neuroblastoma cells. Cancer Biol Ther 7:569–576PubMedCrossRefGoogle Scholar
  214. 214.
    Kunnumakkara AB, Diagaradjane P, Guha S et al (2008) Curcumin sensitizes human colorectal cancer xenografts in nude mice to gamma-radiation by targeting nuclear factor-kappaB-regulated gene products. Clin Cancer Res 14:2128–2136PubMedCrossRefGoogle Scholar
  215. 215.
    Javvadi P, Segan AT, Tuttle SW, Koumenis C (2008) The chemopreventive agent curcumin is a potent radiosensitizer of human cervical tumor cells via increased reactive oxygen species production and overactivation of the mitogen-activated protein kinase pathway. Mol Pharmacol 73:1491–1501PubMedCrossRefGoogle Scholar
  216. 216.
    Johnson GE, Ivanov VN, Hei TK (2008) Radiosensitization of melanoma cells through combined inhibition of protein regulators of cell survival. Apoptosis 13:790–802PubMedCrossRefGoogle Scholar
  217. 217.
    Liao HF, Kuo CD, Yang YC et al (2005) Resveratrol enhances radiosensitivity of human non-small cell lung cancer NCI-H838 cells accompanied by inhibition of nuclear factor-kappa B activation. J Radiat Res (Tokyo) 46:387–393CrossRefGoogle Scholar
  218. 218.
    Raffoul JJ, Wang Y, Kucuk O, Forman JD, Sarkar FH, Hillman GG (2006) Genistein inhibits radiation-induced activation of NF-kappaB in prostate cancer cells promoting apoptosis and G2/M cell cycle arrest. BMC Cancer 6:107PubMedCrossRefGoogle Scholar
  219. 219.
    Sun Y, St Clair DK, Fang F et al (2007) The radiosensitization effect of parthenolide in prostate cancer cells is mediated by nuclear factor-kappaB inhibition and enhanced by the presence of PTEN. Mol Cancer Ther 6:2477–2486PubMedCrossRefGoogle Scholar
  220. 220.
    Kamer S, Ren Q, Dicker AP (2009) Differential radiation sensitization of human cervical cancer cell lines by the proteasome inhibitor velcade (bortezomib, PS-341). Arch Gynecol Obstet 279:41–46PubMedCrossRefGoogle Scholar
  221. 221.
    Kim BY, Kim KA, Kwon O et al (2005) NF-kappaB inhibition radiosensitizes Ki-Ras-transformed cells to ionizing radiation. Carcinogenesis 26:1395–1403PubMedCrossRefGoogle Scholar
  222. 222.
    Munshi A, Kurland JF, Nishikawa T, Chiao PJ, Andreeff M, Meyn RE (2004) Inhibition of constitutively activated nuclear factor-kappaB radiosensitizes human melanoma cells. Mol Cancer Ther 3:985–992PubMedGoogle Scholar
  223. 223.
    Van Waes C, Chang AA, Lebowitz PF et al (2005) Inhibition of nuclear factor-kappaB and target genes during combined therapy with proteasome inhibitor bortezomib and reirradiation in patients with recurrent head-and-neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys 63:1400–1412PubMedCrossRefGoogle Scholar
  224. 224.
    Warren G, Grimes K, Xu Y, Kudrimoti M, St Clair W (2006) Selectively enhanced radiation sensitivity in prostate cancer cells associated with proteasome inhibition. Oncol Rep 15:1287–1291PubMedGoogle Scholar
  225. 225.
    Russo SM, Tepper JE, Baldwin AS Jr et al (2001) Enhancement of radiosensitivity by proteasome inhibition: implications for a role of NF-kappaB. Int J Radiat Oncol Biol Phys 50:183–193PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  1. 1.Department of Community, Occupational and Family Medicine, Yong Loo Lin School of Medicine, NUS Graduate School for Integrative Sciences and EngineeringNational University of SingaporeSingaporeRepublic of Singapore
  2. 2.Institute for Molecular and cell BiologySingaporeRepublic of Singapore

Personalised recommendations