, 14:522 | Cite as

Inflammasomes in infection and inflammation

  • Christian R. McIntire
  • Garabet Yeretssian
  • Maya Saleh
Cell Death and Disease


Two of the main challenges that multicellular organisms faced during evolution were to cope with invading microorganisms and eliminate and replace dying cells. Our innate immune system evolved to handle both tasks. Key aspects of innate immunity are the detection of invaders or tissue injury and the activation of inflammation that alarms the system through the action of cytokine and chemokine cascades. While inflammation is essential for host resistance to infections, it is detrimental when produced chronically or in excess and is linked to various diseases, most notably auto-immune diseases, auto-inflammatory disorders, cancer and septic shock. Essential regulators of inflammation are enzymes termed “the inflammatory caspases”. They are activated by cellular sensors of danger signals, the inflammasomes, and subsequently convert pro-inflammatory cytokines into their mature active forms. In addition, they regulate non-conventional protein secretion of alarmins and cytokines, glycolysis and lipid biogenesis, and the execution of an inflammatory form of cell death termed “pyroptosis”. By acting as key regulators of inflammation, energy metabolism and cell death, inflammatory caspases and inflammasomes exert profound influences on innate immunity and infectious and non-infectious inflammatory diseases.


Inflammasome Infection Inflammation Caspases Cell death 



Interleukin-1β Converting Enzyme




Aspartic acid














Glutamic acid


Interferon-γ-inducing factor


Interleukin 1 receptor-like 1


Type 1 helper T cells


Type 2 helper T cells


Triose-phosphate isomerase


Glyceraldehyde-3-phosphate dehydrogenase


Sterol regulatory element binding protein


Isobaric tag for relative and absolute quantitation


Fibroblast growth factor 2


BH3-interacting domain death agonist


Atrophin-interacting-protein 1/WD repeat domain 1


Lethal dose


Systemic inflammatory response syndrome




Tumor necrosis factor α


Severe acute pancreatitis


Dextran sodium sulfate


Acute renal failure


Cutaneous T-cell lymphoma


Vascular cell adhesion molecule-1


Multiple sclerosis


Autoimmune encephalomyelitis


Toll-like receptor


Nod-like receptor


Pathogen-associated molecular pattern


Nucleotide binding and oligomerization domain


NACHT domain- leucine-rich repeat-, and PYD-containing protein


Apoptosis-associated speck-like protein containing a CARD


CARD inhibitor of NF-kB-activating ligands


Leucine-rich repeat


Caspase recruitment domain


ICE protease-activating factor


Baculovirus IAP Repeat


Neuronal apoptosis inhibitory protein


Pyrin domain


Nucleotide binding site




Class II trans-activator


Legionella containing vacuole


Intracellular multiplication/defective organelle trafficking






Salmonella invasion protein B


Type III secretion system


Invasin B


Danger-associated molecular pattern


Adenosine triphosphate


Ca2+-independent phospholipase A2


Monosodium urate


Calcium pyrophosphate dihydrate


Reactive oxygen species


Nicotinamide adenine dinucleotide phosphate-oxidase


Protein 22 phagocyte and oxidase




Muramyl dipeptide


Heat shock protein 90


Nuclear factor-kappa B


CARD-only protein


Inhibitory CARD


Receptor-interacting protein 2


Familial Mediterranean fever


Viral PYD


B-cell lymphoma 2


Basal cell lymphoma-extra large


I kappa B kinase β


Loss of function


Gain of function


Type II bare lymphocyte syndrome


Severe combined immunodeficiency


Major histocompatibility complex class II


Familial cold urticaria


Muckle–Wells syndrome


Neonatal-onset mutli-system inflammatory disease


Cold-induced auto-inflammatory syndrome 1


Crohn’s disease


  1. 1.
    Mosley B, Dower SK, Gillis S, Cosman D (1987) Determination of the minimum polypeptide lengths of the functionally active sites of human interleukins 1 alpha and 1 beta. Proc Natl Acad Sci USA 84:4572–4576. doi: 10.1073/pnas.84.13.4572 PubMedCrossRefGoogle Scholar
  2. 2.
    Black RA, Kronheim SR, Merriam JE, March CJ, Hopp TP (1989) A pre-aspartate-specific protease from human leukocytes that cleaves pro-interleukin-1 beta. J Biol Chem 264:5323–5326PubMedGoogle Scholar
  3. 3.
    Kostura MJ, Tocci MJ, Limjuco G et al (1989) Identification of a monocyte specific pre-interleukin 1 beta convertase activity. Proc Natl Acad Sci USA 86:5227–5231. doi: 10.1073/pnas.86.14.5227 PubMedCrossRefGoogle Scholar
  4. 4.
    Howard AD, Chartrain N, Ding GF et al (1991) Probing the role of interleukin-1 beta convertase in interleukin-1 beta secretion. Agents Actions Suppl 35:77–83PubMedGoogle Scholar
  5. 5.
    Thornberry NA, Bull HG, Calaycay JR et al (1992) A novel heterodimeric cysteine protease is required for interleukin-1 beta processing in monocytes. Nature 356:768–774. doi: 10.1038/356768a0 PubMedCrossRefGoogle Scholar
  6. 6.
    Miller BE, Krasney PA, Gauvin DM et al (1995) Inhibition of mature IL-1 beta production in murine macrophages and a murine model of inflammation by WIN 67694, an inhibitor of IL-1 beta converting enzyme. J Immunol 154:1331–1338PubMedGoogle Scholar
  7. 7.
    Ayala JM, Yamin TT, Egger LA, Chin J, Kostura MJ, Miller DK (1994) IL-1 beta-converting enzyme is present in monocytic cells as an inactive 45-kDa precursor. J Immunol 153:2592–2599PubMedGoogle Scholar
  8. 8.
    Cerretti DP, Kozlosky CJ, Mosley B et al (1992) Molecular cloning of the interleukin-1 beta converting enzyme. Science 256:97–100. doi: 10.1126/science.1373520 PubMedCrossRefGoogle Scholar
  9. 9.
    Walker NP, Talanian RV, Brady KD et al (1994) Crystal structure of the cysteine protease interleukin-1 beta-converting enzyme: a (p20/p10)2 homodimer. Cell 78:343–352. doi: 10.1016/0092-8674(94)90303-4 PubMedCrossRefGoogle Scholar
  10. 10.
    Wilson KP, Black JA, Thomson JA et al (1994) Structure and mechanism of interleukin-1 beta converting enzyme. Nature 370:270–275. doi: 10.1038/370270a0 PubMedCrossRefGoogle Scholar
  11. 11.
    Gu Y, Wu J, Faucheu C et al (1995) Interleukin-1 beta converting enzyme requires oligomerization for activity of processed forms in vivo. EMBO J 14:1923–1931PubMedGoogle Scholar
  12. 12.
    Rodriguez J, Lazebnik Y (1999) Caspase-9 and APAF-1 form an active holoenzyme. Genes Dev 13:3179–3184. doi: 10.1101/gad.13.24.3179 PubMedCrossRefGoogle Scholar
  13. 13.
    Boatright KM, Renatus M, Scott FL et al (2003) A unified model for apical caspase activation. Mol Cell 11:529–541. doi: 10.1016/S1097-2765(03)00051-0 PubMedCrossRefGoogle Scholar
  14. 14.
    Sleath PR, Hendrickson RC, Kronheim SR, March CJ, Black RA (1990) Substrate specificity of the protease that processes human interleukin-1 beta. J Biol Chem 265:14526–14528PubMedGoogle Scholar
  15. 15.
    Scott AM, Saleh M (2007) The inflammatory caspases: guardians against infections and sepsis. Cell Death Differ 14:23–31. doi: 10.1038/sj.cdd.4402026 PubMedCrossRefGoogle Scholar
  16. 16.
    Garcia-Calvo M, Peterson EP, Leiting B, Ruel R, Nicholson DW, Thornberry NA (1998) Inhibition of human caspases by peptide-based and macromolecular inhibitors. J Biol Chem 273:32608–32613. doi: 10.1074/jbc.273.49.32608 PubMedCrossRefGoogle Scholar
  17. 17.
    Ghayur T, Banerjee S, Hugunin M et al (1997) Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature 386:619–623. doi: 10.1038/386619a0 PubMedCrossRefGoogle Scholar
  18. 18.
    Schmitz J, Owyang A, Oldham E et al (2005) IL-33, an interleukin-1-like cytokine that signals via the IL-1 receptor-related protein ST2 and induces T helper type 2-associated cytokines. Immunity 23:479–490. doi: 10.1016/j.immuni.2005.09.015 PubMedCrossRefGoogle Scholar
  19. 19.
    Kumar S, Hanning CR, Brigham-Burke MR et al (2002) Interleukin-1F7B (IL-1H4/IL-1F7) is processed by caspase-1 and mature IL-1F7B binds to the IL-18 receptor but does not induce IFN-gamma production. Cytokine 18:61–71. doi: 10.1006/cyto.2002.0873 PubMedCrossRefGoogle Scholar
  20. 20.
    Dinarello CA (2002) The IL-1 family and inflammatory diseases. Clin Exp Rheumatol 20:S1–S13PubMedGoogle Scholar
  21. 21.
    Dinarello CA, Wolff SM (1993) The role of interleukin-1 in disease. N Engl J Med 328:106–113. doi: 10.1056/NEJM199301143280207 PubMedCrossRefGoogle Scholar
  22. 22.
    Miura M, Zhu H, Rotello R, Hartwieg EA, Yuan J (1993) Induction of apoptosis in fibroblasts by IL-1 beta-converting enzyme, a mammalian homolog of the C elegans cell death gene ced-3. Cell 75:653–660. doi: 10.1016/0092-8674(93)90486-A PubMedCrossRefGoogle Scholar
  23. 23.
    Kuida K, Lippke JA, Ku G et al (1995) Altered cytokine export and apoptosis in mice deficient in interleukin-1 beta converting enzyme. Science 267:2000–2003. doi: 10.1126/science.7535475 PubMedCrossRefGoogle Scholar
  24. 24.
    Li P, Allen H, Banerjee S et al (1995) Mice deficient in IL-1 beta-converting enzyme are defective in production of mature IL-1 beta and resistant to endotoxic shock. Cell 80:401–411. doi: 10.1016/0092-8674(95)90490-5 PubMedCrossRefGoogle Scholar
  25. 25.
    Chen Y, Smith MR, Thirumalai K, Zychlinsky A (1996) A bacterial invasin induces macrophage apoptosis by binding directly to ICE. EMBO J 15:3853–3860PubMedGoogle Scholar
  26. 26.
    Hilbi H, Moss JE, Hersh D et al (1998) Shigella-induced apoptosis is dependent on caspase-1 which binds to IpaB. J Biol Chem 273:32895–32900. doi: 10.1074/jbc.273.49.32895 PubMedCrossRefGoogle Scholar
  27. 27.
    Hersh D, Monack DM, Smith MR, Ghori N, Falkow S, Zychlinsky A (1999) The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. Proc Natl Acad Sci USA 96:2396–2401. doi: 10.1073/pnas.96.5.2396 PubMedCrossRefGoogle Scholar
  28. 28.
    Brennan MA, Cookson BT (2000) Salmonella induces macrophage death by caspase-1-dependent necrosis. Mol Microbiol 38:31–40. doi: 10.1046/j.1365-2958.2000.02103.x PubMedCrossRefGoogle Scholar
  29. 29.
    Mariathasan S, Newton K, Monack DM et al (2004) Differential activation of the inflammasome by caspase-1 adaptors ASC and Ipaf. Nature 430:213–218. doi: 10.1038/nature02664 PubMedCrossRefGoogle Scholar
  30. 30.
    Sun GW, Lu J, Pervaiz S, Cao WP, Gan YH (2005) Caspase-1 dependent macrophage death induced by Burkholderia pseudomallei. Cell Microbiol 7:1447–1458. doi: 10.1111/j.1462-5822.2005.00569.x PubMedCrossRefGoogle Scholar
  31. 31.
    Mariathasan S, Weiss DS, Dixit VM, Monack DM (2005) Innate immunity against Francisella tularensis is dependent on the ASC/caspase-1 axis. J Exp Med 202:1043–1049. doi: 10.1084/jem.20050977 PubMedCrossRefGoogle Scholar
  32. 32.
    Lara-Tejero M, Sutterwala FS, Ogura Y et al (2006) Role of the caspase-1 inflammasome in Salmonella typhimurium pathogenesis. J Exp Med 203:1407–1412. doi: 10.1084/jem.20060206 PubMedCrossRefGoogle Scholar
  33. 33.
    Zamboni DS, Kobayashi KS, Kohlsdorf T et al (2006) The Birc1e cytosolic pattern-recognition receptor contributes to the detection and control of Legionella pneumophila infection. Nat Immunol 7:318–325. doi: 10.1038/ni1305 PubMedCrossRefGoogle Scholar
  34. 34.
    Molofsky AB, Byrne BG, Whitfield NN et al (2006) Cytosolic recognition of flagellin by mouse macrophages restricts Legionella pneumophila infection. J Exp Med 203:1093–1104. doi: 10.1084/jem.20051659 PubMedCrossRefGoogle Scholar
  35. 35.
    Sutterwala FS, Mijares LA, Li L, Ogura Y, Kazmierczak BI, Flavell RA (2007) Immune recognition of Pseudomonas aeruginosa mediated by the IPAF/NLRC4 inflammasome. J Exp Med 204:3235–3245. doi: 10.1084/jem.20071239 PubMedCrossRefGoogle Scholar
  36. 36.
    Bergsbaken T, Cookson BT (2007) Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog 3:e161. doi: 10.1371/journal.ppat.0030161
  37. 37.
    Cervantes J, Nagata T, Uchijima M, Shibata K, Koide Y (2008) Intracytosolic Listeria monocytogenes induces cell death through caspase-1 activation in murine macrophages. Cell Microbiol 10:41–52PubMedGoogle Scholar
  38. 38.
    Labbé K, Saleh M (2008) Cell death in the host response to pathogens. Cell Death Differ 15:1339–1349. doi: 10.1038/cdd.2008.91 Google Scholar
  39. 39.
    Kayalar C, Ord T, Testa MP, Zhong LT, Bredesen DE (1996) Cleavage of actin by interleukin 1 beta-converting enzyme to reverse DNase I inhibition. Proc Natl Acad Sci USA 93:2234–2238. doi: 10.1073/pnas.93.5.2234 PubMedCrossRefGoogle Scholar
  40. 40.
    Beyaert R, Kidd VJ, Cornelis S et al (1997) Cleavage of PITSLRE kinases by ICE/CASP-1 and CPP32/CASP-3 during apoptosis induced by tumor necrosis factor. J Biol Chem 272:11694–11697. doi: 10.1074/jbc.272.18.11694 PubMedCrossRefGoogle Scholar
  41. 41.
    Kahns S, Kalai M, Jakobsen LD, Clark BF, Vandenabeele P, Jensen PH (2003) Caspase-1 and caspase-8 cleave and inactivate cellular parkin. J Biol Chem 278:23376–23380. doi: 10.1074/jbc.M300495200 PubMedCrossRefGoogle Scholar
  42. 42.
    Chae JJ, Komarow HD, Cheng J et al (2003) Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 11:591–604. doi: 10.1016/S1097-2765(03)00056-X PubMedCrossRefGoogle Scholar
  43. 43.
    Lamkanfi M, Kanneganti TD, Van Damme P et al (2008) Targeted peptide-centric proteomics reveals caspase-7 as a substrate of the caspase-1 inflammasomes. Mol Cell Proteomics 7:2350–2363Google Scholar
  44. 44.
    Shao W, Yeretssian G, Doiron K, Hussain SN, Saleh M (2007) The caspase-1 digestome identifies the glycolysis pathway as a target during infection and septic shock. J Biol Chem 282:36321–36329. doi: 10.1074/jbc.M708182200 PubMedCrossRefGoogle Scholar
  45. 45.
    Cramer T, Yamanishi Y, Clausen BE et al (2003) HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell 112:645–657. doi: 10.1016/S0092-8674(03)00154-5 PubMedCrossRefGoogle Scholar
  46. 46.
    Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG (2006) Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126:1135–1145. doi: 10.1016/j.cell.2006.07.033 PubMedCrossRefGoogle Scholar
  47. 47.
    Keller M, Ruegg A, Werner S, Beer HD (2008) Active caspase-1 is a regulator of unconventional protein secretion. Cell 132:818–831. doi: 10.1016/j.cell.2007.12.040 PubMedCrossRefGoogle Scholar
  48. 48.
    Joshi VD, Kalvakolanu DV, Hebel JR, Hasday JD, Cross AS (2002) Role of caspase 1 in murine antibacterial host defenses and lethal endotoxemia. Infect Immun 70:6896–6903. doi: 10.1128/IAI.70.12.6896-6903.2002 PubMedCrossRefGoogle Scholar
  49. 49.
    Sansonetti PJ, Phalipon A, Arondel J et al (2000) Caspase-1 activation of IL-1beta and IL-18 are essential for Shigella flexneri-induced inflammation. Immunity 12:581–590. doi: 10.1016/S1074-7613(00)80209-5 PubMedCrossRefGoogle Scholar
  50. 50.
    Raupach B, Peuschel SK, Monack DM, Zychlinsky A (2006) Caspase-1-mediated activation of interleukin-1beta (IL-1beta) and IL-18 contributes to innate immune defenses against Salmonella enterica serovar Typhimurium infection. Infect Immun 74:4922–4926. doi: 10.1128/IAI.00417-06 PubMedCrossRefGoogle Scholar
  51. 51.
    Mencacci A, Bacci A, Cenci E et al (2000) Interleukin 18 restores defective Th1 immunity to Candida albicans in caspase 1-deficient mice. Infect Immun 68:5126–5131. doi: 10.1128/IAI.68.9.5126-5131.2000 PubMedCrossRefGoogle Scholar
  52. 52.
    Fantuzzi G, Zheng H, Faggioni R et al (1996) Effect of endotoxin in IL-1 beta-deficient mice. J Immunol 157:291–296PubMedGoogle Scholar
  53. 53.
    Sarkar A, Hall MW, Exline M et al (2006) Caspase-1 regulates Escherichia coli sepsis and splenic B cell apoptosis independently of interleukin-1beta and interleukin-18. Am J Respir Crit Care Med 174:1003–1010. doi: 10.1164/rccm.200604-546OC PubMedCrossRefGoogle Scholar
  54. 54.
    Norman J, Yang J, Fink G et al (1997) Severity and mortality of experimental pancreatitis are dependent on interleukin-1 converting enzyme (ICE). J Interferon Cytokine Res 17:113–118PubMedCrossRefGoogle Scholar
  55. 55.
    Siegmund B, Lehr HA, Fantuzzi G, Dinarello CA (2001) IL-1 beta -converting enzyme (caspase-1) in intestinal inflammation. Proc Natl Acad Sci USA 98:13249–13254. doi: 10.1073/pnas.231473998 PubMedCrossRefGoogle Scholar
  56. 56.
    Kaushal GP, Singh AB, Shah SV (1998) Identification of gene family of caspases in rat kidney and altered expression in ischemia-reperfusion injury. Am J Physiol 274:F587–F595PubMedGoogle Scholar
  57. 57.
    Edelstein CL, Shi Y, Schrier RW (1999) Role of caspases in hypoxia-induced necrosis of rat renal proximal tubules. J Am Soc Nephrol 10:1940–1949PubMedGoogle Scholar
  58. 58.
    Melnikov VY, Ecder T, Fantuzzi G et al (2001) Impaired IL-18 processing protects caspase-1-deficient mice from ischemic acute renal failure. J Clin Invest 107:1145–1152. doi: 10.1172/JCI12089 PubMedCrossRefGoogle Scholar
  59. 59.
    Chatterjee PK, Todorovic Z, Sivarajah A et al (2004) Differential effects of caspase inhibitors on the renal dysfunction and injury caused by ischemia-reperfusion of the rat kidney. Eur J Pharmacol 503:173–183. doi: 10.1016/j.ejphar.2004.09.025 PubMedCrossRefGoogle Scholar
  60. 60.
    Wang W, Faubel S, Ljubanovic D et al (2005) Endotoxemic acute renal failure is attenuated in caspase-1-deficient mice. Am J Physiol Renal Physiol 288:F997–F1004. doi: 10.1152/ajprenal.00130.2004 PubMedCrossRefGoogle Scholar
  61. 61.
    Liu HF, Liang D, Wang LM et al (2005) Effects of specific interleukin-1beta-converting enzyme inhibitor on ischemic acute renal failure in murine models. Acta Pharmacol Sin 26:1345–1351. doi: 10.1111/j.1745-7254.2005.00200.x PubMedCrossRefGoogle Scholar
  62. 62.
    Yamanaka K, Clark R, Dowgiert R et al (2006) Expression of interleukin-18 and caspase-1 in cutaneous T-cell lymphoma. Clin Cancer Res 12:376–382. doi: 10.1158/1078-0432.CCR-05-1777 PubMedCrossRefGoogle Scholar
  63. 63.
    Vidal-Vanaclocha F, Fantuzzi G, Mendoza L et al (2000) IL-18 regulates IL-1beta-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. Proc Natl Acad Sci USA 97:734–739. doi: 10.1073/pnas.97.2.734 PubMedCrossRefGoogle Scholar
  64. 64.
    Mouawad R, Antoine EC, Gil-Delgado M, Khayat D, Soubrane C (2002) Serum caspase-1 levels in metastatic melanoma patients: relationship with tumour burden and non-response to biochemotherapy. Melanoma Res 12:343–348. doi: 10.1097/00008390-200208000-00006 PubMedCrossRefGoogle Scholar
  65. 65.
    Furlan R, Filippi M, Bergami A et al (1999) Peripheral levels of caspase-1 mRNA correlate with disease activity in patients with multiple sclerosis; a preliminary study. J Neurol Neurosurg Psychiatry 67:785–788. doi: 10.1136/jnnp.67.6.785 PubMedCrossRefGoogle Scholar
  66. 66.
    Huang WX, Huang P, Hillert J (2004) Increased expression of caspase-1 and interleukin-18 in peripheral blood mononuclear cells in patients with multiple sclerosis. Mult Scler 10:482–487. doi: 10.1191/1352458504ms1071oa PubMedCrossRefGoogle Scholar
  67. 67.
    Franciotta D, Martino G, Zardini E et al (2002) Caspase-1 levels in biological fluids from patients with multiple sclerosis and from patients with other neurological and non-neurological diseases. Eur Cytokine Netw 13:99–103PubMedGoogle Scholar
  68. 68.
    Ku G, Faust T, Lauffer LL, Livingston DJ, Harding MW (1996) Interleukin-1 beta converting enzyme inhibition blocks progression of type II collagen-induced arthritis in mice. Cytokine 8:377–386. doi: 10.1006/cyto.1996.0052 PubMedCrossRefGoogle Scholar
  69. 69.
    Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426. doi: 10.1016/S1097-2765(02)00599-3 PubMedCrossRefGoogle Scholar
  70. 70.
    Tschopp J, Martinon F, Burns K (2003) NALPs: a novel protein family involved in inflammation. Nat Rev Mol Cell Biol 4:95–104. doi: 10.1038/nrm1019 PubMedCrossRefGoogle Scholar
  71. 71.
    Inohara C, McDonald C, Nunez G (2005) NOD-LRR proteins: role in host-microbial interactions and inflammatory disease. Annu Rev Biochem 74:355–383. doi: 10.1146/annurev.biochem.74.082803.133347 PubMedCrossRefGoogle Scholar
  72. 72.
    Kobe B, Kajava AV (2001) The leucine-rich repeat as a protein recognition motif. Curr Opin Struct Biol 11:725–732. doi: 10.1016/S0959-440X(01)00266-4 PubMedCrossRefGoogle Scholar
  73. 73.
    Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995. doi: 10.1038/ni1112 PubMedCrossRefGoogle Scholar
  74. 74.
    Takeda K, Akira S (2005) Toll-like receptors in innate immunity. Int Immunol 17:1–14. doi: 10.1093/intimm/dxh186 PubMedCrossRefGoogle Scholar
  75. 75.
    Fesik SW (2000) Insights into programmed cell death through structural biology. Cell 103:273–282. doi: 10.1016/S0092-8674(00)00119-7 PubMedCrossRefGoogle Scholar
  76. 76.
    Hofmann K (1999) The modular nature of apoptotic signaling proteins. Cell Mol Life Sci 55:1113–1128. doi: 10.1007/s000180050361 PubMedCrossRefGoogle Scholar
  77. 77.
    Martinon F, Hofmann K, Tschopp J (2001) The pyrin domain: a possible member of the death domain-fold family implicated in apoptosis and inflammation. Curr Biol 11:R118–R120. doi: 10.1016/S0960-9822(01)00056-2 PubMedCrossRefGoogle Scholar
  78. 78.
    Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J (2004) NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity 20:319–325. doi: 10.1016/S1074-7613(04)00046-9 PubMedCrossRefGoogle Scholar
  79. 79.
    Roy CR (2002) Exploitation of the endoplasmic reticulum by bacterial pathogens. Trends Microbiol 10:418–424. doi: 10.1016/S0966-842X(02)02421-6 PubMedCrossRefGoogle Scholar
  80. 80.
    Yamamoto Y, Klein TW, Newton CA, Widen R, Friedman H (1988) Growth of Legionella pneumophila in thioglycolate-elicited peritoneal macrophages from A/J mice. Infect Immun 56:370–375PubMedGoogle Scholar
  81. 81.
    Beckers MC, Yoshida S, Morgan K, Skamene E, Gros P (1995) Natural resistance to infection with Legionella pneumophila: chromosomal localization of the Lgn1 susceptibility gene. Mamm Genome 6:540–545. doi: 10.1007/BF00356173 PubMedCrossRefGoogle Scholar
  82. 82.
    Dietrich WF, Damron DM, Isberg RR, Lander ES, Swanson MS (1995) Lgn1, a gene that determines susceptibility to Legionella pneumophila, maps to mouse chromosome 13. Genomics 26:443–450. doi: 10.1016/0888-7543(95)80161-E PubMedCrossRefGoogle Scholar
  83. 83.
    Diez E, Beckers MC, Ernst E et al (1997) Genetic and physical mapping of the mouse host resistance locus Lgn1. Mamm Genome 8:682–685. doi: 10.1007/s003359900536 PubMedCrossRefGoogle Scholar
  84. 84.
    Growney JD, Dietrich WF (2000) High-resolution genetic and physical map of the Lgn1 interval in C57BL/6 J implicates Naip2 or Naip5 in Legionella pneumophila pathogenesis. Genome Res 10:1158–1171. doi: 10.1101/gr.10.8.1158 PubMedCrossRefGoogle Scholar
  85. 85.
    Diez E, Lee SH, Gauthier S et al (2003) Birc1e is the gene within the Lgn1 locus associated with resistance to Legionella pneumophila. Nat Genet 33:55–60. doi: 10.1038/ng1065 PubMedCrossRefGoogle Scholar
  86. 86.
    Wright EK, Goodart SA, Growney JD et al (2003) Naip5 affects host susceptibility to the intracellular pathogen Legionella pneumophila. Curr Biol 13:27–36. doi: 10.1016/S0960-9822(02)01359-3 PubMedCrossRefGoogle Scholar
  87. 87.
    Ren T, Zamboni DS, Roy CR, Dietrich WF, Vance RE (2006) Flagellin-deficient Legionella mutants evade caspase-1- and Naip5-mediated macrophage immunity. PLoS Pathog 2:e18. doi: 10.1371/journal.ppat.0020018
  88. 88.
    Amer A, Franchi L, Kanneganti TD et al (2006) Regulation of Legionella phagosome maturation and infection through flagellin and host Ipaf. J Biol Chem 281:35217–35223. doi: 10.1074/jbc.M604933200 PubMedCrossRefGoogle Scholar
  89. 89.
    Vinzing M, Eitel J, Lippmann J et al (2008) NAIP and Ipaf control Legionella pneumophila replication in human cells. J Immunol 180:6808–6815PubMedGoogle Scholar
  90. 90.
    Miao EA, Alpuche-Aranda CM, Dors M et al (2006) Cytoplasmic flagellin activates caspase-1 and secretion of interleukin 1beta via Ipaf. Nat Immunol 7:569–575. doi: 10.1038/ni1344 PubMedCrossRefGoogle Scholar
  91. 91.
    Franchi L, Amer A, Body-Malapel M et al (2006) Cytosolic flagellin requires Ipaf for activation of caspase-1 and interleukin 1beta in salmonella-infected macrophages. Nat Immunol 7:576–582. doi: 10.1038/ni1346 PubMedCrossRefGoogle Scholar
  92. 92.
    Lamkanfi M, Amer A, Kanneganti TD et al (2007) The Nod-like receptor family member Naip5/Birc1e restricts Legionella pneumophila growth independently of caspase-1 activation. J Immunol 178:8022–8027PubMedGoogle Scholar
  93. 93.
    Lightfield KL, Persson J, Brubaker SW et al (2008) Critical function for Naip5 in inflammasome activation by a conserved carboxy-terminal domain of flagellin. Nat Immunol 9:1171–1178. doi: 10.1038/ni.1646 PubMedCrossRefGoogle Scholar
  94. 94.
    Coers J, Vance RE, Fontana MF, Dietrich WF (2007) Restriction of Legionella pneumophila growth in macrophages requires the concerted action of cytokine and Naip5/Ipaf signalling pathways. Cell Microbiol 9:2344–2357. doi: 10.1111/j.1462-5822.2007.00963.x PubMedCrossRefGoogle Scholar
  95. 95.
    Monack DM, Hersh D, Ghori N, Bouley D, Zychlinsky A, Falkow S (2000) Salmonella exploits caspase-1 to colonize Peyer’s patches in a murine typhoid model. J Exp Med 192:249–258. doi: 10.1084/jem.192.2.249 PubMedCrossRefGoogle Scholar
  96. 96.
    Sutterwala FS, Ogura Y, Szczepanik M et al (2006) Critical role for NALP3/CIAS1/Cryopyrin in innate and adaptive immunity through its regulation of caspase-1. Immunity 24:317–327. doi: 10.1016/j.immuni.2006.02.004 PubMedCrossRefGoogle Scholar
  97. 97.
    Mariathasan S, Weiss DS, Newton K et al (2006) Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 440:228–232. doi: 10.1038/nature04515 PubMedCrossRefGoogle Scholar
  98. 98.
    Suzuki T, Franchi L, Toma C et al (2007) Differential regulation of caspase-1 activation, pyroptosis, and autophagy via Ipaf and ASC in Shigella-infected macrophages. PLoS Pathog 3:e111. doi: 10.1371/journal.ppat.0030111
  99. 99.
    Willingham SB, Bergstralh DT, O’Connor W et al (2007) Microbial pathogen-induced necrotic cell death mediated by the inflammasome components CIAS1/cryopyrin/NLRP3 and ASC. Cell Host Microbe 2:147–159. doi: 10.1016/j.chom.2007.07.009 PubMedCrossRefGoogle Scholar
  100. 100.
    Perregaux D, Gabel CA (1994) Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 269:15195–15203PubMedGoogle Scholar
  101. 101.
    Surprenant A, Rassendren F, Kawashima E, North RA, Buell G (1996) The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor (P2X7). Science 272:735–738. doi: 10.1126/science.272.5262.735 PubMedCrossRefGoogle Scholar
  102. 102.
    Solle M, Labasi J, Perregaux DG et al (2001) Altered cytokine production in mice lacking P2X(7) receptors. J Biol Chem 276:125–132. doi: 10.1074/jbc.M006781200 PubMedCrossRefGoogle Scholar
  103. 103.
    Piccini A, Carta S, Tassi S, Lasiglie D, Fossati G, Rubartelli A (2008) ATP is released by monocytes stimulated with pathogen-sensing receptor ligands and induces IL-1beta and IL-18 secretion in an autocrine way. Proc Natl Acad Sci USA 105:8067–8072. doi: 10.1073/pnas.0709684105 PubMedCrossRefGoogle Scholar
  104. 104.
    Walev I, Klein J, Husmann M et al (2000) Potassium regulates IL-1 beta processing via calcium-independent phospholipase A2. J Immunol 164:5120–5124PubMedGoogle Scholar
  105. 105.
    Andrei C, Margiocco P, Poggi A, Lotti LV, Torrisi MR, Rubartelli A (2004) Phospholipases C and A2 control lysosome-mediated IL-1 beta secretion: Implications for inflammatory processes. Proc Natl Acad Sci USA 101:9745–9750. doi: 10.1073/pnas.0308558101 PubMedCrossRefGoogle Scholar
  106. 106.
    Pelegrin P, Surprenant A (2006) Pannexin-1 mediates large pore formation and interleukin-1beta release by the ATP-gated P2X7 receptor. EMBO J 25:5071–5082. doi: 10.1038/sj.emboj.7601378 PubMedCrossRefGoogle Scholar
  107. 107.
    Pelegrin P, Surprenant A (2007) Pannexin-1 couples to maitotoxin- and nigericin-induced interleukin-1beta release through a dye uptake-independent pathway. J Biol Chem 282:2386–2394. doi: 10.1074/jbc.M610351200 PubMedCrossRefGoogle Scholar
  108. 108.
    Kanneganti TD, Lamkanfi M, Kim YG et al (2007) Pannexin-1-mediated recognition of bacterial molecules activates the cryopyrin inflammasome independent of Toll-like receptor signaling. Immunity 26:433–443. doi: 10.1016/j.immuni.2007.03.008 PubMedCrossRefGoogle Scholar
  109. 109.
    Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440:237–241. doi: 10.1038/nature04516 PubMedCrossRefGoogle Scholar
  110. 110.
    Mossman BT, Churg A (1998) Mechanisms in the pathogenesis of asbestosis and silicosis. Am J Respir Crit Care Med 157:1666–1680PubMedGoogle Scholar
  111. 111.
    Dostert C, Petrilli V, Van Bruggen R, Steele C, Mossman BT, Tschopp J (2008) Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 320:674–677. doi: 10.1126/science.1156995 PubMedCrossRefGoogle Scholar
  112. 112.
    Cassel SL, Eisenbarth SC, Iyer SS et al (2008) The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci USA 105:9035–9040. doi: 10.1073/pnas.0803933105 PubMedCrossRefGoogle Scholar
  113. 113.
    Hornung V, Bauernfeind F, Halle A et al (2008) Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 9:847–856. doi: 10.1038/ni.1631 PubMedCrossRefGoogle Scholar
  114. 114.
    Eisenbarth SC, Colegio OR, O’Connor W, Sutterwala FS, Flavell RA (2008) Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature 453:1122–1126. doi: 10.1038/nature06939 PubMedCrossRefGoogle Scholar
  115. 115.
    Halle A, Hornung V, Petzold GC et al (2008) The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol 9:857–865. doi: 10.1038/ni.1636 PubMedCrossRefGoogle Scholar
  116. 116.
    Gavin AL, Hoebe K, Duong B et al (2006) Adjuvant-enhanced antibody responses in the absence of toll-like receptor signaling. Science 314:1936–1938. doi: 10.1126/science.1135299 PubMedCrossRefGoogle Scholar
  117. 117.
    Piggott DA, Eisenbarth SC, Xu L et al (2005) MyD88-dependent induction of allergic Th2 responses to intranasal antigen. J Clin Invest 115:459–467PubMedGoogle Scholar
  118. 118.
    Kool M, Soullie T, van Nimwegen M et al (2008) Alum adjuvant boosts adaptive immunity by inducing uric acid and activating inflammatory dendritic cells. J Exp Med 205:869–882. doi: 10.1084/jem.20071087 PubMedCrossRefGoogle Scholar
  119. 119.
    Li H, Willingham SB, Ting JP, Re F (2008) Cutting edge: inflammasome activation by alum and alum’s adjuvant effect are mediated by NLRP3. J Immunol 181:17–21. doi: 10.1111/j.1365-2567.2007.02774.x PubMedCrossRefGoogle Scholar
  120. 120.
    Shankar GM, Li S, Mehta TH et al (2008) Amyloid-beta protein dimers isolated directly from Alzheimer’s brains impair synaptic plasticity and memory. Nat Med 14:837–842. doi: 10.1038/nm1782 PubMedCrossRefGoogle Scholar
  121. 121.
    Faustin B, Lartigue L, Bruey JM et al (2007) Reconstituted NALP1 inflammasome reveals two-step mechanism of caspase-1 activation. Mol Cell 25:713–724. doi: 10.1016/j.molcel.2007.01.032 PubMedCrossRefGoogle Scholar
  122. 122.
    Feldmeyer L, Keller M, Niklaus G, Hohl D, Werner S, Beer HD (2007) The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes. Curr Biol 17:1140–1145. doi: 10.1016/j.cub.2007.05.074 PubMedCrossRefGoogle Scholar
  123. 123.
    Martinon F, Agostini L, Meylan E, Tschopp J (2004) Identification of bacterial muramyl dipeptide as activator of the NALP3/cryopyrin inflammasome. Curr Biol 14:1929–1934. doi: 10.1016/j.cub.2004.10.027 PubMedCrossRefGoogle Scholar
  124. 124.
    Pan Q, Mathison J, Fearns C et al (2007) MDP-induced interleukin-1beta processing requires Nod2 and CIAS1/NALP3. J Leukoc Biol 82:177–183. doi: 10.1189/jlb.1006627 PubMedCrossRefGoogle Scholar
  125. 125.
    Hsu LC, Ali SR, McGillivray S et al (2008) A NOD2-NALP1 complex mediates caspase-1-dependent IL-1beta secretion in response to Bacillus anthracis infection and muramyl dipeptide. Proc Natl Acad Sci USA 105:7803–7808. doi: 10.1073/pnas.0802726105 PubMedCrossRefGoogle Scholar
  126. 126.
    Wang S, Miura M, Jung YK, Zhu H, Li E, Yuan J (1998) Murine caspase-11, an ICE-interacting protease, is essential for the activation of ICE. Cell 92:501–509. doi: 10.1016/S0092-8674(00)80943-5 PubMedCrossRefGoogle Scholar
  127. 127.
    Mayor A, Martinon F, De Smedt T, Petrilli V, Tschopp J (2007) A crucial function of SGT1 and HSP90 in inflammasome activity links mammalian and plant innate immune responses. Nat Immunol 8:497–503. doi: 10.1038/ni1459 PubMedCrossRefGoogle Scholar
  128. 128.
    Jones JD, Dangl JL (2006) The plant immune system. Nature 444:323–329. doi: 10.1038/nature05286 PubMedCrossRefGoogle Scholar
  129. 129.
    Arthur JC, Lich JD, Aziz RK, Kotb M, Ting JP (2007) Heat shock protein 90 associates with monarch-1 and regulates its ability to promote degradation of NF-kappaB-inducing kinase. J Immunol 179:6291–6296PubMedGoogle Scholar
  130. 130.
    da Silva Correia J, Miranda Y, Leonard N, Ulevitch R (2007) SGT1 is essential for Nod1 activation. Proc Natl Acad Sci USA 104:6764–6769. doi: 10.1073/pnas.0610926104 PubMedCrossRefGoogle Scholar
  131. 131.
    Stehlik C, Dorfleutner A (2007) COPs and POPs: modulators of inflammasome activity. J Immunol 179:7993–7998PubMedGoogle Scholar
  132. 132.
    Martinon F, Tschopp J (2004) Inflammatory caspases; linking an intracellular innate immune system to autoinflammatory diseases. Cell 117:561–574. doi: 10.1016/j.cell.2004.05.004 PubMedCrossRefGoogle Scholar
  133. 133.
    Nadiri A, Wolinski MK, Saleh M (2006) The inflammatory caspases: key players in the host response to pathogenic invasion and sepsis. J Immunol 177:4239–4245PubMedGoogle Scholar
  134. 134.
    Humke EW, Shriver SK, Starovasnik MA, Fairbrother WJ, Dixit VM (2000) ICEBERG: a novel inhibitor of interleukin-1beta generation. Cell 103:99–111. doi: 10.1016/S0092-8674(00)00108-2 PubMedCrossRefGoogle Scholar
  135. 135.
    Druilhe A, Srinivasula SM, Razmara M, Ahmad M, Alnemri ES (2001) Regulation of IL-1beta generation by Pseudo-ICE and ICEBERG, two dominant negative caspase recruitment domain proteins. Cell Death Differ 8:649–657. doi: 10.1038/sj.cdd.4400881 PubMedCrossRefGoogle Scholar
  136. 136.
    Saleh M, Mathison JC, Wolinski MK, Bensinger SJ, Fitzgerald P, Droin N, Ulevitch RJ, Green DR, Nicholson DW (2006) Enhanced bacterial clearance and sepsis resistance in caspase-12 deficient mice. Nature 440:1064–1068. doi: 10.1038/nature04656 PubMedCrossRefGoogle Scholar
  137. 137.
    Razmara M, Srinivasula SM, Wang L et al (2002) CARD-8 protein, a new CARD family member that regulates caspase-1 activation and apoptosis. J Biol Chem 277:13952–13958. doi: 10.1074/jbc.M107811200 PubMedCrossRefGoogle Scholar
  138. 138.
    Rosenstiel P, Huse K, Till A et al (2006) A short isoform of NOD2/CARD15, NOD2-S, is an endogenous inhibitor of NOD2/receptor-interacting protein kinase 2-induced signaling pathways. Proc Natl Acad Sci USA 103:3280–3285. doi: 10.1073/pnas.0505423103 PubMedCrossRefGoogle Scholar
  139. 139.
    Fairbrother WJ, Gordon NC, Humke EW et al (2001) The PYRIN domain: a member of the death domain-fold superfamily. Protein Sci 10:1911–1918. doi: 10.1110/ps.13801 PubMedCrossRefGoogle Scholar
  140. 140.
    Stehlik C, Krajewska M, Welsh K, Krajewski S, Godzik A, Reed JC (2003) The PAAD/PYRIN-only protein POP1/ASC2 is a modulator of ASC-mediated nuclear-factor-kappa B and pro-caspase-1 regulation. Biochem J 373:101–113. doi: 10.1042/BJ20030304 PubMedCrossRefGoogle Scholar
  141. 141.
    Dorfleutner A, Bryan NB, Talbott SJ et al (2007) Cellular pyrin domain-only protein 2 is a candidate regulator of inflammasome activation. Infect Immun 75:1484–1492. doi: 10.1128/IAI.01315-06 PubMedCrossRefGoogle Scholar
  142. 142.
    Bedoya F, Sandler LL, Harton JA (2007) Pyrin-only protein 2 modulates NF-kappaB and disrupts ASC:CLR interactions. J Immunol 178:3837–3845PubMedGoogle Scholar
  143. 143.
    Dorfleutner A, Talbott SJ, Bryan NB et al (2007) A Shope Fibroma virus PYRIN-only protein modulates the host immune response. Virus Genes 35:685–694. doi: 10.1007/s11262-007-0141-9 PubMedCrossRefGoogle Scholar
  144. 144.
    Johnston JB, Barrett JW, Nazarian SH et al (2005) A poxvirus-encoded pyrin domain protein interacts with ASC–1 to inhibit host inflammatory and apoptotic responses to infection. Immunity 23:587–598. doi: 10.1016/j.immuni.2005.10.003 PubMedCrossRefGoogle Scholar
  145. 145.
    Bruey JM, Bruey-Sedano N, Luciano F et al (2007) Bcl-2 and Bcl-XL regulate proinflammatory caspase-1 activation by interaction with NALP1. Cell 129:45–56. doi: 10.1016/j.cell.2007.01.045 PubMedCrossRefGoogle Scholar
  146. 146.
    Greten FR, Arkan MC, Bollrath J et al (2007) NF-kappaB is a negative regulator of IL-1beta secretion as revealed by genetic and pharmacological inhibition of IKKbeta. Cell 130:918–931. doi: 10.1016/j.cell.2007.07.009 PubMedCrossRefGoogle Scholar
  147. 147.
    Steimle V, Otten LA, Zufferey M, Mach B (1993) Complementation cloning of an MHC class II transactivator mutated in hereditary MHC class II deficiency (or bare lymphocyte syndrome). Cell 75:135–146PubMedGoogle Scholar
  148. 148.
    Reith W, Mach B (2001) The bare lymphocyte syndrome and the regulation of MHC expression. Annu Rev Immunol 19:331–373. doi: 10.1146/annurev.immunol.19.1.331 PubMedCrossRefGoogle Scholar
  149. 149.
    Kastner DL (2005) Hereditary periodic Fever syndromes. Hematology (Am Soc Hematol Educ Program) 74–81. doi: 10.1182/asheducation-2005.1.74
  150. 150.
    Hoffman HM, Mueller JL, Broide DH, Wanderer AA, Kolodner RD (2001) Mutation of a new gene encoding a putative pyrin-like protein causes familial cold autoinflammatory syndrome and Muckle–Wells syndrome. Nat Genet 29:301–305. doi: 10.1038/ng756 PubMedCrossRefGoogle Scholar
  151. 151.
    Aganna E, Martinon F, Hawkins PN et al (2002) Association of mutations in the NALP3/CIAS1/PYPAF1 gene with a broad phenotype including recurrent fever, cold sensitivity, sensorineural deafness, and AA amyloidosis. Arthritis Rheum 46:2445–2452. doi: 10.1002/art.10509 PubMedCrossRefGoogle Scholar
  152. 152.
    Feldmann J, Prieur AM, Quartier P et al (2002) Chronic infantile neurological cutaneous and articular syndrome is caused by mutations in CIAS1, a gene highly expressed in polymorphonuclear cells and chondrocytes. Am J Hum Genet 71:198–203. doi: 10.1086/341357 PubMedCrossRefGoogle Scholar
  153. 153.
    McDermott MF, Tschopp J (2007) From inflammasomes to fevers, crystals and hypertension: how basic research explains inflammatory diseases. Trends Mol Med 13:381–388. doi: 10.1016/j.molmed.2007.07.005 PubMedCrossRefGoogle Scholar
  154. 154.
    Dowds TA, Masumoto J, Zhu L, Inohara N, Nunez G (2004) Cryopyrin-induced interleukin 1beta secretion in monocytic cells: enhanced activity of disease-associated mutants and requirement for ASC. J Biol Chem 279:21924–21928. doi: 10.1074/jbc.M401178200 PubMedCrossRefGoogle Scholar
  155. 155.
    Hugot JP, Chamaillard M, Zouali H et al (2001) Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 411:599–603. doi: 10.1038/35079107 PubMedCrossRefGoogle Scholar
  156. 156.
    Ogura Y, Bonen DK, Inohara N et al (2001) A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 411:603–606. doi: 10.1038/35079114 PubMedCrossRefGoogle Scholar
  157. 157.
    Kanazawa N, Okafuji I, Kambe N et al (2005) Early-onset sarcoidosis and CARD15 mutations with constitutive nuclear factor-kappaB activation: common genetic etiology with Blau syndrome. Blood 105:1195–1197. doi: 10.1182/blood-2004-07-2972 PubMedCrossRefGoogle Scholar
  158. 158.
    Aksentijevich I, Nowak M, Mallah M et al (2002) De novo CIAS1 mutations, cytokine activation, and evidence for genetic heterogeneity in patients with neonatal-onset multisystem inflammatory disease (NOMID): a new member of the expanding family of pyrin-associated autoinflammatory diseases. Arthritis Rheum 46:3340–3348. doi: 10.1002/art.10688 PubMedCrossRefGoogle Scholar
  159. 159.
    Hawkins PN, Lachmann HJ, McDermott MF (2003) Interleukin-1-receptor antagonist in the Muckle–Wells syndrome. N Engl J Med 348:2583–2584. doi: 10.1056/NEJM200306193482523 PubMedCrossRefGoogle Scholar
  160. 160.
    Hoffman HM, Rosengren S, Boyle DL et al (2004) Prevention of cold-associated acute inflammation in familial cold autoinflammatory syndrome by interleukin-1 receptor antagonist. Lancet 364:1779–1785. doi: 10.1016/S0140-6736(04)17401-1 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Christian R. McIntire
    • 1
  • Garabet Yeretssian
    • 2
  • Maya Saleh
    • 1
    • 2
  1. 1.Department of BiochemistryMcGill UniversityMontrealCanada
  2. 2.Department of Medicine, Division of Critical Care, and Centre for the Study of Host ResistanceMcGill UniversityMontrealCanada

Personalised recommendations