, Volume 14, Issue 3, pp 320–332 | Cite as

TNFα-induced macrophage death via caspase-dependent and independent pathways

  • Tri M. Tran
  • Vladislav Temkin
  • Bo Shi
  • Lisa Pagliari
  • Soizic Daniel
  • Christiane Ferran
  • Richard M. PopeEmail author
Original Paper


Macrophages are the principal source of TNFα, yet they are highly resistant to TNFα-mediated cell death. Previously, employing in vitro differentiated human macrophages, we showed that following the inhibition of NF-κB, TNFα-induced caspase-8 activation contributes to DNA fragmentation but is not necessary for the loss of the inner mitochondrial transmembrane potential (ΔΨm) or cell death. We here extend these observations to demonstrate that, when NF-κB is inhibited in macrophages, TNFα alters lysosomal membrane permeability (LMP). This results in the release of cathepsin B with subsequent loss of ΔΨm and caspase-8 independent cell death. Interestingly, the cytoprotective, NF-κB-dependent protein A20 was rapidly induced in macrophages treated with TNFα. Ectopic expression of A20 in macrophages preserves LMP following treatment with TNFα, and as a result, mitochondrial integrity is safeguarded and macrophages are protected from cell death. These observations demonstrate that TNFα triggers both caspase 8-dependent and -independent cell death pathways in macrophages and identify a novel mechanism by which A20 protects these cells against both pathways.


Apoptosis Caspase-8 Cathepsin B A20 



This work was partly funded by R01 grants from the NIH: AR049217 and AR048269 to RMP and DK063275 and HL080130 to CF.


  1. 1.
    Pope RM (2002) Apoptosis as a therapeutic tool in rheumatoid arthritis. Nat Rev Immunol 2:527–535. doi: 10.1038/nri846 PubMedCrossRefGoogle Scholar
  2. 2.
    Sarzi-Puttini P, Atzeni F, Doria A, Iaccarino L, Turiel M (2005) Tumor necrosis factor-alpha, biologic agents and cardiovascular risk. Lupus 14:780–784. doi: 10.1191/0961203305lu2220oa PubMedCrossRefGoogle Scholar
  3. 3.
    Colletti LM, Remick DG, Burtch GD, Kunkel SL, Strieter RM, Campbell DA Jr (1990) Role of tumor necrosis factor-alpha in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat. J Clin Invest 85:1936–1943. doi: 10.1172/JCI114656 PubMedCrossRefGoogle Scholar
  4. 4.
    Gonzalez-Amaro R, Garcia-Monzon C, Garcia-Buey L et al (1994) Induction of tumor necrosis factor alpha production by human hepatocytes in chronic viral hepatitis. J Exp Med 179:841–848. doi: 10.1084/jem.179.3.841 PubMedCrossRefGoogle Scholar
  5. 5.
    Tartaglia LA, Rothe M, Hu YF, Goeddel DV (1993) Tumor necrosis factor’s cytotoxic activity is signaled by the p55 TNF receptor. Cell 73:213–216. doi: 10.1016/0092-8674(93)90222-C PubMedCrossRefGoogle Scholar
  6. 6.
    Micheau O, Tschopp J (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114:181–190. doi: 10.1016/S0092-8674(03)00521-X PubMedCrossRefGoogle Scholar
  7. 7.
    Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490. doi: 10.1016/S0092-8674(00)81589-5 PubMedCrossRefGoogle Scholar
  8. 8.
    Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316. doi: 10.1126/science.281.5381.1312 PubMedCrossRefGoogle Scholar
  9. 9.
    Gross A, Yin XM, Wang K et al (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 274:1156–1163. doi: 10.1074/jbc.274.2.1156 PubMedCrossRefGoogle Scholar
  10. 10.
    Hsu H, Xiong J, Goeddel DV (1995) The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell 81:495–504. doi: 10.1016/0092-8674(95)90070-5 PubMedCrossRefGoogle Scholar
  11. 11.
    Luo JL, Kamata H, Karin M (2005) IKK/NF-kappaB signaling: balancing life and death–a new approach to cancer therapy. J Clin Invest 115:2625–2632. doi: 10.1172/JCI26322 PubMedCrossRefGoogle Scholar
  12. 12.
    Li Q, Van Antwerp D, Mercurio F, Lee KF, Verma IM (1999) Severe liver degeneration in mice lacking the IkappaB kinase 2 gene. Science 284:321–325. doi: 10.1126/science.284.5412.321 PubMedCrossRefGoogle Scholar
  13. 13.
    Li ZW, Chu W, Hu Y et al (1999) The IKKbeta subunit of IkappaB kinase (IKK) is essential for nuclear factor kappaB activation and prevention of apoptosis. J Exp Med 189:1839–1845. doi: 10.1084/jem.189.11.1839 PubMedCrossRefGoogle Scholar
  14. 14.
    Kucharczak J, Simmons MJ, Fan Y, Gelinas C (2003) To be, or not to be: NF-kappaB is the answer—role of Rel/NF-kappaB in the regulation of apoptosis. Oncogene 22:8961–8982. doi: 10.1038/sj.onc.1207230 PubMedCrossRefGoogle Scholar
  15. 15.
    Wertz IE, O’Rourke KM, Zhou H et al (2004) De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature 430:694–699. doi: 10.1038/nature02794 PubMedCrossRefGoogle Scholar
  16. 16.
    Cooper JT, Stroka DM, Brostjan C, Palmetshofer A, Bach FH, Ferran C (1996) A20 blocks endothelial cell activation through a NF-kappaB-dependent mechanism. J Biol Chem 271:18068–18073. doi: 10.1074/jbc.271.30.17601 PubMedCrossRefGoogle Scholar
  17. 17.
    Ferran C, Stroka DM, Badrichani AZ et al (1998) A20 inhibits NF-kappaB activation in endothelial cells without sensitizing to tumor necrosis factor-mediated apoptosis. Blood 91:2249–2258PubMedGoogle Scholar
  18. 18.
    Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:E255–E263. doi: 10.1038/ncb1101-e255 PubMedCrossRefGoogle Scholar
  19. 19.
    Jaattela M (2004) Multiple cell death pathways as regulators of tumour initiation and progression. Oncogene 23:2746–2756. doi: 10.1038/sj.onc.1207513 PubMedCrossRefGoogle Scholar
  20. 20.
    Guicciardi ME, Leist M, Gores GJ (2004) Lysosomes in cell death. Oncogene 23:2881–2890. doi: 10.1038/sj.onc.1207512 PubMedCrossRefGoogle Scholar
  21. 21.
    Guicciardi ME, Deussing J, Miyoshi H et al (2000) Cathepsin B contributes to TNF-alpha-mediated hepatocyte apoptosis by promoting mitochondrial release of cytochrome c. J Clin Invest 106:1127–1137. doi: 10.1172/JCI9914 PubMedCrossRefGoogle Scholar
  22. 22.
    Gyrd-Hansen M, Farkas T, Fehrenbacher N et al (2006) Apoptosome-independent activation of the lysosomal cell death pathway by caspase-9. Mol Cell Biol 26:7880–7891. doi: 10.1128/MCB.00716-06 PubMedCrossRefGoogle Scholar
  23. 23.
    Stoka V, Turk B, Schendel SL et al (2001) Lysosomal protease pathways to apoptosis. Cleavage of bid, not pro-caspases, is the most likely route. J Biol Chem 276:3149–3157. doi: 10.1074/jbc.M008944200 PubMedCrossRefGoogle Scholar
  24. 24.
    Kroemer G, Jaattela M (2005) Lysosomes and autophagy in cell death control. Nat Rev Cancer 5:886–897. doi: 10.1038/nrc1738 PubMedCrossRefGoogle Scholar
  25. 25.
    Conus S, Perozzo R, Reinheckel T et al (2008) Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation. J Exp Med 205:685–698. doi: 10.1084/jem.20072152 PubMedCrossRefGoogle Scholar
  26. 26.
    Werneburg N, Guicciardi ME, Yin XM, Gores GJ (2004) TNF-alpha-mediated lysosomal permeabilization is FAN and caspase 8/Bid dependent. Am J Physiol Gastrointest Liver Physiol 287:G436–G443. doi: 10.1152/ajpgi.00019.2004 PubMedCrossRefGoogle Scholar
  27. 27.
    Wiegmann K, Schutze S, Machleidt T, Witte D, Kronke M (1994) Functional dichotomy of neutral and acidic sphingomyelinases in tumor necrosis factor signaling. Cell 78:1005–1015. doi: 10.1016/0092-8674(94)90275-5 PubMedCrossRefGoogle Scholar
  28. 28.
    Adam-Klages S, Adam D, Wiegmann K et al (1996) FAN, a novel WD-repeat protein, couples the p55 TNF-receptor to neutral sphingomyelinase. Cell 86:937–947. doi: 10.1016/S0092-8674(00)80169-5 PubMedCrossRefGoogle Scholar
  29. 29.
    Holler N, Zaru R, Micheau O et al (2000) Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol 1:489–495. doi: 10.1038/82732 PubMedCrossRefGoogle Scholar
  30. 30.
    Ma Y, Temkin V, Liu H, Pope RM (2005) NF-kappaB protects macrophages from lipopolysaccharide-induced cell death: the role of caspase 8 and receptor-interacting protein. J Biol Chem 280:41827–41834. doi: 10.1074/jbc.M510849200 PubMedCrossRefGoogle Scholar
  31. 31.
    Liu H, Ma Y, Pagliari LJ et al (2004) TNF-alpha-induced apoptosis of macrophages following inhibition of NF-kappa B: a central role for disruption of mitochondria. J Immunol 172:1907–1915PubMedGoogle Scholar
  32. 32.
    Pagliari LJ, Perlman H, Liu H, Pope RM (2000) Macrophages require constitutive NF-kappaB activation to maintain A1 expression and mitochondrial homeostasis. Mol Cell Biol 20:8855–8865. doi: 10.1128/MCB.20.23.8855-8865.2000 PubMedCrossRefGoogle Scholar
  33. 33.
    Perlman H, Pagliari LJ, Georganas C, Mano T, Walsh K, Pope RM (1999) FLICE-inhibitory protein expression during macrophage differentiation confers resistance to fas-mediated apoptosis. J Exp Med 190:1679–1688. doi: 10.1084/jem.190.11.1679 PubMedCrossRefGoogle Scholar
  34. 34.
    Ma Y, Liu H, Tu-Rapp H et al (2004) Fas ligation on macrophages enhances IL-1R1-Toll-like receptor 4 signaling and promotes chronic inflammation. Nat Immunol 5:380–387. doi: 10.1038/ni1054 PubMedCrossRefGoogle Scholar
  35. 35.
    Zhao M, Brunk UT, Eaton JW (2001) Delayed oxidant-induced cell death involves activation of phospholipase A2. FEBS Lett 509:399–404. doi: 10.1016/S0014-5793(01)03184-2 PubMedCrossRefGoogle Scholar
  36. 36.
    Yuan XM, Li W, Dalen H et al (2002) Lysosomal destabilization in p53-induced apoptosis. Proc Natl Acad Sci USA 99:6286–6291. doi: 10.1073/pnas.092135599 PubMedCrossRefGoogle Scholar
  37. 37.
    Suarez Y, Gonzalez L, Cuadrado A, Berciano M, Lafarga M, Munoz A (2003) Kahalalide F, a new marine-derived compound, induces oncosis in human prostate and breast cancer cells. Mol Cancer Ther 2:863–872PubMedGoogle Scholar
  38. 38.
    Ono K, Kim SO, Han J (2003) Susceptibility of lysosomes to rupture is a determinant for plasma membrane disruption in tumor necrosis factor alpha-induced cell death. Mol Cell Biol 23:665–676. doi: 10.1128/MCB.23.2.665-676.2003 PubMedCrossRefGoogle Scholar
  39. 39.
    Nylandsted J, Gyrd-Hansen M, Danielewicz A et al (2004) Heat shock protein 70 promotes cell survival by inhibiting lysosomal membrane permeabilization. J Exp Med 200:425–435. doi: 10.1084/jem.20040531 PubMedCrossRefGoogle Scholar
  40. 40.
    Li JH, Pober JS (2005) The cathepsin B death pathway contributes to TNF plus IFN-gamma-mediated human endothelial injury. J Immunol 175:1858–1866PubMedGoogle Scholar
  41. 41.
    Liu H, Huang Q, Shi B, Eksarko P, Temkin V, Pope RM (2006) Regulation of Mcl-1 expression in rheumatoid arthritis synovial macrophages. Arthritis Rheum 54:3174–3181. doi: 10.1002/art.22132 PubMedCrossRefGoogle Scholar
  42. 42.
    Bai S, Liu H, Chen KH et al (2004) NF-kappaB-regulated expression of cellular FLIP protects rheumatoid arthritis synovial fibroblasts from tumor necrosis factor alpha-mediated apoptosis. Arthritis Rheum 50:3844–3855. doi: 10.1002/art.20680 PubMedCrossRefGoogle Scholar
  43. 43.
    Foghsgaard L, Wissing D, Mauch D et al (2001) Cathepsin B acts as a dominant execution protease in tumor cell apoptosis induced by tumor necrosis factor. J Cell Biol 153:999–1010. doi: 10.1083/jcb.153.5.999 PubMedCrossRefGoogle Scholar
  44. 44.
    Bidere N, Lorenzo HK, Carmona S et al (2003) Cathepsin D triggers Bax activation, resulting in selective apoptosis-inducing factor (AIF) relocation in T lymphocytes entering the early commitment phase to apoptosis. J Biol Chem 278:31401–31411. doi: 10.1074/jbc.M301911200 PubMedCrossRefGoogle Scholar
  45. 45.
    Liu N, Raja SM, Zazzeroni F et al (2003) NF-kappaB protects from the lysosomal pathway of cell death. EMBO J 22:5313–5322. doi: 10.1093/emboj/cdg510 PubMedCrossRefGoogle Scholar
  46. 46.
    Pacheco FJ, Servin J, Dang D et al (2005) Involvement of lysosomal cathepsins in the cleavage of DNA topoisomerase I during necrotic cell death. Arthritis Rheum 52:2133–2145. doi: 10.1002/art.21147 PubMedCrossRefGoogle Scholar
  47. 47.
    Kamata H, Honda S, Maeda S, Chang L, Hirata H, Karin M (2005) Reactive oxygen species promote TNFalpha-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120:649–661. doi: 10.1016/j.cell.2004.12.041 PubMedCrossRefGoogle Scholar
  48. 48.
    Lin Y, Choksi S, Shen HM et al (2004) Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J Biol Chem 279:10822–10828. doi: 10.1074/jbc.M313141200 PubMedCrossRefGoogle Scholar
  49. 49.
    Vercammen D, Beyaert R, Denecker G et al (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med 187:1477–1485. doi: 10.1084/jem.187.9.1477 PubMedCrossRefGoogle Scholar
  50. 50.
    Temkin V, Huang Q, Liu H, Osada H, Pope RM (2006) Inhibition of ADP/ATP exchange in receptor-interacting protein-mediated necrosis. Mol Cell Biol 26:2215–2225. doi: 10.1128/MCB.26.6.2215-2225.2006 PubMedCrossRefGoogle Scholar
  51. 51.
    Liu ZG, Hsu H, Goeddel DV, Karin M (1996) Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell 87:565–576. doi: 10.1016/S0092-8674(00)81375-6 PubMedCrossRefGoogle Scholar
  52. 52.
    Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11:725–730. doi: 10.1038/nm1263 PubMedCrossRefGoogle Scholar
  53. 53.
    Wajant H, Pfizenmaier K, Scheurich P (2003) Tumor necrosis factor signaling. Cell Death Differ 10:45–65. doi: 10.1038/sj.cdd.4401189 PubMedCrossRefGoogle Scholar
  54. 54.
    Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219. doi: 10.1016/S0092-8674(04)00046-7 PubMedCrossRefGoogle Scholar
  55. 55.
    Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487. doi: 10.1038/20959 PubMedCrossRefGoogle Scholar
  56. 56.
    Sawada M, Kiyono T, Nakashima S et al (2004) Molecular mechanisms of TNF-alpha-induced ceramide formation in human glioma cells: P53-mediated oxidant stress-dependent and -independent pathways. Cell Death Differ 11:997–1008. doi: 10.1038/sj.cdd.4401438 PubMedCrossRefGoogle Scholar
  57. 57.
    Jin Z, El-Deiry WS (2006) Distinct signaling pathways in TRAIL- versus tumor necrosis factor-induced apoptosis. Mol Cell Biol 26:8136–8148. doi: 10.1128/MCB.00257-06 PubMedCrossRefGoogle Scholar
  58. 58.
    Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163. doi: 10.1152/physrev.00013.2006 PubMedCrossRefGoogle Scholar
  59. 59.
    Lee EG, Boone DL, Chai S et al (2000) Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science 289:2350–2354. doi: 10.1126/science.289.5488.2350 PubMedCrossRefGoogle Scholar
  60. 60.
    Daniel S, Arvelo MB, Patel VI et al (2004) A20 protects endothelial cells from TNF-, Fas-, and NK-mediated cell death by inhibiting caspase 8 activation. Blood 104:2376–2384. doi: 10.1182/blood-2003-02-0635 PubMedCrossRefGoogle Scholar
  61. 61.
    He KL, Ting AT (2002) A20 inhibits tumor necrosis factor (TNF) alpha-induced apoptosis by disrupting recruitment of TRADD and RIP to the TNF receptor 1 complex in Jurkat T cells. Mol Cell Biol 22:6034–6045. doi: 10.1128/MCB.22.17.6034-6045.2002 PubMedCrossRefGoogle Scholar
  62. 62.
    Plenge RM, Cotsapas C, Davies L et al (2007) Two independent alleles at 6q23 associated with risk of rheumatoid arthritis. Nat Genet 39:1477–1482. doi: 10.1038/ng.2007.27 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Tri M. Tran
    • 1
  • Vladislav Temkin
    • 1
  • Bo Shi
    • 1
  • Lisa Pagliari
    • 1
  • Soizic Daniel
    • 2
  • Christiane Ferran
    • 2
  • Richard M. Pope
    • 1
    Email author
  1. 1.Division of Rheumatology, Department of MedicineNorthwestern University Feinberg School of MedicineChicagoUSA
  2. 2.Division of Vascular Surgery and Nephrology, Departments of Surgery and Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA

Personalised recommendations