Skip to main content

Advertisement

Log in

A chemical inhibitor of Apaf-1 exerts mitochondrioprotective functions and interferes with the intra-S-phase DNA damage checkpoint

  • Original Paper
  • Published:
Apoptosis Aims and scope Submit manuscript

Abstract

QM31 represents a new class of cytoprotective agents that inhibit the formation of the apoptosome, the caspase activation complex composed by Apaf-1, cytochrome c, dATP and caspase-9. Here, we analyzed the cellular effects of QM31, as compared to the prototypic caspase inhibitor Z-VAD-fmk. QM31 was as efficient as Z-VAD-fmk in suppressing caspase-3 activation, and conferred a similar cytoprotective effect. In contrast to Z-VAD-fmk, QM31 inhibited the release of cytochrome c from mitochondria, an unforeseen property that may contribute to its pronounced cytoprotective activity. Moreover, QM31 suppressed the Apaf-1-dependent intra-S-phase DNA damage checkpoint. These results suggest that QM31 can interfere with the two known functions of Apaf-1, namely apoptosome assembly/activation and intra-S-phase cell cycle arrest. Moreover, QM31 can inhibit mitochondrial outer membrane permeabilization, an effect that is independent from its action on Apaf-1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Apaf-1:

Apoptotic protease activating factor 1

AnnV:

Annexin V

ATM:

Ataxia telangiectasia mutated kinase

ATR:

Ataxia telangiectasia and Rad3 related kinase

CARD:

Caspase activation recruitment domain

CDDP:

Cisplatin

Chk1:

Checkpoint kinase 1

Cyt c :

Cytochrome c

ΔΨm :

Mitochondrial transmembrane potential

DiOC6(3):

3,3′ dihexiloxalocarbocyanine iodide

FBS:

Fetal bovine serum

FITC:

Fluorescein isothiocyanate

IMS:

Mitochondrial intermembrane space

MOMP:

Mitochondrial outer membrane permeabilization

NSCLC:

Non-small cell lung cancer

OM:

Mitochondrial outer membrane

PARCS:

Pro-apoptotic protein required for cell survival

PGA:

Poly-l-glutamic acid

PI:

Propidium iodide

siRNA:

Small interfering RNA

Z-VAD-fmk:

Z-Val-Ala-Asp(OMe)-fluoromethylketone

References

  1. Galluzzi L, Brenner C, Morselli E, Touat Z, Kroemer G (2008) Viral control of mitochondrial apoptosis. PLoS Pathog 4:e1000018. doi:10.1371/journal.ppat.1000018

  2. Honda HM, Korge P, Weiss JN (2005) Mitochondria and ischemia/reperfusion injury. Ann N Y Acad Sci 1047:248–258. doi:10.1196/annals.1341.022

    Article  PubMed  CAS  Google Scholar 

  3. Kroemer G, Galluzzi L, Brenner C (2007) Mitochondrial membrane permeabilization in cell death. Physiol Rev 87:99–163. doi:10.1152/physrev.00013.2006

    Article  PubMed  CAS  Google Scholar 

  4. Mattson MP, Kroemer G (2003) Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol Med 9:196–205. doi:10.1016/S1471-4914(03)00046-7

    Article  PubMed  CAS  Google Scholar 

  5. Galluzzi L, Joza N, Tasdemir E et al (2008) No death without life: vital functions of apoptotic effectors. Cell Death Differ 15:1113–1123. doi:10.1038/cdd.2008.28

    Article  PubMed  CAS  Google Scholar 

  6. Garrido C, Kroemer G (2004) Life’s smile, death’s grin: vital functions of apoptosis-executing proteins. Curr Opin Cell Biol 16:639–646. doi:10.1016/j.ceb.2004.09.008

    Article  PubMed  CAS  Google Scholar 

  7. Li P, Nijhawan D, Budihardjo I et al (1997) Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489. doi:10.1016/S0092-8674(00)80434-1

    Article  PubMed  CAS  Google Scholar 

  8. Zou H, Li Y, Liu X, Wang X (1999) An APAF-1.cytochrome c multimeric complex is a functional apoptosome that activates procaspase-9. J Biol Chem 274:11549–11556. doi:10.1074/jbc.274.17.11549

    Article  PubMed  CAS  Google Scholar 

  9. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW (2002) Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell 9:423–432. doi:10.1016/S1097-2765(02)00442-2

    Article  PubMed  CAS  Google Scholar 

  10. Srinivasula SM, Ahmad M, Fernandes-Alnemri T, Alnemri ES (1998) Autoactivation of procaspase-9 by Apaf-1-mediated oligomerization. Mol Cell 1:949–957. doi:10.1016/S1097-2765(00)80095-7

    Article  PubMed  CAS  Google Scholar 

  11. Pan G, Humke EW, Dixit VM (1998) Activation of caspases triggered by cytochrome c in vitro. FEBS Lett 426:151–154. doi:10.1016/S0014-5793(98)00330-5

    Article  PubMed  CAS  Google Scholar 

  12. Garrido C, Galluzzi L, Brunet M, Puig PE, Didelot C, Kroemer G (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13:1423–1433. doi:10.1038/sj.cdd.4401950

    Article  PubMed  CAS  Google Scholar 

  13. Marzo I, Susin SA, Petit PX et al (1998) Caspases disrupt mitochondrial membrane barrier function. FEBS Lett 427:198–202. doi:10.1016/S0014-5793(98)00424-4

    Article  PubMed  CAS  Google Scholar 

  14. Saraste M (1999) Oxidative phosphorylation at the fin de siecle. Science 283:1488–1493. doi:10.1126/science.283.5407.1488

    Article  PubMed  CAS  Google Scholar 

  15. Susin SA, Lorenzo HK, Zamzami N et al (1999) Mitochondrial release of caspase-2 and -9 during the apoptotic process. J Exp Med 189:381–394. doi:10.1084/jem.189.2.381

    Article  PubMed  CAS  Google Scholar 

  16. Malet G, Martin AG, Orzaez M et al (2006) Small molecule inhibitors of Apaf-1-related caspase- 3/-9 activation that control mitochondrial-dependent apoptosis. Cell Death Differ 13:1523–1532. doi:10.1038/sj.cdd.4401828

    Article  PubMed  CAS  Google Scholar 

  17. Orzaez M, Mondragon L, Marzo I et al (2007) Conjugation of a novel Apaf-1 inhibitor to peptide-based cell-membrane transporters: effective methods to improve inhibition of mitochondria-mediated apoptosis. Peptides 28:958–968. doi:10.1016/j.peptides.2007.02.014

    Article  PubMed  CAS  Google Scholar 

  18. Vicent MJ, Perez-Paya E (2006) Poly-l-glutamic acid (PGA) aided inhibitors of apoptotic protease activating factor 1 (Apaf-1): an antiapoptotic polymeric nanomedicine. J Med Chem 49:3763–3765. doi:10.1021/jm060458x

    Article  PubMed  CAS  Google Scholar 

  19. Mondragon L, Orzaez M, Sanclimens G et al (2008) Modulation of cellular apoptosis with apoptotic protease-activating factor 1 (Apaf-1) inhibitors. J Med Chem 51:521–529. doi:10.1021/jm701195j

    Article  PubMed  CAS  Google Scholar 

  20. Riedl SJ, Li W, Chao Y, Schwarzenbacher R, Shi Y (2005) Structure of the apoptotic protease-activating factor 1 bound to ADP. Nature 434:926–933. doi:10.1038/nature03465

    Article  PubMed  CAS  Google Scholar 

  21. Kim HE, Jiang X, Du F, Wang X (2008) PHAPI, CAS, and Hsp70 promote apoptosome formation by preventing Apaf-1 aggregation and enhancing nucleotide exchange on Apaf-1. Mol Cell 30:239–247. doi:10.1016/j.molcel.2008.03.014

    Article  PubMed  CAS  Google Scholar 

  22. Zermati Y, Mouhamad S, Stergiou L et al (2007) Nonapoptotic role for Apaf-1 in the DNA damage checkpoint. Mol Cell 28:624–637. doi:10.1016/j.molcel.2007.09.030

    Article  PubMed  CAS  Google Scholar 

  23. Mouhamad S, Galluzzi L, Zermati Y, Castedo M, Kroemer G (2007) Apaf-1 deficiency causes chromosomal instability. Cell Cycle 6:3103–3107

    PubMed  CAS  Google Scholar 

  24. Sanchez-Olea R, Ortiz S, Barreto O et al (2008) PARCS is a dual regulator of cell proliferation and Apaf-1 function. J Biol Chem 283:24400–24405. doi:10.1074/jbc.M804664200

    Article  PubMed  CAS  Google Scholar 

  25. Chau BN, Cheng EH, Kerr DA, Hardwick JM (2000) Aven, a novel inhibitor of caspase activation, binds Bcl-xL and Apaf-1. Mol Cell 6:31–40. doi:10.1016/S1097-2765(00)00005-8

    Article  PubMed  CAS  Google Scholar 

  26. Guo JY, Yamada A, Kajino T et al (2008) Aven-dependent activation of ATM following DNA damage. Curr Biol 18:933–942. doi:10.1016/j.cub.2008.05.045

    Article  PubMed  CAS  Google Scholar 

  27. Galluzzi L, Zamzami N, de La Motte Rouge T, Lemaire C, Brenner C, Kroemer G (2007) Methods for the assessment of mitochondrial membrane permeabilization in apoptosis. Apoptosis 12:803–813. doi:10.1007/s10495-007-0720-1

    Article  PubMed  CAS  Google Scholar 

  28. Castedo M, Coquelle A, Vivet S et al (2006) Apoptosis regulation in tetraploid cancer cells. EMBO J 25:2584–2595. doi:10.1038/sj.emboj.7601127

    Article  PubMed  CAS  Google Scholar 

  29. Criollo A, Galluzzi L, Chiara Maiuri M, Tasdemir E, Lavandero S, Kroemer G (2007) Mitochondrial control of cell death induced by hyperosmotic stress. Apoptosis 12:3–18. doi:10.1007/s10495-006-0328-x

    Article  PubMed  CAS  Google Scholar 

  30. Tajeddine N, Galluzzi L, Kepp O et al (2008) Hierarchical involvement of Bak, VDAC1 and Bax in cisplatin-induced cell death. Oncogene 27:4221–4232. doi:10.1038/onc.2008.63

    Article  PubMed  CAS  Google Scholar 

  31. Waterhouse NJ, Goldstein JC, von Ahsen O, Schuler M, Newmeyer DD, Green DR (2001) Cytochrome c maintains mitochondrial transmembrane potential and ATP generation after outer mitochondrial membrane permeabilization during the apoptotic process. J Cell Biol 153:319–328. doi:10.1083/jcb.153.2.319

    Article  PubMed  CAS  Google Scholar 

  32. Ricci JE, Munoz-Pinedo C, Fitzgerald P et al (2004) Disruption of mitochondrial function during apoptosis is mediated by caspase cleavage of the p75 subunit of complex I of the electron transport chain. Cell 117:773–786. doi:10.1016/j.cell.2004.05.008

    Article  PubMed  CAS  Google Scholar 

  33. Schmitt E, Paquet C, Beauchemin M, Bertrand R (2004) Bcl-xES, a BH4- and BH2-containing antiapoptotic protein, delays Bax oligomer formation and binds Apaf-1, blocking procaspase-9 activation. Oncogene 23:3915–3931. doi:10.1038/sj.onc.1207554

    Article  PubMed  CAS  Google Scholar 

  34. Yajima H, Suzuki F (2003) Identification of a Bcl-XL binding region within the ATPase domain of Apaf-1. Biochem Biophys Res Commun 309:520–527. doi:10.1016/j.bbrc.2003.08.030

    Article  PubMed  CAS  Google Scholar 

  35. Enders GH (2008) Expanded roles for Chk1 in genome maintenance. J Biol Chem 283:17749–17752. doi:10.1074/jbc.R800021200

    Article  PubMed  CAS  Google Scholar 

  36. Zou H, Henzel WJ, Liu X, Lutschg A, Wang X (1997) Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell 90:405–413. doi:10.1016/S0092-8674(00)80501-2

    Article  PubMed  CAS  Google Scholar 

  37. Hu Y, Ding L, Spencer DM, Nunez G (1998) WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation. J Biol Chem 273:33489–33494. doi:10.1074/jbc.273.50.33489

    Article  PubMed  CAS  Google Scholar 

  38. Adrain C, Slee EA, Harte MT, Martin SJ (1999) Regulation of apoptotic protease activating factor-1 oligomerization and apoptosis by the WD-40 repeat region. J Biol Chem 274:20855–20860. doi:10.1074/jbc.274.30.20855

    Article  PubMed  CAS  Google Scholar 

  39. Day CL, Dupont C, Lackmann M, Vaux DL, Hinds MG (1999) Solution structure and mutagenesis of the caspase recruitment domain (CARD) from Apaf-1. Cell Death Differ 6:1125–1132. doi:10.1038/sj.cdd.4400584

    Article  PubMed  CAS  Google Scholar 

  40. Shiozaki EN, Chai J, Shi Y (2002) Oligomerization and activation of caspase-9, induced by Apaf-1 CARD. Proc Natl Acad Sci USA 99:4197–4202. doi:10.1073/pnas.072544399

    Article  PubMed  CAS  Google Scholar 

  41. Sakai T, Liu L, Teng X et al (2004) Nucling recruits Apaf-1/pro-caspase-9 complex for the induction of stress-induced apoptosis. J Biol Chem 279:41131–41140. doi:10.1074/jbc.M402902200

    Article  PubMed  CAS  Google Scholar 

  42. Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P (1998) Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94:727–737. doi:10.1016/S0092-8674(00)81732-8

    Article  PubMed  CAS  Google Scholar 

  43. Yoshida H, Kong YY, Yoshida R et al (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94:739–750. doi:10.1016/S0092-8674(00)81733-X

    Article  PubMed  CAS  Google Scholar 

  44. Belmokhtar CA, Hillion J, Dudognon C et al (2003) Apoptosome-independent pathway for apoptosis. Biochemical analysis of APAF-1 defects and biological outcomes. J Biol Chem 278:29571–29580. doi:10.1074/jbc.M302924200

    Article  PubMed  CAS  Google Scholar 

  45. Haraguchi M, Torii S, Matsuzawa S et al (2000) Apoptotic protease activating factor 1 (Apaf-1)-independent cell death suppression by Bcl-2. J Exp Med 191:1709–1720. doi:10.1084/jem.191.10.1709

    Article  PubMed  CAS  Google Scholar 

  46. Sanchis D, Mayorga M, Ballester M, Comella JX (2003) Lack of Apaf-1 expression confers resistance to cytochrome c-driven apoptosis in cardiomyocytes. Cell Death Differ 10:977–986. doi:10.1038/sj.cdd.4401267

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

LM and AM are recipients of predoctoral grants from FPI—MICINN and CSIC, respectively. GK is supported by Cancéropôle Ile-de-France, Institut National du Cancer, Fondation de France, Association Laurette Fugain, Cent pour Sang la Vie, Agence National de la Recherche, and the European Commission (Apo-Sys, ChemoRes. Death-Train, RIGHT). MO acknowledges support from GVPRE/2008/275. AM and EPP are supported by grants BIO2007-60066 and CTQ 2005-00995, respectively, from the Spanish Ministry of Science and Innovation (MICINN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Kroemer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mondragón, L., Galluzzi, L., Mouhamad, S. et al. A chemical inhibitor of Apaf-1 exerts mitochondrioprotective functions and interferes with the intra-S-phase DNA damage checkpoint. Apoptosis 14, 182–190 (2009). https://doi.org/10.1007/s10495-008-0310-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10495-008-0310-x

Keywords

Navigation