Apoptosis

, Volume 14, Issue 4, pp 478–500

Cell death pathways in Parkinson’s disease: proximal triggers, distal effectors, and final steps

  • Oren A. Levy
  • Cristina Malagelada
  • Lloyd A. Greene
Cell Death and Disease

Abstract

Parkinson’s disease (PD) is a common neurodegenerative disorder. Neuronal cell death in PD is still poorly understood, despite a wealth of potential pathogenic mechanisms and pathways. Defects in several cellular systems have been implicated as early triggers that start cells down the road toward neuronal death. These include abnormal protein accumulation, particularly of alpha-synuclein; altered protein degradation via multiple pathways; mitochondrial dysfunction; oxidative stress; neuroinflammation; and dysregulated kinase signaling. As dysfunction in these systems mounts, pathways that are more explicitly involved in cell death become recruited. These include JNK signaling, p53 activation, cell cycle re-activation, and signaling through bcl-2 family proteins. Eventually, neurons become overwhelmed and degenerate; however, even the mechanism of final cell death in PD is still unsettled. In this review, we will discuss cell death triggers and effectors that are relevant to PD, highlighting important unresolved issues and implications for the development of neuroprotective therapies.

Keywords

Parkinson’s disease Apoptosis Neuroprotection Alpha-synuclein 

References

  1. 1.
    Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39:889–909. doi:10.1016/S0896-6273(03)00568-3 PubMedCrossRefGoogle Scholar
  2. 2.
    Zarow C, Lyness SA, Mortimer JA, Chui HC (2003) Neuronal loss is greater in the locus coeruleus than nucleus basalis and substantia nigra in Alzheimer and Parkinson diseases. Arch Neurol 60:337–341. doi:10.1001/archneur.60.3.337 PubMedCrossRefGoogle Scholar
  3. 3.
    Braak H, Del Tredici K, Rub U, de Vos RA, Jansen Steur EN, Braak E (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24:197–211. doi:10.1016/S0197-4580(02)00065-9 PubMedCrossRefGoogle Scholar
  4. 4.
    Polymeropoulos MH, Lavedan C, Leroy E et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047. doi:10.1126/science.276.5321.2045 PubMedCrossRefGoogle Scholar
  5. 5.
    Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840. doi:10.1038/42166 PubMedCrossRefGoogle Scholar
  6. 6.
    Fortin DL, Troyer MD, Nakamura K, Kubo S, Anthony MD, Edwards RH (2004) Lipid rafts mediate the synaptic localization of alpha-synuclein. J Neurosci 24:6715–6723. doi:10.1523/JNEUROSCI.1594-04.2004 PubMedCrossRefGoogle Scholar
  7. 7.
    Ahn BH, Rhim H, Kim SY et al (2002) alpha-Synuclein interacts with phospholipase D isozymes and inhibits pervanadate-induced phospholipase D activation in human embryonic kidney-293 cells. J Biol Chem 277:12334–12342. doi:10.1074/jbc.M110414200 PubMedCrossRefGoogle Scholar
  8. 8.
    Abeliovich A, Schmitz Y, Farinas I et al (2000) Mice lacking alpha-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25:239–252. doi:10.1016/S0896-6273(00)80886-7 PubMedCrossRefGoogle Scholar
  9. 9.
    Cooper AA, Gitler AD, Cashikar A et al (2006) Alpha-synuclein blocks ER-Golgi traffic and Rab1 rescues neuron loss in Parkinson’s models. Science 313:324–328. doi:10.1126/science.1129462 PubMedCrossRefGoogle Scholar
  10. 10.
    van Ham TJ, Thijssen KL, Breitling R, Hofstra RM, Plasterk RH, Nollen EA (2008) C. elegans model identifies genetic modifiers of alpha-synuclein inclusion formation during aging. PLoS Genet 4:e1000027. doi:10.1371/journal.pgen.1000027
  11. 11.
    Trojanowski JQ, Lee VM (2002) Parkinson’s disease and related synucleinopathies are a new class of nervous system amyloidoses. Neurotoxicology 23:457–460. doi:10.1016/S0161-813X(02)00065-7 PubMedCrossRefGoogle Scholar
  12. 12.
    Kruger R, Kuhn W, Muller T et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18:106–108. doi:10.1038/ng0298-106 PubMedCrossRefGoogle Scholar
  13. 13.
    Kruger R, Kuhn W, Leenders KL et al (2001) Familial parkinsonism with synuclein pathology: clinical and PET studies of A30P mutation carriers. Neurology 56:1355–1362PubMedGoogle Scholar
  14. 14.
    Spira PJ, Sharpe DM, Halliday G, Cavanagh J, Nicholson GA (2001) Clinical and pathological features of a Parkinsonian syndrome in a family with an Ala53Thr alpha-synuclein mutation. Ann Neurol 49:313–319. doi:10.1002/ana.67 PubMedCrossRefGoogle Scholar
  15. 15.
    Fuchs J, Nilsson C, Kachergus J et al (2007) Phenotypic variation in a large Swedish pedigree due to SNCA duplication and triplication. Neurology 68:916–922. doi:10.1212/01.wnl.0000254458.17630.c5 PubMedCrossRefGoogle Scholar
  16. 16.
    Singleton AB, Farrer M, Johnson J et al (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302:841. doi:10.1126/science.1090278
  17. 17.
    Ibanez P, Bonnet AM, Debarges B et al (2004) Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet 364:1169–1171. doi:10.1016/S0140-6736(04)17104-3 PubMedCrossRefGoogle Scholar
  18. 18.
    Stefanis L, Larsen KE, Rideout HJ, Sulzer D, Greene LA (2001) Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death. J Neurosci 21:9549–9560PubMedGoogle Scholar
  19. 19.
    Tanaka Y, Engelender S, Igarashi S et al (2001) Inducible expression of mutant alpha-synuclein decreases proteasome activity and increases sensitivity to mitochondria-dependent apoptosis. Hum Mol Genet 10:919–926. doi:10.1093/hmg/10.9.919 PubMedCrossRefGoogle Scholar
  20. 20.
    Xu J, Kao S-Y, Lee FJS, Song W, Jin L-W, Yankner BA (2002) Dopamine-dependent neurotoxicity of [alpha]-synuclein: A mechanism for selective neurodegeneration in Parkinson disease. Nat Med 8:600–606. doi:10.1038/nm0602-600 PubMedCrossRefGoogle Scholar
  21. 21.
    Pendleton RG, Parvez F, Sayed M, Hillman R (2002) Effects of pharmacological agents upon a transgenic model of Parkinson’s disease in Drosophila melanogaster. J Pharmacol Exp Ther 300:91–96. doi:10.1124/jpet.300.1.91 PubMedCrossRefGoogle Scholar
  22. 22.
    Feany MB, Bender WW (2000) A Drosophila model of Parkinson’s disease. Nature 404:394–398. doi:10.1038/35006074 PubMedCrossRefGoogle Scholar
  23. 23.
    Lakso M, Vartiainen S, Moilanen AM et al (2003) Dopaminergic neuronal loss and motor deficits in Caenorhabditis elegans overexpressing human alpha-synuclein. J Neurochem 86:165–172. doi:10.1046/j.1471-4159.2003.01809.x PubMedCrossRefGoogle Scholar
  24. 24.
    Giasson BI, Duda JE, Quinn SM, Zhang B, Trojanowski JQ, Lee VM (2002) Neuronal alpha-synucleinopathy with severe movement disorder in mice expressing A53T human alpha-synuclein. Neuron 34:521–533. doi:10.1016/S0896-6273(02)00682-7 PubMedCrossRefGoogle Scholar
  25. 25.
    Lee MK, Stirling W, Xu Y et al (2002) Human alpha-synuclein-harboring familial Parkinson’s disease-linked Ala–53–>Thr mutation causes neurodegenerative disease with alpha-synuclein aggregation in transgenic mice. Proc Natl Acad Sci USA 99:8968–8973. doi:10.1073/pnas.132197599 PubMedCrossRefGoogle Scholar
  26. 26.
    van der Putten H, Wiederhold KH, Probst A et al (2000) Neuropathology in mice expressing human alpha-synuclein. J Neurosci 20:6021–6029PubMedGoogle Scholar
  27. 27.
    Martin LJ, Pan Y, Price AC et al (2006) Parkinson’s disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell death. J Neurosci 26:41–50. doi:10.1523/JNEUROSCI.4308-05.2006 PubMedCrossRefGoogle Scholar
  28. 28.
    Thiruchelvam MJ, Powers JM, Cory-Slechta DA, Richfield EK (2004) Risk factors for dopaminergic neuron loss in human alpha-synuclein transgenic mice. Eur J Neurosci 19:845–854. doi:10.1111/j.0953-816X.2004.03139.x PubMedCrossRefGoogle Scholar
  29. 29.
    Richfield EK, Thiruchelvam MJ, Cory-Slechta DA et al (2002) Behavioral and neurochemical effects of wild-type and mutated human alpha-synuclein in transgenic mice. Exp Neurol 175:35–48. doi:10.1006/exnr.2002.7882 PubMedCrossRefGoogle Scholar
  30. 30.
    Matsuoka Y, Vila M, Lincoln S et al (2001) Lack of nigral pathology in transgenic mice expressing human alpha-synuclein driven by the tyrosine hydroxylase promoter. Neurobiol Dis 8:535–539. doi:10.1006/nbdi.2001.0392 PubMedCrossRefGoogle Scholar
  31. 31.
    Lo Bianco C, Ridet JL, Schneider BL, Déglon N, Aebischer P (2002) α-Synucleinopathy and selective dopaminergic neuron loss in a rat lentiviral-based model of Parkinson’s disease. Proc Natl Acad Sci USA 99:10813–10818. doi:10.1073/pnas.152339799 PubMedCrossRefGoogle Scholar
  32. 32.
    Cabin DE, Gispert-Sanchez S, Murphy D, Auburger G, Myers RR, Nussbaum RL (2005) Exacerbated synucleinopathy in mice expressing A53T SNCA on a SNCA null background. Neurobiol Aging 26:25–35. doi:10.1016/j.neurobiolaging.2004.02.026 PubMedCrossRefGoogle Scholar
  33. 33.
    Alves da Costa C, Paitel E, Vincent B, Checler F (2002) alpha-Synuclein Lowers p53-dependent Apoptotic Response of Neuronal Cells. Abolishment by 6-hydroxydopamine and implication for Parkinson’s disease. J Biol Chem 277:50980–50984. doi:10.1074/jbc.M207825200 Google Scholar
  34. 34.
    Stefanis L, Wang Q, Oo T, Lang-Rollin I, Burke RE, Dauer WT (2004) Lack of alpha-synuclein does not alter apoptosis of neonatal catecholaminergic neurons. Eur J Neurosci 20:1969–1972. doi:10.1111/j.1460-9568.2004.03638.x PubMedCrossRefGoogle Scholar
  35. 35.
    Rideout HJ, Dietrich P, Wang Q, Dauer WT, Stefanis L (2004) alpha-synuclein is required for the fibrillar nature of ubiquitinated inclusions induced by proteasomal inhibition in primary neurons. J Biol Chem 279:46915–46920. doi:10.1074/jbc.M405146200 PubMedCrossRefGoogle Scholar
  36. 36.
    Dauer W, Kholodilov N, Vila M et al (2002) Resistance of alpha -synuclein null mice to the parkinsonian neurotoxin MPTP. Proc Natl Acad Sci USA 99:14524–14529. doi:10.1073/pnas.172514599 PubMedCrossRefGoogle Scholar
  37. 37.
    Uversky VN (2007) Neuropathology, biochemistry, and biophysics of alpha-synuclein aggregation. J Neurochem 103:17–37PubMedGoogle Scholar
  38. 38.
    Miller DW, Hague SM, Clarimon J et al (2004) Alpha-synuclein in blood and brain from familial Parkinson disease with SNCA locus triplication. Neurology 62:1835–1838PubMedGoogle Scholar
  39. 39.
    Conway KA, Lee SJ, Rochet JC, Ding TT, Williamson RE, Lansbury PT Jr (2000) Acceleration of oligomerization, not fibrillization, is a shared property of both alpha-synuclein mutations linked to early-onset Parkinson’s disease: implications for pathogenesis and therapy. Proc Natl Acad Sci USA 97:571–576. doi:10.1073/pnas.97.2.571 PubMedCrossRefGoogle Scholar
  40. 40.
    Auluck PK, Meulener MC, Bonini NM (2005) Mechanisms of Suppression of {alpha}-Synuclein Neurotoxicity by Geldanamycin in Drosophila. J Biol Chem 280:2873–2878. doi:10.1074/jbc.M412106200 PubMedCrossRefGoogle Scholar
  41. 41.
    Wszolek ZK, Pfeiffer RF, Tsuboi Y et al (2004) Autosomal dominant parkinsonism associated with variable synuclein and tau pathology. Neurology 62:1619–1622PubMedGoogle Scholar
  42. 42.
    Hasegawa K, Stoessl AJ, Yokoyama T, Kowa H, Wszolek ZK, Yagishita S (2008) Familial parkinsonism: Study of original Sagamihara PARK8 (I2020T) kindred with variable clinicopathologic outcomes. Parkinsonism Relat Disord [Epub ahead of print]Google Scholar
  43. 43.
    Hattori N, Shimura H, Kubo S et al (2000) Autosomal recessive juvenile parkinsonism: a key to understanding nigral degeneration in sporadic Parkinson’s disease. Neuropathology 20(Suppl):S85–S90. doi:10.1046/j.1440-1789.2000.00312.x Google Scholar
  44. 44.
    Farrer M, Chan P, Chen R et al (2001) Lewy bodies and parkinsonism in families with parkin mutations. Ann Neurol 50:293–300. doi:10.1002/ana.1132 PubMedCrossRefGoogle Scholar
  45. 45.
    McNaught KS, Shashidharan P, Perl DP, Jenner P, Olanow CW (2002) Aggresome-related biogenesis of Lewy bodies. Eur J Neurosci 16:2136–2148. doi:10.1046/j.1460-9568.2002.02301.x PubMedCrossRefGoogle Scholar
  46. 46.
    Tanaka M, Kim YM, Lee G, Junn E, Iwatsubo T, Mouradian MM (2004) Aggresomes formed by alpha-synuclein and synphilin-1 are cytoprotective. J Biol Chem 279:4625–4631. doi:10.1074/jbc.M310994200 PubMedCrossRefGoogle Scholar
  47. 47.
    Bodner RA, Outeiro TF, Altmann S et al (2006) Pharmacological promotion of inclusion formation: a therapeutic approach for Huntington’s and Parkinson’s diseases. Proc Natl Acad Sci USA 103:4246–4251. doi:10.1073/pnas.0511256103 PubMedCrossRefGoogle Scholar
  48. 48.
    Fuchs J, Tichopad A, Golub Y et al (2008) Genetic variability in the SNCA gene influences alpha-synuclein levels in the blood and brain. FASEB J 22:1327–1334. doi:10.1096/fj.07-9348com PubMedCrossRefGoogle Scholar
  49. 49.
    Wang G, van der Walt JM, Mayhew G et al (2008) Variation in the miRNA-433 binding site of FGF20 confers risk for Parkinson disease by overexpression of alpha-synuclein. Am J Hum Genet 82:283–289. doi:10.1016/j.ajhg.2007.09.021 PubMedCrossRefGoogle Scholar
  50. 50.
    Volles MJ, Lansbury PT Jr (2002) Vesicle permeabilization by protofibrillar alpha-synuclein is sensitive to Parkinson’s disease-linked mutations and occurs by a pore-like mechanism. Biochemistry 41:4595–4602. doi:10.1021/bi0121353 PubMedCrossRefGoogle Scholar
  51. 51.
    Mosharov EV, Staal RG, Bove J et al (2006) Alpha-synuclein overexpression increases cytosolic catecholamine concentration. J Neurosci 26:9304–9311. doi:10.1523/JNEUROSCI.0519-06.2006 PubMedCrossRefGoogle Scholar
  52. 52.
    Lee EN, Cho HJ, Lee CH, Lee D, Chung KC, Paik SR (2004) Phthalocyanine tetrasulfonates affect the amyloid formation and cytotoxicity of alpha-synuclein. Biochemistry 43:3704–3715. doi:10.1021/bi0356707 PubMedCrossRefGoogle Scholar
  53. 53.
    Madine J, Doig AJ, Middleton DA (2008) Design of an N-methylated peptide inhibitor of alpha-synuclein aggregation guided by solid-state NMR. J Am Chem Soc 130:7873–7881. doi:10.1021/ja075356q PubMedCrossRefGoogle Scholar
  54. 54.
    McNaught KS, Jenner P (2001) Proteasomal function is impaired in substantia nigra in Parkinson’s disease. Neurosci Lett 297:191–194. doi:10.1016/S0304-3940(00)01701-8 PubMedCrossRefGoogle Scholar
  55. 55.
    Zeng BY, Medhurst AD, Jackson M, Rose S, Jenner P (2005) Proteasomal activity in brain differs between species and brain regions and changes with age. Mech Ageing Dev 126:760–766. doi:10.1016/j.mad.2005.01.008 PubMedCrossRefGoogle Scholar
  56. 56.
    Kitada T, Asakawa S, Hattori N et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608. doi:10.1038/33416 PubMedCrossRefGoogle Scholar
  57. 57.
    Shimura H, Hattori N, Kubo S-I et al (2000) Familial Parkinson disease gene product, parkin, is a ubiquitin-protein ligase. Nat Genet 25:302–305. doi:10.1038/77060 PubMedCrossRefGoogle Scholar
  58. 58.
    Schlossmacher MG, Frosch MP, Gai WP et al (2002) Parkin localizes to the Lewy bodies of Parkinson disease and dementia with Lewy bodies. Am J Pathol 160:1655–1667PubMedGoogle Scholar
  59. 59.
    Chung KK, Thomas B, Li X et al (2004) S-nitrosylation of parkin regulates ubiquitination and compromises parkin’s protective function. Science 304:1328–1331. doi:10.1126/science.1093891 PubMedCrossRefGoogle Scholar
  60. 60.
    von Coelln R, Dawson VL, Dawson TM (2004) Parkin-associated Parkinson’s disease. Cell Tissue Res 318:175–184. doi:10.1007/s00441-004-0924-4 CrossRefGoogle Scholar
  61. 61.
    Ko HS, Kim SW, Sriram SR, Dawson VL, Dawson TM (2006) Identification of far upstream element-binding protein-1 as an authentic Parkin substrate. J Biol Chem 281:16193–16196. doi:10.1074/jbc.C600041200 PubMedCrossRefGoogle Scholar
  62. 62.
    Ko HS, von Coelln R, Sriram SR et al (2005) Accumulation of the authentic parkin substrate aminoacyl-tRNA synthetase cofactor, p38/JTV-1, leads to catecholaminergic cell death. J Neurosci 25:7968–7978. doi:10.1523/JNEUROSCI.2172-05.2005 PubMedCrossRefGoogle Scholar
  63. 63.
    Moore DJ, West AB, Dawson VL, Dawson TM (2005) Molecular pathophysiology of Parkinson’s disease. Annu Rev Neurosci 28:57–87. doi:10.1146/annurev.neuro.28.061604.135718 PubMedCrossRefGoogle Scholar
  64. 64.
    von Coelln R, Thomas B, Andrabi SA et al (2006) Inclusion body formation and neurodegeneration are parkin independent in a mouse model of alpha-synucleinopathy. J Neurosci 26:3685–3696. doi:10.1523/JNEUROSCI.0414-06.2006 CrossRefGoogle Scholar
  65. 65.
    Thomas B, von Coelln R, Mandir AS et al (2007) MPTP and DSP-4 susceptibility of substantia nigra and locus coeruleus catecholaminergic neurons in mice is independent of parkin activity. Neurobiol Dis 26:312–322. doi:10.1016/j.nbd.2006.12.021 PubMedCrossRefGoogle Scholar
  66. 66.
    Menendez J, Rodriguez-Navarro JA, Solano RM et al (2006) Suppression of Parkin enhances nigrostriatal and motor neuron lesion in mice over-expressing human-mutated tau protein. Hum Mol Genet 15:2045–2058. doi:10.1093/hmg/ddl129 PubMedCrossRefGoogle Scholar
  67. 67.
    Wang HQ, Imai Y, Inoue H et al (2008) Pael-R transgenic mice crossed with parkin deficient mice displayed progressive and selective catecholaminergic neuronal loss. J Neurochem 107:171–185. doi:10.1111/j.1471-4159.2008.05607.x PubMedCrossRefGoogle Scholar
  68. 68.
    Emmanouilidou E, Stefanis L, Vekrellis K (2008) Cell-produced alpha-synuclein oligomers are targeted to, and impair, the 26S proteasome. Neurobiol AgingGoogle Scholar
  69. 69.
    Rideout HJ, Larsen KE, Sulzer D, Stefanis L (2001) Proteasomal inhibition leads to formation of ubiquitin/alpha-synuclein-immunoreactive inclusions in PC12 cells. J Neurochem 78:899–908. doi:10.1046/j.1471-4159.2001.00474.x PubMedCrossRefGoogle Scholar
  70. 70.
    McNaught KS, Mytilineou C, Jnobaptiste R et al (2002) Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures. J Neurochem 81:301–306. doi:10.1046/j.1471-4159.2002.00821.x PubMedCrossRefGoogle Scholar
  71. 71.
    Rideout HJ, Lang-Rollin IC, Savalle M, Stefanis L (2005) Dopaminergic neurons in rat ventral midbrain cultures undergo selective apoptosis and form inclusions, but do not up-regulate iHSP70, following proteasomal inhibition. J Neurochem 93:1304–1313. doi:10.1111/j.1471-4159.2005.03124.x PubMedCrossRefGoogle Scholar
  72. 72.
    McNaught KS, Bjorklund LM, Belizaire R, Isacson O, Jenner P, Olanow CW (2002) Proteasome inhibition causes nigral degeneration with inclusion bodies in rats. Neuroreport 13:1437–1441. doi:10.1097/00001756-200208070-00018 PubMedCrossRefGoogle Scholar
  73. 73.
    Lang-Rollin I, Vekrellis K, Wang Q, Rideout HJ, Stefanis L (2004) Application of proteasomal inhibitors to mouse sympathetic neurons activates the intrinsic apoptotic pathway. J Neurochem 90:1511–1520. doi:10.1111/j.1471-4159.2004.02684.x PubMedCrossRefGoogle Scholar
  74. 74.
    Yamamoto N, Sawada H, Izumi Y et al (2007) Proteasome inhibition induces glutathione synthesis and protects cells from oxidative stress: relevance to Parkinson disease. J Biol Chem 282:4364–4372. doi:10.1074/jbc.M603712200 PubMedCrossRefGoogle Scholar
  75. 75.
    Sawada H, Kohno R, Kihara T et al (2004) Proteasome mediates dopaminergic neuronal degeneration, and its inhibition causes alpha-synuclein inclusions. J Biol Chem 279:10710–10719. doi:10.1074/jbc.M308434200 PubMedCrossRefGoogle Scholar
  76. 76.
    Katsiki M, Chondrogianni N, Chinou I, Rivett AJ, Gonos ES (2007) The olive constituent oleuropein exhibits proteasome stimulatory properties in vitro and confers life span extension of human embryonic fibroblasts. Rejuvenation Res 10:157–172. doi:10.1089/rej.2006.0513 PubMedCrossRefGoogle Scholar
  77. 77.
    Chondrogianni N, Gonos ES (2008) Proteasome activation as a novel antiaging strategy. IUBMB Life 60:651–655. doi:10.1002/iub.99 PubMedCrossRefGoogle Scholar
  78. 78.
    Matus S, Lisbona F, Torres M, Leon C, Thielen P, Hetz C (2008) The stress rheostat: an interplay between the unfolded protein response (UPR) and autophagy in neurodegeneration. Curr Mol Med 8:157–172. doi:10.2174/156652408784221324 PubMedCrossRefGoogle Scholar
  79. 79.
    Martinez-Vicente M, Cuervo AM (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike. Lancet Neurol 6:352–361. doi:10.1016/S1474-4422(07)70076-5 PubMedCrossRefGoogle Scholar
  80. 80.
    Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D (2004) Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science 305:1292–1295. doi:10.1126/science.1101738 PubMedCrossRefGoogle Scholar
  81. 81.
    Zhu JH, Guo F, Shelburne J, Watkins S, Chu CT (2003) Localization of phosphorylated ERK/MAP kinases to mitochondria and autophagosomes in Lewy body diseases. Brain Pathol 13:473–481PubMedGoogle Scholar
  82. 82.
    Anglade P, Vyas S, Javoy-Agid F et al (1997) Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease. Histol Histopathol 12:25–31PubMedGoogle Scholar
  83. 83.
    Hara T, Nakamura K, Matsui M et al (2006) Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature 441:885–889. doi:10.1038/nature04724 PubMedCrossRefGoogle Scholar
  84. 84.
    Komatsu M, Waguri S, Chiba T et al (2006) Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature 441:880–884. doi:10.1038/nature04723 PubMedCrossRefGoogle Scholar
  85. 85.
    Ramirez A, Heimbach A, Grundemann J et al (2006) Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 38:1184–1191. doi:10.1038/ng1884 PubMedCrossRefGoogle Scholar
  86. 86.
    Aharon-Peretz J, Rosenbaum H, Gershoni-Baruch R (2004) Mutations in the Glucocerebrosidase Gene and Parkinson’s Disease in Ashkenazi Jews. N Engl J Med 351:1972–1977. doi:10.1056/NEJMoa033277 PubMedCrossRefGoogle Scholar
  87. 87.
    Gan-Or Z, Giladi N, Rozovski U et al (2008) Genotype-phenotype correlations between GBA mutations and Parkinson disease risk and onset. Neurology 70:2277–2283. doi:10.1212/01.wnl.0000304039.11891.29 PubMedCrossRefGoogle Scholar
  88. 88.
    Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC (2003) Alpha-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 278:25009–25013. doi:10.1074/jbc.M300227200 PubMedCrossRefGoogle Scholar
  89. 89.
    Rideout HJ, Lang-Rollin I, Stefanis L (2004) Involvement of macroautophagy in the dissolution of neuronal inclusions. Int J Biochem Cell Biol 36:2551–2562. doi:10.1016/j.biocel.2004.05.008 PubMedCrossRefGoogle Scholar
  90. 90.
    Zheng X, Chu F, Mirkin BL, Sudha T, Mousa SA, Rebbaa A (2008) Role of the proteolytic hierarchy between cathepsin L cathepsin D and caspase-3 in regulation of cellular susceptibility to apoptosis and autophagy. Biochim Biophys Acta 1783:2294–2300PubMedCrossRefGoogle Scholar
  91. 91.
    Martinez-Vicente M, Talloczy Z, Kaushik S et al (2008) Dopamine-modified alpha-synuclein blocks chaperone-mediated autophagy. J Clin Invest 118:777–788PubMedGoogle Scholar
  92. 92.
    MacLeod D, Dowman J, Hammond R, Leete T, Inoue K, Abeliovich A (2006) The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron 52:587–593. doi:10.1016/j.neuron.2006.10.008 PubMedCrossRefGoogle Scholar
  93. 93.
    Plowey ED, Cherra SJ III, Liu YJ, Chu CT (2008) Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem 105:1048–1056. doi:10.1111/j.1471-4159.2008.05217.x PubMedCrossRefGoogle Scholar
  94. 94.
    Pan T, Kondo S, Zhu W, Xie W, Jankovic J, Le W (2008) Neuroprotection of rapamycin in lactacystin-induced neurodegeneration via autophagy enhancement. Neurobiol Dis 32:16–25. doi:10.1016/j.nbd.2008.06.003 PubMedCrossRefGoogle Scholar
  95. 95.
    Chu CT, Zhu J, Dagda R (2007) Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death. Autophagy 3:663–666PubMedGoogle Scholar
  96. 96.
    Zhu JH, Horbinski C, Guo F, Watkins S, Uchiyama Y, Chu CT (2007) Regulation of autophagy by extracellular signal-regulated protein kinases during 1-methyl-4-phenylpyridinium-induced cell death. Am J Pathol 170:75–86. doi:10.2353/ajpath.2007.060524 PubMedCrossRefGoogle Scholar
  97. 97.
    Dagda RK, Zhu J, Kulich SM, Chu CT (2008) Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: implications for Parkinson’s disease. Autophagy 4:770–782PubMedGoogle Scholar
  98. 98.
    Ron D, Walter P (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol 8:519–529. doi:10.1038/nrm2199 PubMedCrossRefGoogle Scholar
  99. 99.
    Hoozemans JJM, van Haastert ES, Eikelenboom P, de Vos RAI, Rozemuller JM, Scheper W (2007) Activation of the unfolded protein response in Parkinson’s disease. Biochem Biophys Res Commun 354:707–711. doi:10.1016/j.bbrc.2007.01.043 PubMedCrossRefGoogle Scholar
  100. 100.
    Holtz WA, O’Malley KL (2003) Parkinsonian mimetics induce aspects of unfolded protein response in death of dopaminergic neurons. J Biol Chem 278:19367–19377. doi:10.1074/jbc.M211821200 PubMedCrossRefGoogle Scholar
  101. 101.
    Holtz WA, Turetzky JM, Jong YJ, O’Malley KL (2006) Oxidative stress-triggered unfolded protein response is upstream of intrinsic cell death evoked by parkinsonian mimetics. J Neurochem 99:54–69. doi:10.1111/j.1471-4159.2006.04025.x PubMedCrossRefGoogle Scholar
  102. 102.
    Ryu EJ, Harding HP, Angelastro JM, Vitolo OV, Ron D, Greene LA (2002) Endoplasmic reticulum stress and the unfolded protein response in cellular models of Parkinson’s disease. J Neurosci 22:10690–10698PubMedGoogle Scholar
  103. 103.
    Smith WW, Jiang H, Pei Z et al (2005) Endoplasmic reticulum stress and mitochondrial cell death pathways mediate A53T mutant alpha-synuclein-induced toxicity. Hum Mol Genet 14:3801–3811. doi:10.1093/hmg/ddi396 PubMedCrossRefGoogle Scholar
  104. 104.
    Silva RM, Ries V, Oo TF et al (2005) CHOP/GADD153 is a mediator of apoptotic death in substantia nigra dopamine neurons in an in vivo neurotoxin model of parkinsonism. J Neurochem 95:974–986. doi:10.1111/j.1471-4159.2005.03428.x PubMedCrossRefGoogle Scholar
  105. 105.
    Wang HQ, Imai Y, Kataoka A, Takahashi R (2007) Cell type-specific upregulation of Parkin in response to ER stress. Antioxid Redox Signal 9:533–542. doi:10.1089/ars.2006.1522 PubMedCrossRefGoogle Scholar
  106. 106.
    Takahashi R, Imai Y, Hattori N, Mizuno Y (2003) Parkin and endoplasmic reticulum stress. Ann N Y Acad Sci 991:101–106PubMedCrossRefGoogle Scholar
  107. 107.
    Murakami T, Shoji M, Imai Y et al (2004) Pael-R is accumulated in Lewy bodies of Parkinson’s disease. Ann Neurol 55:439–442. doi:10.1002/ana.20064 PubMedCrossRefGoogle Scholar
  108. 108.
    Ahn TB, Jeon BS (2006) Protective role of heat shock and heat shock protein 70 in lactacystin-induced cell death both in the rat substantia nigra and PC12 cells. Brain Res 1087:159–167. doi:10.1016/j.brainres.2006.02.097 PubMedCrossRefGoogle Scholar
  109. 109.
    Dong Z, Wolfer DP, Lipp HP, Bueler H (2005) Hsp70 gene transfer by adeno-associated virus inhibits MPTP-induced nigrostriatal degeneration in the mouse model of Parkinson disease. Mol Ther 11:80–88. doi:10.1016/j.ymthe.2004.09.007 PubMedCrossRefGoogle Scholar
  110. 110.
    Jenner P (2007) Current concepts on the etiology and pathogenesis of Parkinson disease. In: Fahn S, Jankovic J, eds. Principles and practice of movement disorders: Churchill Livingstone, Philadelphia, PA, 672 ppGoogle Scholar
  111. 111.
    Mann VM, Cooper JM, Daniel SE et al (1994) Complex I, iron, and ferritin in Parkinson’s disease substantia nigra. Ann Neurol 36:876–881. doi:10.1002/ana.410360612 PubMedCrossRefGoogle Scholar
  112. 112.
    Schapira AH, Mann VM, Cooper JM, Krige D, Jenner PJ, Marsden CD (1992) Mitochondrial function in Parkinson’s disease. The Royal Kings and Queens Parkinson’s Disease Research Group. Ann Neurol 32(Suppl):S116–S124. doi:10.1002/ana.410320720 Google Scholar
  113. 113.
    Swerdlow RH, Parks JK, Miller SW et al (1996) Origin and functional consequences of the complex I defect in Parkinson’s disease. Ann Neurol 40:663–671. doi:10.1002/ana.410400417 PubMedCrossRefGoogle Scholar
  114. 114.
    Bender A, Krishnan KJ, Morris CM et al (2006) High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson disease. Nat Genet 38:515–517. doi:10.1038/ng1769 PubMedCrossRefGoogle Scholar
  115. 115.
    Kraytsberg Y, Kudryavtseva E, McKee AC, Geula C, Kowall NW, Khrapko K (2006) Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet 38:518–520. doi:10.1038/ng1778 PubMedCrossRefGoogle Scholar
  116. 116.
    Silvestri L, Caputo V, Bellacchio E et al (2005) Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet 14:3477–3492. doi:10.1093/hmg/ddi377 PubMedCrossRefGoogle Scholar
  117. 117.
    Darios F, Corti O, Lucking CB et al (2003) Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell death. Hum Mol Genet 12:517–526. doi:10.1093/hmg/ddg044 PubMedCrossRefGoogle Scholar
  118. 118.
    Goldberg MS, Fleming SM, Palacino JJ et al (2003) Parkin-deficient mice exhibit nigrostriatal deficits but not loss of dopaminergic neurons. J Biol Chem 278:43628–43635. doi:10.1074/jbc.M308947200 PubMedCrossRefGoogle Scholar
  119. 119.
    Itier JM, Ibanez P, Mena MA et al (2003) Parkin gene inactivation alters behaviour and dopamine neurotransmission in the mouse. Hum Mol Genet 12:2277–2291. doi:10.1093/hmg/ddg239 PubMedCrossRefGoogle Scholar
  120. 120.
    Gautier CA, Kitada T, Shen J (2008) Loss of PINK1 causes mitochondrial functional defects and increased sensitivity to oxidative stress. Proc Natl Acad Sci USA 105:11364–11369. doi:10.1073/pnas.0802076105 PubMedCrossRefGoogle Scholar
  121. 121.
    Kitada T, Pisani A, Porter DR et al (2007) Impaired dopamine release and synaptic plasticity in the striatum of PINK1-deficient mice. Proc Natl Acad Sci USA 104:11441–11446. doi:10.1073/pnas.0702717104 PubMedCrossRefGoogle Scholar
  122. 122.
    von Coelln R, Thomas B, Savitt JM et al (2004) Loss of locus coeruleus neurons and reduced startle in parkin null mice. Proc Natl Acad Sci USA 101:10744–10749. doi:10.1073/pnas.0401297101 CrossRefGoogle Scholar
  123. 123.
    Palacino JJ, Sagi D, Goldberg MS et al (2004) Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem 279:18614–18622. doi:10.1074/jbc.M401135200 PubMedCrossRefGoogle Scholar
  124. 124.
    Park J, Lee SB, Lee S et al (2006) Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature 441:1157–1161. doi:10.1038/nature04788 PubMedCrossRefGoogle Scholar
  125. 125.
    Greene JC, Whitworth AJ, Kuo I, Andrews LA, Feany MB, Pallanck LJ (2003) Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutants. Proc Natl Acad Sci USA 100:4078–4083. doi:10.1073/pnas.0737556100 PubMedCrossRefGoogle Scholar
  126. 126.
    Whitworth AJ, Theodore DA, Greene JC, Bene H, Wes PD, Pallanck LJ (2005) Increased glutathione S-transferase activity rescues dopaminergic neuron loss in a Drosophila model of Parkinson’s disease. Proc Natl Acad Sci USA 102:8024–8029. doi:10.1073/pnas.0501078102 PubMedCrossRefGoogle Scholar
  127. 127.
    Clark IE, Dodson MW, Jiang C et al (2006) Drosophila pink1 is required for mitochondrial function and interacts genetically with parkin. Nature 441:1162–1166. doi:10.1038/nature04779 PubMedCrossRefGoogle Scholar
  128. 128.
    Deng H, Dodson MW, Huang H, Guo M (2008) The Parkinson’s disease genes pink1 and parkin promote mitochondrial fission and/or inhibit fusion in Drosophila. Proc Natl Acad Sci USA 105:14503–14508. doi:10.1073/pnas.0803998105 PubMedCrossRefGoogle Scholar
  129. 129.
    Poole AC, Thomas RE, Andrews LA, McBride HM, Whitworth AJ, Pallanck LJ (2008) The PINK1/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci USA 105:1638–1643. doi:10.1073/pnas.0709336105 PubMedCrossRefGoogle Scholar
  130. 130.
    Mandemakers W, Morais VA, De Strooper B (2007) A cell biological perspective on mitochondrial dysfunction in Parkinson disease and other neurodegenerative diseases. J Cell Sci 120:1707–1716. doi:10.1242/jcs.03443 PubMedCrossRefGoogle Scholar
  131. 131.
    Langston JW, Ballard P, Tetrud JW, Irwin I (1983) Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–980. doi:10.1126/science.6823561 PubMedCrossRefGoogle Scholar
  132. 132.
    Javitch JA, D’Amato RJ, Strittmatter SM, Snyder SH (1985) Parkinsonism-inducing neurotoxin, N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine: uptake of the metabolite N-methyl-4-phenylpyridine by dopamine neurons explains selective toxicity. Proc Natl Acad Sci USA 82:2173–2177. doi:10.1073/pnas.82.7.2173 PubMedCrossRefGoogle Scholar
  133. 133.
    Fabre E, Monserrat J, Herrero A, Barja G, Leret ML (1999) Effect of MPTP on brain mitochondrial H2O2 and ATP production and on dopamine and DOPAC in the striatum. J Physiol Biochem 55:325–331PubMedGoogle Scholar
  134. 134.
    Bove J, Prou D, Perier C, Przedborski S (2005) Toxin-induced models of Parkinson’s disease. NeuroRx 2:484–494. doi:10.1602/neurorx.2.3.484 PubMedCrossRefGoogle Scholar
  135. 135.
    Betarbet R, Sherer TB, MacKenzie G, Garcia-Osuna M, Panov AV, Greenamyre JT (2000) Chronic systemic pesticide exposure reproduces features of Parkinson’s disease. Nat Neurosci 3:1301–1306. doi:10.1038/81834 PubMedCrossRefGoogle Scholar
  136. 136.
    Hoglinger GU, Lannuzel A, Khondiker ME et al (2005) The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy. J Neurochem 95:930–939. doi:10.1111/j.1471-4159.2005.03493.x PubMedCrossRefGoogle Scholar
  137. 137.
    Ekstrand MI, Terzioglu M, Galter D et al (2007) Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci USA 104:1325–1330. doi:10.1073/pnas.0605208103 PubMedCrossRefGoogle Scholar
  138. 138.
    Choi WS, Kruse SE, Palmiter RD, Xia Z (2008) Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat. Proc Natl Acad Sci USA 105:15136–15141. doi:10.1073/pnas.0807581105 PubMedCrossRefGoogle Scholar
  139. 139.
    Gomez C, Bandez MJ, Navarro A (2007) Pesticides and impairment of mitochondrial function in relation with the parkinsonian syndrome. Front Biosci 12:1079–1093. doi:10.2741/2128 PubMedCrossRefGoogle Scholar
  140. 140.
    Przedborski S, Tieu K, Perier C, Vila M (2004) MPTP as a mitochondrial neurotoxic model of Parkinson’s disease. J Bioenerg Biomembr 36:375–379. doi:10.1023/B:JOBB.0000041771.66775.d5 PubMedCrossRefGoogle Scholar
  141. 141.
    Sherer TB, Betarbet R, Testa CM et al (2003) Mechanism of toxicity in rotenone models of Parkinson’s disease. J Neurosci 23:10756–10764PubMedGoogle Scholar
  142. 142.
    Richardson JR, Caudle WM, Guillot TS et al (2007) Obligatory role for complex I inhibition in the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Toxicol Sci 95:196–204. doi:10.1093/toxsci/kfl133 PubMedCrossRefGoogle Scholar
  143. 143.
    Cappelletti G, Pedrotti B, Maggioni MG, Maci R (2001) Microtubule assembly is directly affected by MPP(+)in vitro. Cell Biol Int 25:981–984. doi:10.1006/cbir.2001.0772 PubMedCrossRefGoogle Scholar
  144. 144.
    Feng J (2006) Microtubule: a common target for parkin and Parkinson’s disease toxins. Neuroscientist 12:469–476. doi:10.1177/1073858406293853 PubMedCrossRefGoogle Scholar
  145. 145.
    Hayashi Y, Yoshida M, Yamato M et al (2008) Reverse of age-dependent memory impairment and mitochondrial DNA damage in microglia by an overexpression of human mitochondrial transcription factor a in mice. J Neurosci 28:8624–8634. doi:10.1523/JNEUROSCI.1957-08.2008 PubMedCrossRefGoogle Scholar
  146. 146.
    Bonifati V, Rizzu P, van Baren MJ et al (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299:256–259. doi:10.1126/science.1077209 PubMedCrossRefGoogle Scholar
  147. 147.
    Andres-Mateos E, Perier C, Zhang L et al (2007) DJ-1 gene deletion reveals that DJ-1 is an atypical peroxiredoxin-like peroxidase. Proc Natl Acad Sci USA 104:14807–14812. doi:10.1073/pnas.0703219104 PubMedCrossRefGoogle Scholar
  148. 148.
    Choi J, Sullards MC, Olzmann JA et al (2006) Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseases. J Biol Chem 281:10816–10824. doi:10.1074/jbc.M509079200 PubMedCrossRefGoogle Scholar
  149. 149.
    Yamaguchi H, Shen J (2007) Absence of dopaminergic neuronal degeneration and oxidative damage in aged DJ-1-deficient mice. Mol Neurodegener 2:10. doi:10.1186/1750-1326-2-10
  150. 150.
    Yang Y, Gehrke S, Haque ME et al (2005) Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signaling. Proc Natl Acad Sci USA 102:13670–13675. doi:10.1073/pnas.0504610102 PubMedCrossRefGoogle Scholar
  151. 151.
    Hasbani DM, Perez FA, Palmiter RD, O’Malley KL (2005) Dopamine depletion does not protect against acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxicity in vivo. J Neurosci 25:9428–9433. doi:10.1523/JNEUROSCI.0130-05.2005 PubMedCrossRefGoogle Scholar
  152. 152.
    Uehara T, Nakamura T, Yao D et al (2006) S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature 441:513–517. doi:10.1038/nature04782 PubMedCrossRefGoogle Scholar
  153. 153.
    Liberatore GT, Jackson-Lewis V, Vukosavic S et al (1999) Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 5:1403–1409. doi:10.1038/70978 PubMedCrossRefGoogle Scholar
  154. 154.
    Surmeier DJ (2007) Calcium, ageing, and neuronal vulnerability in Parkinson’s disease. Lancet Neurol 6:933–938. doi:10.1016/S1474-4422(07)70246-6 PubMedCrossRefGoogle Scholar
  155. 155.
    Chan CS, Guzman JN, Ilijic E et al (2007) ‘Rejuvenation’ protects neurons in mouse models of Parkinson’s disease. Nature 447:1081–1086. doi:10.1038/nature05865 PubMedCrossRefGoogle Scholar
  156. 156.
    Becker C, Jick SS, Meier CR (2008) Use of antihypertensives and the risk of Parkinson disease. Neurology 70:1438–1444. doi:10.1212/01.wnl.0000303818.38960.44 PubMedCrossRefGoogle Scholar
  157. 157.
    Paisan-Ruiz C, Jain S, Evans EW et al (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44:595–600. doi:10.1016/j.neuron.2004.10.023 PubMedCrossRefGoogle Scholar
  158. 158.
    Zimprich A, Biskup S, Leitner P et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44:601–607. doi:10.1016/j.neuron.2004.11.005 PubMedCrossRefGoogle Scholar
  159. 159.
    Healy DG, Falchi M, O’Sullivan SS et al (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 7:583–590. doi:10.1016/S1474-4422(08)70117-0 PubMedCrossRefGoogle Scholar
  160. 160.
    Lu YW, Tan EK (2008) Molecular biology changes associated with LRRK2 mutations in Parkinson’s disease. J Neurosci Res 86:1895–1901. doi:10.1002/jnr.21656 PubMedCrossRefGoogle Scholar
  161. 161.
    West AB, Moore DJ, Biskup S et al (2005) Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci USA 102:16842–16847. doi:10.1073/pnas.0507360102 PubMedCrossRefGoogle Scholar
  162. 162.
    West AB, Moore DJ, Choi C et al (2007) Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol Genet 16:223–232. doi:10.1093/hmg/ddl471 PubMedCrossRefGoogle Scholar
  163. 163.
    Smith WW, Pei Z, Jiang H, Dawson VL, Dawson TM, Ross CA (2006) Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 9:1231–1233. doi:10.1038/nn1776 PubMedCrossRefGoogle Scholar
  164. 164.
    Liu Z, Wang X, Yu Y et al (2008) A Drosophila model for LRRK2-linked parkinsonism. Proc Natl Acad Sci USA 105:2693–2698. doi:10.1073/pnas.0708452105 PubMedCrossRefGoogle Scholar
  165. 165.
    Burke RE (2007) Inhibition of mitogen-activated protein kinase and stimulation of Akt kinase signaling pathways: two approaches with therapeutic potential in the treatment of neurodegenerative disease. Pharmacol Ther 114:261–277. doi:10.1016/j.pharmthera.2007.02.002 PubMedCrossRefGoogle Scholar
  166. 166.
    Manning BD, Cantley LC (2007) AKT/PKB signaling: navigating downstream. Cell 129:1261–1274. doi:10.1016/j.cell.2007.06.009 PubMedCrossRefGoogle Scholar
  167. 167.
    Ries V, Henchcliffe C, Kareva T et al (2006) Oncoprotein Akt/PKB induces trophic effects in murine models of Parkinson’s disease. Proc Natl Acad Sci USA 103:18757–18762. doi:10.1073/pnas.0606401103 PubMedCrossRefGoogle Scholar
  168. 168.
    Du Y, Li X, Yang D et al (2008) Multiple molecular pathways are involved in the neuroprotection of GDNF against proteasome inhibitor induced dopamine neuron degeneration in vivo. Exp Biol Med (Maywood) 233:881–890. doi:10.3181/0712-RM-329 CrossRefGoogle Scholar
  169. 169.
    Malagelada C, Ryu EJ, Biswas SC, Jackson-Lewis V, Greene LA. (2006) RTP801 is elevated in Parkinson brain substantia nigral neurons and mediates death in cellular models of Parkinson’s disease by a mechanism involving mammalian target of rapamycin inactivation 10.1523/JNEUROSCI.3292-06.2006. J Neurosci 26: 9996–10005. doi:10.1523/JNEUROSCI.3292-06.2006 Google Scholar
  170. 170.
    Corradetti MN, Inoki K, Guan K-L (2005) The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway. J Biol Chem 280:9769–9772. doi:10.1074/jbc.C400557200 PubMedCrossRefGoogle Scholar
  171. 171.
    DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW (2008) Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14–3-3 shuttling. Genes Dev 22:239–251. doi:10.1101/gad.1617608 PubMedCrossRefGoogle Scholar
  172. 172.
    Malagelada C, Jin D, Greene LA (2008) RTP-801 is induced in Parkinson’s disease and mediates neuron death by inhibiting Akt phosphorylation/activation. J Neurosci 28:14363–17371PubMedCrossRefGoogle Scholar
  173. 173.
    Imai Y, Gehrke S, Wang HQ et al (2008) Phosphorylation of 4E-BP by LRRK2 affects the maintenance of dopaminergic neurons in Drosophila. EMBO J 27:2432–2443. doi:10.1038/emboj.2008.163 PubMedCrossRefGoogle Scholar
  174. 174.
    Gingras AC, Gygi SP, Raught B et al (1999) Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev 13:1422–1437. doi:10.1101/gad.13.11.1422 PubMedCrossRefGoogle Scholar
  175. 175.
    Wang W, Shi L, Xie Y et al (2004) SP600125, a new JNK inhibitor, protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Neurosci Res 48:195–202. doi:10.1016/j.neures.2003.10.012 PubMedCrossRefGoogle Scholar
  176. 176.
    Raff MC, Whitmore AV, Finn JT (2002) Axonal self-destruction and neurodegeneration. Science 296:868–871. doi:10.1126/science.1068613 PubMedCrossRefGoogle Scholar
  177. 177.
    Mack TG, Reiner M, Beirowski B et al (2001) Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat Neurosci 4:1199–1206. doi:10.1038/nn770 PubMedCrossRefGoogle Scholar
  178. 178.
    Hasbani DM, O’Malley KL (2006) Wld(S) mice are protected against the Parkinsonian mimetic MPTP. Exp Neurol 202:93–99. doi:10.1016/j.expneurol.2006.05.017 PubMedCrossRefGoogle Scholar
  179. 179.
    Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14:504–506. doi:10.1038/nm1747 PubMedCrossRefGoogle Scholar
  180. 180.
    Li JY, Englund E, Holton JL et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14:501–503. doi:10.1038/nm1746 PubMedCrossRefGoogle Scholar
  181. 181.
    Mendez I, Vinuela A, Astradsson A et al (2008) Dopamine neurons implanted into people with Parkinson’s disease survive without pathology for 14 years. Nat Med 14:507–509. doi:10.1038/nm1752 PubMedCrossRefGoogle Scholar
  182. 182.
    Wu DC, Teismann P, Tieu K et al (2003) NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci USA 100:6145–6150. doi:10.1073/pnas.0937239100 PubMedCrossRefGoogle Scholar
  183. 183.
    Fernagut PO, Chesselet MF (2004) Alpha-synuclein and transgenic mouse models. Neurobiol Dis 17:123–130. doi:10.1016/j.nbd.2004.07.001 PubMedCrossRefGoogle Scholar
  184. 184.
    Solano RM, Casarejos MJ, Menendez-Cuervo J, Rodriguez-Navarro JA, Garcia de Yebenes J, Mena MA (2008) Glial dysfunction in parkin null mice: effects of aging. J Neurosci 28:598–611. doi:10.1523/JNEUROSCI.4609-07.2008 PubMedCrossRefGoogle Scholar
  185. 185.
    Mullett SJ, Hinkle DA (2009) DJ-1 knock-down in astrocytes impairs astrocyte-mediated neuroprotection against rotenone. Neurobiol Dis 33(1):28–36PubMedCrossRefGoogle Scholar
  186. 186.
    Ferrer I, Blanco R, Carmona M et al (2001) Active, phosphorylation-dependent mitogen-activated protein kinase (MAPK/ERK), stress-activated protein kinase/c-Jun N-terminal kinase (SAPK/JNK), and p38 kinase expression in Parkinson’s disease and Dementia with Lewy bodies. J Neural Transm 108:1383–1396. doi:10.1007/s007020100015 PubMedCrossRefGoogle Scholar
  187. 187.
    Hunot S, Vila M, Teismann P et al (2004) JNK-mediated induction of cyclooxygenase 2 is required for neurodegeneration in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 101:665–670. doi:10.1073/pnas.0307453101 PubMedCrossRefGoogle Scholar
  188. 188.
    Jellinger KA (2000) Cell death mechanisms in Parkinson’s disease. J Neural Transm 107:1–29. doi:10.1007/s007020050001 PubMedCrossRefGoogle Scholar
  189. 189.
    Cha G-H, Kim S, Park J et al (2005) Parkin negatively regulates JNK pathway in the dopaminergic neurons of Drosophila. Proc Natl Acad Sci USA 102:10345–10350. doi:10.1073/pnas.0500346102 PubMedCrossRefGoogle Scholar
  190. 190.
    Jiang H, Ren Y, Zhao J, Feng J (2004) Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis. Hum Mol Genet 13:1745–1754. doi:10.1093/hmg/ddh180 PubMedCrossRefGoogle Scholar
  191. 191.
    Karunakaran S, Diwakar L, Saeed U et al (2007) Activation of apoptosis signal regulating kinase 1 (ASK1) and translocation of death-associated protein, Daxx, in substantia nigra pars compacta in a mouse model of Parkinson’s disease: protection by alpha-lipoic acid. FASEB J 21:2226–2236. doi:10.1096/fj.06-7580com PubMedCrossRefGoogle Scholar
  192. 192.
    Ouyang M, Shen X (2006) Critical role of ASK1 in the 6-hydroxydopamine-induced apoptosis in human neuroblastoma SH-SY5Y cells. J Neurochem 97:234–244. doi:10.1111/j.1471-4159.2006.03730.x PubMedCrossRefGoogle Scholar
  193. 193.
    Xia XG, Harding T, Weller M, Bieneman A, Uney JB, Schulz B Jr (2001) Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci USA 98:10433–10438. doi:10.1073/pnas.181182298 Google Scholar
  194. 194.
    Liou AK, Zhou Z, Pei W, Lim TM, Yin XM, Chen J (2005) BimEL up-regulation potentiates AIF translocation and cell death in response to MPTP. FASEB J 19:1350–1352PubMedGoogle Scholar
  195. 195.
    Perier C, Bove J, Wu D-C et al (2007) Two molecular pathways initiate mitochondria-dependent dopaminergic neurodegeneration in experimental Parkinson’s disease. Proc Natl Acad Sci USA 104:8161–8166. doi:10.1073/pnas.0609874104 PubMedCrossRefGoogle Scholar
  196. 196.
    PRECEPT Investigators (2007) Mixed lineage kinase inhibitor CEP–1347 fails to delay disability in early Parkinson disease. Neurology 69:1480–1490. doi:10.1212/01.wnl.0000277648.63931.c0 CrossRefGoogle Scholar
  197. 197.
    Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13:994–1002. doi:10.1038/sj.cdd.4401908 PubMedCrossRefGoogle Scholar
  198. 198.
    Culmsee C, Mattson MP (2005) p53 in neuronal apoptosis. Biochem Biophys Res Commun 331:761–777. doi:10.1016/j.bbrc.2005.03.149 PubMedCrossRefGoogle Scholar
  199. 199.
    Mogi M, Kondo T, Mizuno Y, Nagatsu T (2007) p53 protein, interferon-gamma, and NF-kappaB levels are elevated in the parkinsonian brain. Neurosci Lett 414:94–97. doi:10.1016/j.neulet.2006.12.003 PubMedCrossRefGoogle Scholar
  200. 200.
    Nair VD, McNaught KSP, Gonzalez-Maeso J, Sealfon SC, Olanow CW (2006) p53 mediates nontranscriptional cell death in dopaminergic cells in response to proteasome inhibition. J Biol Chem 281:39550–39560. doi:10.1074/jbc.M603950200 PubMedCrossRefGoogle Scholar
  201. 201.
    Bretaud S, Allen C, Ingham PW, Bandmann O (2007) p53-dependent neuronal cell death in a DJ-1-deficient zebrafish model of Parkinson’s disease. J Neurochem 100:1626–1635PubMedGoogle Scholar
  202. 202.
    Mandir AS, Simbulan-Rosenthal CM, Poitras MF et al (2002) A novel in vivo post-translational modification of p53 by PARP-1 in MPTP-induced parkinsonism. J Neurochem 83:186–192. doi:10.1046/j.1471-4159.2002.01144.x PubMedCrossRefGoogle Scholar
  203. 203.
    Nair VD (2006) Activation of p53 signaling initiates apoptotic death in a cellular model of Parkinson’s disease. Apoptosis 11:955–966. doi:10.1007/s10495-006-6316-3 PubMedCrossRefGoogle Scholar
  204. 204.
    Biswas SC, Ryu E, Park C, Malagelada C, Greene LA (2005) Puma and p53 play required roles in death evoked in a cellular model of Parkinson disease. Neurochem Res 30:839–845. doi:10.1007/s11064-005-6877-5 PubMedCrossRefGoogle Scholar
  205. 205.
    Nakaso K, Yoshimoto Y, Yano H, Takeshima T, Nakashima K (2004) p53-mediated mitochondrial dysfunction by proteasome inhibition in dopaminergic SH-SY5Y cells. Neurosci Lett 354:213–216. doi:10.1016/j.neulet.2003.10.048 PubMedCrossRefGoogle Scholar
  206. 206.
    Duan W, Zhu X, Ladenheim B et al (2002) p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Ann Neurol 52:597–606. doi:10.1002/ana.10350 PubMedCrossRefGoogle Scholar
  207. 207.
    Gomez-Lazaro M, Galindo MF, Concannon CG et al (2008) 6-Hydroxydopamine activates the mitochondrial apoptosis pathway through p38 MAPK-mediated, p53-independent activation of Bax and PUMA. J Neurochem 104:1599–1612. doi:10.1111/j.1471-4159.2007.05115.x PubMedCrossRefGoogle Scholar
  208. 208.
    Greene LA, Liu DX, Troy CM, Biswas SC (2007) Cell cycle molecules define a pathway required for neuron death in development and disease. Biochim Biophys Acta 1772:392–401PubMedGoogle Scholar
  209. 209.
    Smith PD, O’Hare MJ, Park DS (2004) CDKs: taking on a role as mediators of dopaminergic loss in Parkinson’s disease. Trends Mol Med 10:445–451. doi:10.1016/j.molmed.2004.07.003 PubMedCrossRefGoogle Scholar
  210. 210.
    Hoglinger GU, Breunig JJ, Depboylu C et al (2007) The pRb/E2F cell-cycle pathway mediates cell death in Parkinson’s disease. Proc Natl Acad Sci USA 104:3585–3590. doi:10.1073/pnas.0611671104 PubMedCrossRefGoogle Scholar
  211. 211.
    Nakabeppu Y, Tsuchimoto D, Yamaguchi H, Sakumi K (2007) Oxidative damage in nucleic acids and Parkinson’s disease. J Neurosci Res 85:919–934. doi:10.1002/jnr.21191 PubMedCrossRefGoogle Scholar
  212. 212.
    Alvira D, Tajes M, Verdaguer E et al (2007) Inhibition of cyclin-dependent kinases is neuroprotective in 1-methyl-4-phenylpyridinium-induced apoptosis in neurons. Neuroscience 146:350–365. doi:10.1016/j.neuroscience.2007.01.042 PubMedCrossRefGoogle Scholar
  213. 213.
    Rodriguez-Blanco J, Martín V, Herrera F, García-Santos G, Antolín I, Rodriguez C (2008) Intracellular signaling pathways involved in post-mitotic dopaminergic PC12 cell death induced by 6-hydroxydopamine. J Neurochem 107:127–140. doi:10.1111/j.1471-4159.2008.05588.x PubMedCrossRefGoogle Scholar
  214. 214.
    Smith PD, Crocker SJ, Jackson-Lewis V et al (2003) Cyclin-dependent kinase 5 is a mediator of dopaminergic neuron loss in a mouse model of Parkinson’s disease. Proc Natl Acad Sci USA 100:13650–13655. doi:10.1073/pnas.2232515100 PubMedCrossRefGoogle Scholar
  215. 215.
    Brion JP, Couck AM (1995) Cortical and brainstem-type Lewy bodies are immunoreactive for the cyclin-dependent kinase 5. Am J Pathol 147:1465–1476PubMedGoogle Scholar
  216. 216.
    Nakamura S, Kawamoto Y, Nakano S, Akiguchi I, Kimura J (1997) p35nck5a and cyclin-dependent kinase 5 colocalize in Lewy bodies of brains with Parkinson’s disease. Acta Neuropathol 94:153–157. doi:10.1007/s004010050687 PubMedCrossRefGoogle Scholar
  217. 217.
    Alvira D, Ferrer I, Gutierrez-Cuesta J, Garcia-Castro B, Pallàs M, Camins A (2008) Activation of the calpain/cdk5/p25 pathway in the girus cinguli in Parkinson’s disease. Parkinsonism Relat Disord 14:309–313. doi:10.1016/j.parkreldis.2007.09.005 PubMedCrossRefGoogle Scholar
  218. 218.
    Avraham E, Rott R, Liani E, Szargel R, Engelender S (2007) Phosphorylation of Parkin by the cyclin-dependent kinase 5 at the linker region modulates its ubiquitin-ligase activity and aggregation. J Biol Chem 282:12842–12850. doi:10.1074/jbc.M608243200 PubMedCrossRefGoogle Scholar
  219. 219.
    Smith PD, Mount MP, Shree R et al (2006) Calpain-regulated p35/cdk5 plays a central role in dopaminergic neuron death through modulation of the transcription factor myocyte enhancer factor 2. J Neurosci 26:440–447. doi:10.1523/JNEUROSCI.2875-05.2006 PubMedCrossRefGoogle Scholar
  220. 220.
    Qu D, Rashidian J, Mount MP et al (2007) Role of Cdk5-mediated phosphorylation of Prx2 in MPTP toxicity and Parkinson’s disease. Neuron 55:37–52. doi:10.1016/j.neuron.2007.05.033 PubMedCrossRefGoogle Scholar
  221. 221.
    Hamdane M, Bretteville A, Sambo AV et al (2005) p25/Cdk5-mediated retinoblastoma phosphorylation is an early event in neuronal cell death. J Cell Sci 118:1291–1298. doi:10.1242/jcs.01724 PubMedCrossRefGoogle Scholar
  222. 222.
    Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59. doi:10.1038/nrm2308 PubMedCrossRefGoogle Scholar
  223. 223.
    Walensky LD (2006) BCL-2 in the crosshairs: tipping the balance of life and death. Cell Death Differ 13:1339–1350. doi:10.1038/sj.cdd.4401992 PubMedCrossRefGoogle Scholar
  224. 224.
    Wullner U, Kornhuber J, Weller M et al (1999) Cell death and apoptosis regulating proteins in Parkinson’s disease—a cautionary note. Acta Neuropathol 97:408–412. doi:10.1007/s004010051005 PubMedCrossRefGoogle Scholar
  225. 225.
    Tatton NA (2000) Increased caspase 3 and Bax immunoreactivity accompany nuclear GAPDH translocation and neuronal apoptosis in Parkinson’s disease. Exp Neurol 166:29–43. doi:10.1006/exnr.2000.7489 PubMedCrossRefGoogle Scholar
  226. 226.
    Horowitz JM, Pastor DM, Goyal A et al (2003) BAX protein-immunoreactivity in midbrain neurons of Parkinson’s disease patients. Brain Res Bull 62:55–61. doi:10.1016/j.brainresbull.2003.08.005 PubMedCrossRefGoogle Scholar
  227. 227.
    Hartmann A, Troadec J-D, Hunot S et al (2001) Caspase-8 Is an effector in apoptotic death of dopaminergic neurons in Parkinson’s disease, but pathway inhibition results in neuronal necrosis. J Neurosci 21:2247–2255PubMedGoogle Scholar
  228. 228.
    Steckley D, Karajgikar M, Dale LB et al (2007) Puma is a dominant regulator of oxidative stress induced Bax activation and neuronal apoptosis. J Neurosci 27:12989–12999. doi:10.1523/JNEUROSCI.3400-07.2007 PubMedCrossRefGoogle Scholar
  229. 229.
    Fei Q, McCormack AL, Di Monte DA, Ethell DW (2008) Paraquat neurotoxicity is mediated by a Bak-dependent mechanism. J Biol Chem 283:3357–3364. doi:10.1074/jbc.M708451200 PubMedCrossRefGoogle Scholar
  230. 230.
    O’Malley KL, Liu J, Lotharius J, Holtz W (2003) Targeted expression of BCL-2 attenuates MPP+ but not 6-OHDA induced cell death in dopaminergic neurons. Neurobiol Dis 14:43–51. doi:10.1016/S0969-9961(03)00013-5 PubMedCrossRefGoogle Scholar
  231. 231.
    Wilhelm M, Xu Z, Kukekov NV, Gire S, Greene LA (2007) Proapoptotic Nix activates the JNK pathway by interacting with POSH and mediates death in a Parkinson disease model. J Biol Chem 282:1288–1295. doi:10.1074/jbc.M607038200 PubMedCrossRefGoogle Scholar
  232. 232.
    Tatton WG, Chalmers-Redman R, Brown D, Tatton N (2003) Apoptosis in Parkinson’s disease: signals for neuronal degradation. Ann Neurol 53(Suppl 3):S61–S70. discussion S70–62. doi:10.1002/ana.10489 Google Scholar
  233. 233.
    Petit A, Kawarai T, Paitel E et al (2005) Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem 280:34025–34032. doi:10.1074/jbc.M505143200 PubMedCrossRefGoogle Scholar
  234. 234.
    Casarejos MJ, Menendez J, Solano RM, Rodriguez-Navarro JA, Garcia de Yebenes J, Mena MA (2006) Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline. J Neurochem 97:934–946. doi:10.1111/j.1471-4159.2006.03777.x PubMedCrossRefGoogle Scholar
  235. 235.
    Iaccarino C, Crosio C, Vitale C, Sanna G, Carri MT, Barone P (2007) Apoptotic mechanisms in mutant LRRK2-mediated cell death. Hum Mol Genet 16:1319–1326. doi:10.1093/hmg/ddm080 PubMedCrossRefGoogle Scholar
  236. 236.
    Sherer TB, Betarbet R, Stout AK et al (2002) An in vitro model of Parkinson’s disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci 22:7006–7015PubMedGoogle Scholar
  237. 237.
    Turmel H, Hartmann A, Parain K et al (2001) Caspase-3 activation in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated mice. Mov Disord 16:185–189. doi:10.1002/mds.1037 PubMedCrossRefGoogle Scholar
  238. 238.
    Chu CT, Zhu JH, Cao G, Signore A, Wang S, Chen J (2005) Apoptosis inducing factor mediates caspase-independent 1-methyl-4-phenylpyridinium toxicity in dopaminergic cells. J Neurochem 94:1685–1695. doi:10.1111/j.1471-4159.2005.03329.x PubMedCrossRefGoogle Scholar
  239. 239.
    Ryu EJ, Angelastro JM, Greene LA (2005) Analysis of gene expression changes in a cellular model of Parkinson disease. Neurobiol Dis 18:54–74. doi:10.1016/j.nbd.2004.08.016 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Oren A. Levy
    • 1
  • Cristina Malagelada
    • 2
  • Lloyd A. Greene
    • 2
  1. 1.Department of NeurologyColumbia University School of MedicineNew YorkUSA
  2. 2.Department of Pathology and Cell BiologyColumbia University School of MedicineNew YorkUSA

Personalised recommendations