, 14:66 | Cite as

Isoflavone genistein protects human vascular endothelial cells against tumor necrosis factor-α-induced apoptosis through the p38β mitogen-activated protein kinase

Original Paper


Isoflavone genistein may have beneficial effects on vascular function, but the mechanism is unclear. Here, we investigated whether genistein protects vascular endothelial cells against apoptosis induced by tumor necrosis factor-α. We show that genistein significantly inhibited TNF-α-induced apoptosis in human aortic endothelial cells as determined by caspase-3 activation, 7-amino actinomycin D staining, in situ apoptotic cell detection and DNA laddering. The anti-apoptotic effect of genistein was associated with an enhanced expression of Bcl-2 protein and its promoter activity. Inhibition of extracellular signal-regulated kinase 1/2, protein kinase A, or estrogen receptors had no effect on the cytoprotective effect of genistein. However, inhibition of p38 mitogen-activated protein kinase (p38) completely abolished this genistein effect. Accordingly, stimulation of HAECs with genistein resulted in rapid activation of p38β, but not p38α. These findings provide the evidence that genistein acts as a survival factor for vascular ECs to protect cells against apoptosis via activation of p38β. Preservation of the functional integrity of the endothelial monolayer may represent an important mechanism by which genistein exerts its vasculoprotective effect.


Genistein Endothelial cells Apoptosis p38 



7-Amino actinomycin D


cAMP-Responsive element binding protein




Endothelial cells


Estrogen receptors


Extracellular signal-regulated kinase 1/2


Fetal bovine serum


Human aortic endothelial cells


Low density lipoprotein


p38 Mitogen-activated protein kinase


p38 Mitogen-activated protein kinase alpha


p38 Mitogen-activated protein kinase beta


Phosphate-buffered saline


Protein kinase A


Protein tyrosine kinase


Tumor necrosis factor-alpha


Terminal deoxynucleotidyltransferase dUTP nick-end labeling



This work was supported by grants from the American Heart Association Mid-Atlantic Affiliate (to D. Liu), the National Center for Complementary and Alternative Medicine of the National Institute of Health (5R21AT002739 and 1R21AT004694 to D. Liu), Diabetes Action Research and Education Foundation (to D. Liu) and the John Lee Pratt Fellowship (to H. Si) from Virginia Polytechnic Institute and State University.


  1. 1.
    Kim H, Peterson TG, Barnes S (1998) Mechanisms of action of the soy isoflavone genistein: emerging role for its effects via transforming growth factor beta signaling pathways. Am J Clin Nutr 68:1418S–1425SPubMedGoogle Scholar
  2. 2.
    Kuiper GG, Carlsson B, Grandien K et al (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138:863–870. doi: 10.1210/en.138.3.863 PubMedCrossRefGoogle Scholar
  3. 3.
    Akiyama T, Ishida J, Nakagawa S et al (1987) Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 262:5592–5595PubMedGoogle Scholar
  4. 4.
    Goodman-Gruen D, Kritz-Silverstein D (2001) Usual dietary isoflavone intake is associated with cardiovascular disease risk factors in postmenopausal women. J Nutr 131:1202–1206PubMedGoogle Scholar
  5. 5.
    de Kleijn MJ, van der Schouw YT, Wilson PW et al (2001) Intake of dietary phytoestrogens is low in postmenopausal women in the United States: the Framingham study (1–4). J Nutr 131:1826–1832PubMedGoogle Scholar
  6. 6.
    Zhang X, Shu XO, Gao YT et al (2003) Soy food consumption is associated with lower risk of coronary heart disease in Chinese women. J Nutr 133:2874–2878PubMedGoogle Scholar
  7. 7.
    Erdman JW Jr (2000) AHA science advisory: soy protein and cardiovascular disease: a statement for healthcare professionals from the Nutrition Committee of the AHA. Circulation 102:2555–2559PubMedGoogle Scholar
  8. 8.
    Hale G, Paul-Labrador M, Dwyer JH et al (2002) Isoflavone supplementation and endothelial function in menopausal women. Clin Endocrinol (Oxf) 56:693–701. doi: 10.1046/j.1365-2265.2002.01533.x CrossRefGoogle Scholar
  9. 9.
    Anthony MS, Clarkson TB, Williams JK (1998) Effects of soy isoflavones on atherosclerosis: potential mechanisms. Am J Clin Nutr 68:1390S–1393SPubMedGoogle Scholar
  10. 10.
    van der Schouw YT, de Kleijn MJ, Peeters PH et al (2000) Phyto-oestrogens and cardiovascular disease risk. Nutr Metab Cardiovas 10:154–167Google Scholar
  11. 11.
    Wangen KE, Duncan AM, Xu X et al (2001) Soy isoflavones improve plasma lipids in normocholesterolemic and mildly hypercholesterolemic postmenopausal women. Am J Clin Nutr 73:225–231PubMedGoogle Scholar
  12. 12.
    Walker HA, Dean TS, Sanders TA et al (2001) The phytoestrogen genistein produces acute nitric oxide-dependent dilation of human forearm vasculature with similar potency to 17ss-estradiol. Circulation 103:258–262PubMedGoogle Scholar
  13. 13.
    Squadrito F, Altavilla D, Morabito N et al (2002) The effect of the phytoestrogen genistein on plasma nitric oxide concentrations, endothelin-1 levels and endothelium dependent vasodilation in postmenopausal women. Atherosclerosis 163:339–347. doi: 10.1016/S0021-9150(02)00013-8 PubMedCrossRefGoogle Scholar
  14. 14.
    Squadrito F, Altavilla D, Crisafulli A et al (2003) Effect of genistein on endothelial function in postmenopausal women: a randomized, double-blind, controlled study. Am J Med 114:470–476. doi: 10.1016/S0002-9343(03)00059-7 PubMedCrossRefGoogle Scholar
  15. 15.
    Nestel PJ, Yamashita T, Sasahara T et al (1997) Soy isoflavones improve systemic arterial compliance but not plasma lipids in menopausal and perimenopausal women. Arterioscler Thromb Vasc Biol 17:3392–3398PubMedGoogle Scholar
  16. 16.
    Makela S, Savolainen H, Aavik E et al (1999) Differentiation between vasculoprotective and uterotrophic effects of ligands with different binding affinities to estrogen receptors alpha and beta. Proc Natl Acad Sci USA 96:7077–7082. doi: 10.1073/pnas.96.12.7077 PubMedCrossRefGoogle Scholar
  17. 17.
    Anthony MS, Clarkson TB, Hughes CL Jr et al (1996) Soybean isoflavones improve cardiovascular risk factors without affecting the reproductive system of peripubertal rhesus monkeys. J Nutr 126:43–50PubMedGoogle Scholar
  18. 18.
    Honore EK, Williams JK, Anthony MS et al (1997) Soy isoflavones enhance coronary vascular reactivity in atherosclerotic female macaques. Fertil Steril 67:148–154. doi: 10.1016/S0015-0282(97)81872-9 PubMedCrossRefGoogle Scholar
  19. 19.
    Williams JK, Clarkson TB (1998) Dietary soy isoflavones inhibit in-vivo constrictor responses of coronary arteries to collagen-induced platelet activation. Coron Artery Dis 9:759–764PubMedCrossRefGoogle Scholar
  20. 20.
    Yamakoshi J, Piskula MK, Izumi T et al (2000) Isoflavone aglycone-rich extract without soy protein attenuates atherosclerosis development in cholesterol-fed rabbits. J Nutr 130:1887–1893PubMedGoogle Scholar
  21. 21.
    Karamsetty MR, Klinger JR, Hill NS (2001) Phytoestrogens restore nitric oxide-mediated relaxation in isolated pulmonary arteries from chronically hypoxic rats. J Pharmacol Exp Ther 297:968–974PubMedGoogle Scholar
  22. 22.
    Nevala R, Lassila M, Finckenberg P et al (2002) Genistein treatment reduces arterial contractions by inhibiting tyrosine kinases in ovariectomized hypertensive rats. Eur J Pharmacol 452:87–96. doi: 10.1016/S0014-2999(02)02270-7 PubMedCrossRefGoogle Scholar
  23. 23.
    Deodato B, Altavilla D, Squadrito G et al (1999) Cardioprotection by the phytoestrogen genistein in experimental myocardial ischaemia-reperfusion injury. Br J Pharmacol 128:1683–1690. doi: 10.1038/sj.bjp.0702973 PubMedCrossRefGoogle Scholar
  24. 24.
    Squadrito F, Altavilla D, Squadrito G et al (2000) Genistein supplementation and estrogen replacement therapy improve endothelial dysfunction induced by ovariectomy in rats. Cardiovasc Res 45:454–462. doi: 10.1016/S0008-6363(99)00359-4 PubMedCrossRefGoogle Scholar
  25. 25.
    Cassidy A, Hooper L (2006) Phytoestrogens and cardiovascular disease. J Br Menopause Soc 12:49–56. doi: 10.1258/136218006777525776 PubMedCrossRefGoogle Scholar
  26. 26.
    Vega-Lopez S, Yeum KJ, Lecker JL et al (2005) Plasma antioxidant capacity in response to diets high in soy or animal protein with or without isoflavones. Am J Clin Nutr 81:43–49PubMedGoogle Scholar
  27. 27.
    Ruiz-Larrea MB, Mohan AR, Paganga G et al (1997) Antioxidant activity of phytoestrogenic isoflavones. Free Radic Res 26:63–70. doi: 10.3109/10715769709097785 PubMedCrossRefGoogle Scholar
  28. 28.
    An J, Tzagarakis-Foster C, Scharschmidt TC et al (2001) Estrogen receptor beta-selective transcriptional activity and recruitment of coregulators by phytoestrogens. J Biol Chem 276:17808–17814. doi: 10.1074/jbc.M100953200 PubMedCrossRefGoogle Scholar
  29. 29.
    Sacks FM, Lichtenstein A, Van Horn L et al (2006) Soy protein, isoflavones, and cardiovascular health: an American Heart Association Science Advisory for professionals from the Nutrition Committee. Circulation 113:1034–1044. doi: 10.1161/CIRCULATIONAHA.106.171052 PubMedCrossRefGoogle Scholar
  30. 30.
    Takenaka T, Takahashi K, Kobayashi T et al (2002) Oxidized low density lipoprotein (Ox-LDL) as a marker of atherosclerosis in hemodialysis (HD) patients. Clin Nephrol 58:33–37PubMedGoogle Scholar
  31. 31.
    Hulthe J, Fagerberg B (2002) Circulating oxidized LDL is associated with subclinical atherosclerosis development and inflammatory cytokines (AIR Study). Arterioscler Thromb Vasc Biol 22:1162–1167. doi: 10.1161/01.ATV.0000021150.63480.CD PubMedCrossRefGoogle Scholar
  32. 32.
    Simons LA, von Konigsmark M, Simons J et al (2000) Phytoestrogens do not influence lipoprotein levels or endothelial function in healthy, postmenopausal women. Am J Cardiol 85:1297–1301. doi: 10.1016/S0002-9149(00)00759-1 PubMedCrossRefGoogle Scholar
  33. 33.
    Patel RP, Boersma BJ, Crawford JH et al (2001) Antioxidant mechanisms of isoflavones in lipid systems: paradoxical effects of peroxyl radical scavenging. Free Radic Biol Med 31:1570–1581. doi: 10.1016/S0891-5849(01)00737-7 PubMedCrossRefGoogle Scholar
  34. 34.
    Chacko BK, Chandler RT, Mundhekar A et al (2005) Revealing anti-inflammatory mechanisms of soy isoflavones by flow: modulation of leukocyte-endothelial cell interactions. Am J Physiol Heart Circ Physiol 289:H908–H915. doi: 10.1152/ajpheart.00781.2004 PubMedCrossRefGoogle Scholar
  35. 35.
    Wei H, Wei L, Frenkel K et al (1993) Inhibition of tumor promoter-induced hydrogen peroxide formation in vitro and in vivo by genistein. Nutr Cancer 20:1–12PubMedCrossRefGoogle Scholar
  36. 36.
    Kapiotis S, Hermann M, Held I et al (1997) Genistein, the dietary-derived angiogenesis inhibitor, prevents LDL oxidation and protects endothelial cells from damage by atherogenic LDL. Arterioscler Thromb Vasc Biol 17:2868–2874PubMedGoogle Scholar
  37. 37.
    Tikkanen MJ, Vihma V, Hockerstedt A et al (2002) Lipophilic oestrogen derivatives contained in lipoprotein particles. Acta Physiol Scand 176:117–121. doi: 10.1046/j.1365-201X.2002.01022.x PubMedCrossRefGoogle Scholar
  38. 38.
    Liu D, Homan LL, Dillon JS (2004) Genistein acutely stimulates nitric oxide synthesis in vascular endothelial cells by a cyclic adenosine 5′-monophosphate-dependent mechanism. Endocrinology 145:5532–5539. doi: 10.1210/en.2004-0102 PubMedCrossRefGoogle Scholar
  39. 39.
    Liu D, Jiang H, Grange RW (2005) Genistein activates the 3’, 5’-cyclic adenosine monophosphate signaling pathway in vascular endothelial cells and protects endothelial barrier function. Endocrinology 146:1312–1320. doi: 10.1210/en.2004-1221 PubMedCrossRefGoogle Scholar
  40. 40.
    Mahn K, Borras C, Knock GA et al (2005) Dietary soy isoflavone induced increases in antioxidant and eNOS gene expression lead to improved endothelial function and reduced blood pressure in vivo. FASEB J 19:1755–1757PubMedGoogle Scholar
  41. 41.
    Asai K, Kudej RK, Shen YT et al (2000) Peripheral vascular endothelial dysfunction and apoptosis in old monkeys. Arterioscler Thromb Vasc Biol 20:1493–1499PubMedGoogle Scholar
  42. 42.
    Mallat Z, Hugel B, Ohan J et al (1999) Shed membrane microparticles with procoagulant potential in human atherosclerotic plaques: a role for apoptosis in plaque thrombogenicity. Circulation 99:348–353PubMedGoogle Scholar
  43. 43.
    Lecoeur H, Ledru E, Prevost MC et al (1997) Strategies for phenotyping apoptotic peripheral human lymphocytes comparing ISNT, annexin-V and 7-AAD cytofluorometric staining methods. J Immunol Methods 209:111–123. doi: 10.1016/S0022-1759(97)00138-5 PubMedCrossRefGoogle Scholar
  44. 44.
    Liu D, Si H, Reynolds KA et al (2007) Dehydroepiandrosterone protects vascular endothelial cells against apoptosis through a Galphai protein-dependent activation of phosphatidylinositol 3-kinase/Akt and regulation of antiapoptotic Bcl-2 expression. Endocrinology 148:3068–3076. doi: 10.1210/en.2006-1378 PubMedCrossRefGoogle Scholar
  45. 45.
    Schmid I, Uittenbogaart CH, Keld B et al (1994) A rapid method for measuring apoptosis and dual-color immunofluorescence by single laser flow cytometry. J Immunol Methods 170:145–157. doi: 10.1016/0022-1759(94)90390-5 PubMedCrossRefGoogle Scholar
  46. 46.
    Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9:459–470. doi: 10.1016/S1097-2765(02)00482-3 PubMedCrossRefGoogle Scholar
  47. 47.
    Ling S, Zhou L, Li H et al (2006) Effects of 17beta-estradiol on growth and apoptosis in human vascular endothelial cells: influence of mechanical strain and tumor necrosis factor-alpha. Steroids 71:799–808. doi: 10.1016/j.steroids.2006.05.010 PubMedCrossRefGoogle Scholar
  48. 48.
    Spyridopoulos I, Sullivan AB, Kearney M et al (1997) Estrogen-receptor-mediated inhibition of human endothelial cell apoptosis estradiol as a survival factor. Circulation 95:1505–1514PubMedGoogle Scholar
  49. 49.
    Polte T, Schroder H (1998) Cyclic AMP mediates endothelial protection by nitric oxide. Biochem Biophys Res Commun 251:460–465. doi: 10.1006/bbrc.1998.9486 PubMedCrossRefGoogle Scholar
  50. 50.
    Schildberg FA, Schulz S, Dombrowski F et al (2005) Cyclic AMP alleviates endoplasmic stress and programmed cell death induced by lipopolysaccharides in human endothelial cells. Cell Tissue Res 320:91–98. doi: 10.1007/s00441-004-1066-4 PubMedCrossRefGoogle Scholar
  51. 51.
    Gupta K, Kshirsagar S, Li W et al (1999) VEGF prevents apoptosis of human microvascular endothelial cells via opposing effects on MAPK/ERK and SAPK/JNK signaling. Exp Cell Res 247:495–504. doi: 10.1006/excr.1998.4359 PubMedCrossRefGoogle Scholar
  52. 52.
    Joy S, Siow RC, Rowlands DJ et al (2006) The isoflavone Equol mediates rapid vascular relaxation: Ca2+ -independent activation of endothelial nitric-oxide synthase/Hsp90 involving ERK1/2 and Akt phosphorylation in human endothelial cells. J Biol Chem 281:27335–27345. doi: 10.1074/jbc.M602803200 PubMedCrossRefGoogle Scholar
  53. 53.
    Silva G, Cunha A, Gregoire IP et al (2006) The antiapoptotic effect of heme oxygenase-1 in endothelial cells involves the degradation of p38 alpha MAPK isoform. J Immunol 177:1894–1903PubMedGoogle Scholar
  54. 54.
    Frey RS, Singletary KW (2003) Genistein activates p38 mitogen-activated protein kinase, inactivates ERK1/ERK2 and decreases Cdc25C expression in immortalized human mammary epithelial cells. J Nutr 133:226–231PubMedGoogle Scholar
  55. 55.
    Hale KK, Trollinger D, Rihanek M et al (1999) Differential expression and activation of p38 mitogen-activated protein kinase alpha, beta, gamma, and delta in inflammatory cell lineages. J Immunol 162:4246–4252PubMedGoogle Scholar
  56. 56.
    Nemoto S, Xiang J, Huang S et al (1998) Induction of apoptosis by SB202190 through inhibition of p38beta mitogen-activated protein kinase. J Biol Chem 273:16415–16420. doi: 10.1074/jbc.273.26.16415 PubMedCrossRefGoogle Scholar
  57. 57.
    Das S, Fraga CG, Das DK (2006) Cardioprotective effect of resveratrol via HO-1 expression involves p38 map kinase and PI-3-kinase signaling, but does not involve NFkappaB. Free Radic Res 40:1066–1075. doi: 10.1080/10715760600833085 PubMedCrossRefGoogle Scholar
  58. 58.
    Norata GD, Tonti L, Roma P et al (2002) Apoptosis and proliferation of endothelial cells in early atherosclerotic lesions: possible role of oxidised LDL. Nutr Metab Cardiovasc Dis 12:297–305PubMedGoogle Scholar
  59. 59.
    Piro S, Spampinato D, Spadaro L et al (2007) Direct apoptotic effects of free fatty acids on human endothelial cells. Nutr Metab Cardiovasc DisGoogle Scholar
  60. 60.
    Picchi A, Gao X, Belmadani S et al (2006) Tumor necrosis factor-alpha induces endothelial dysfunction in the prediabetic metabolic syndrome. Circ Res 99:69–77. doi: 10.1161/01.RES.0000229685.37402.80 PubMedCrossRefGoogle Scholar
  61. 61.
    Makino N, Maeda T, Sugano M et al (2005) High serum TNF-alpha level in Type 2 diabetic patients with microangiopathy is associated with eNOS down-regulation and apoptosis in endothelial cells. J Diabetes Complications 19:347–355. doi: 10.1016/j.jdiacomp.2005.04.002 PubMedCrossRefGoogle Scholar
  62. 62.
    Sharma S, Adrogue JV, Golfman L et al (2004) Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J 18:1692–1700. doi: 10.1096/fj.04-2263com PubMedCrossRefGoogle Scholar
  63. 63.
    Winn RK, Harlan JM (2005) The role of endothelial cell apoptosis in inflammatory and immune diseases. J Thromb Haemost 3:1815–1824. doi: 10.1111/j.1538-7836.2005.01378.x PubMedCrossRefGoogle Scholar
  64. 64.
    Li Y, Upadhyay S, Bhuiyan M et al (1999) Induction of apoptosis in breast cancer cells MDA-MB-231 by genistein. Oncogene 18:3166–3172. doi: 10.1038/sj.onc.1202650 PubMedCrossRefGoogle Scholar
  65. 65.
    Chodon D, Ramamurty N, Sakthisekaran D (2007) Preliminary studies on induction of apoptosis by genistein on HepG2 cell line. Toxicol In Vitro 21:887–891. doi: 10.1016/j.tiv.2007.01.023 PubMedCrossRefGoogle Scholar
  66. 66.
    Fuchs D, Dirscherl B, Schroot JH et al (2006) Soy extract has different effects compared with the isolated isoflavones on the proteome of homocysteine-stressed endothelial cells. Mol Nutr Food Res 50:58–69. doi: 10.1002/mnfr.200500133 PubMedCrossRefGoogle Scholar
  67. 67.
    Fuchs D, Dirscherl B, Schroot JH et al (2007) Proteome analysis suggests that mitochondrial dysfunction in stressed endothelial cells is reversed by a soy extract and isolated isoflavones. J Proteome Res 6:2132–2142. doi: 10.1021/pr060547y PubMedCrossRefGoogle Scholar
  68. 68.
    Nakashima S, Koike T, Nozawa Y (1991) Genistein, a protein tyrosine kinase inhibitor, inhibits thromboxane A2-mediated human platelet responses. Mol Pharmacol 39:475–480PubMedGoogle Scholar
  69. 69.
    Atluru D, Jackson TM, Atluru S (1991) Genistein, a selective protein tyrosine kinase inhibitor, inhibits interleukin-2 and leukotriene B4 production from human mononuclear cells. Clin Immunol Immunopathol 59:379–387. doi: 10.1016/0090-1229(91)90033-7 PubMedCrossRefGoogle Scholar
  70. 70.
    Adlercreutz CH, Goldin BR, Gorbach SL et al (1995) Soybean phytoestrogen intake and cancer risk. J Nutr 125:757S–770SPubMedGoogle Scholar
  71. 71.
    Xu X, Harris KS, Wang HJ et al (1995) Bioavailability of soybean isoflavones depends upon gut microflora in women. J Nutr 125:2307–2315PubMedGoogle Scholar
  72. 72.
    Chang HC, Churchwell MI, Delclos KB et al (2000) Mass spectrometric determination of genistein tissue distribution in diet-exposed sprague-dawley rats. J Nutr 130:1963–1970PubMedGoogle Scholar
  73. 73.
    Zhang Y, Hendrich S, Murphy PA (2003) Glucuronides are the main isoflavone metabolites in women. J Nutr 133:399–404PubMedGoogle Scholar
  74. 74.
    Zhang Y, Song TT, Cunnick JE et al (1999) Daidzein and genistein glucuronides in vitro are weakly estrogenic and activate human natural killer cells at nutritionally relevant concentrations. J Nutr 129:399–405PubMedGoogle Scholar
  75. 75.
    Ji ES, Yue H, Wu YM et al (2004) Effects of phytoestrogen genistein on myocardial ischemia/reperfusion injury and apoptosis in rabbits. Acta Pharmacol Sin 25:306–312PubMedGoogle Scholar
  76. 76.
    Latti S, Leskinen M, Shiota N et al (2003) Mast cell-mediated apoptosis of endothelial cells in vitro: a paracrine mechanism involving TNF-alpha-mediated down-regulation of bcl-2 expression. J Cell Physiol 195:130–138. doi: 10.1002/jcp.10235 PubMedCrossRefGoogle Scholar
  77. 77.
    Badrichani AZ, Stroka DM, Bilbao G et al (1999) Bcl-2 and Bcl-XL serve an anti-inflammatory function in endothelial cells through inhibition of NF-kappaB. J Clin Invest 103:543–553. doi: 10.1172/JCI2517 PubMedCrossRefGoogle Scholar
  78. 78.
    Nakagami H, Morishita R, Yamamoto K et al (2001) Phosphorylation of p38 mitogen-activated protein kinase downstream of bax-caspase-3 pathway leads to cell death induced by high d-glucose in human endothelial cells. Diabetes 50:1472–1481. doi: 10.2337/diabetes.50.6.1472 PubMedCrossRefGoogle Scholar
  79. 79.
    Razandi M, Pedram A, Levin ER (2000) Estrogen signals to the preservation of endothelial cell form and function. J Biol Chem 275:38540–38546. doi: 10.1074/jbc.M007555200 PubMedCrossRefGoogle Scholar
  80. 80.
    Luschen S, Scherer G, Ussat S et al (2004) Inhibition of p38 mitogen-activated protein kinase reduces TNF-induced activation of NF-kappaB, elicits caspase activity, and enhances cytotoxicity. Exp Cell Res 293:196–206. doi: 10.1016/j.yexcr.2003.10.009 PubMedCrossRefGoogle Scholar
  81. 81.
    Wang Y, Huang S, Sah VP et al (1998) Cardiac muscle cell hypertrophy and apoptosis induced by distinct members of the p38 mitogen-activated protein kinase family. J Biol Chem 273:2161–2168. doi: 10.1074/jbc.273.4.2161 PubMedCrossRefGoogle Scholar
  82. 82.
    Porras A, Zuluaga S, Black E et al (2004) P38 alpha mitogen-activated protein kinase sensitizes cells to apoptosis induced by different stimuli. Mol Biol Cell 15:922–933. doi: 10.1091/mbc.E03-08-0592 PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of Human Nutrition, Foods and Exercise, College of Agriculture and Life SciencesVirginia Polytechnic Institute and State UniversityBlacksburgUSA

Personalised recommendations