, Volume 13, Issue 8, pp 1022–1030 | Cite as

Targeting erythroblast-specific apoptosis in experimental anemia

  • Abhinav Diwan
  • Andrew G. Koesters
  • Devan Capella
  • Hartmut Geiger
  • Theodosia A. Kalfa
  • Gerald W. DornII
Original Paper


Erythrocyte production is regulated by balancing precursor cell apoptosis and survival signaling. Previously, we found that BH3-only proapoptotic factor, Nix, opposed erythroblast-survival signaling by erythropoietin-induced Bcl-xl during normal erythrocyte formation. Since erythropoietin treatment of human anemia has limitations, we explored the therapeutic potential of abrogating Nix-mediated erythroblast apoptosis to enhance erythrocyte production. Nix gene ablation blunted the phenylhydrazine-induced fall in blood count, enhanced hematocrit recovery, and reduced erythroblast apoptosis, despite lower endogenous erythropoietin levels. Similar to erythropoietin, Nix ablation increased early splenic erythroblasts and circulating reticulocytes, while maintaining a pool of mature erythroblasts as erythropoietic reserve. Erythrocytes in Nix-deficient mice showed morphological abnormalities, suggesting that apoptosis during erythropoiesis not only controls red blood cell number, but also serves a “triage” function, preferentially eliminating abnormal erythrocytes. These results support the concept of targeting erythroblast apoptosis to maximize erythrocyte production in acute anemia, which may be of value in erythropoietin resistance.


Apoptosis Anemia Erythropoiesis Erythropoietin 



Supported by NHLBI HL59888, HL77101 (to G.W.D.), the American Heart Association (Scientist Development Grant to A.D.), and the U.S. Department of Veterans Affairs. The authors declare no competing financial interests. Author contributions: A.D. designed and performed research, analyzed data and wrote paper, A.G.K. performed research and analyzed data, D.C. performed research and analyzed data, H.G. performed research and analyzed data, T.A.K. performed research and analyzed data; and G.W.D. designed and performed research, analyzed data and wrote paper.


  1. 1.
    Wu H, Liu X, Jaenisch R, Lodish HF (1995) Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83:59–67. doi: 10.1016/0092-8674(95)90234-1 PubMedCrossRefGoogle Scholar
  2. 2.
    Italian Cooperative Study Group for rHuEpo in Myelodysplastic Syndromes (1998) A randomized double-blind placebo-controlled study with subcutaneous recombinant human erythropoietin in patients with low-risk myelodysplastic syndromes. Br J Haematol 103:1070–1074. doi: 10.1046/j.1365-2141.1998.01085.x CrossRefGoogle Scholar
  3. 3.
    Blumenauer B, Cranney A, Clinch J, Tugwell P (2003) Quality of life in patients with rheumatoid arthritis: which drugs might make a difference? Pharmacoeconomics 21:927–940. doi: 10.2165/00019053-200321130-00002 PubMedCrossRefGoogle Scholar
  4. 4.
    Littlewood TJ, Cella D, Nortier JW (2002) Erythropoietin improves quality of life. Lancet Oncol 3:459–460. doi: 10.1016/S1470-2045(02)00827-6 PubMedCrossRefGoogle Scholar
  5. 5.
    Eschbach JW, Egrie JC, Downing MR, Browne JK, Adamson JW (1987) Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med 316:73–78PubMedGoogle Scholar
  6. 6.
    Corwin HL, Gettinger A, Fabian TC et al (2007) Efficacy and safety of epoetin alfa in critically ill patients. N Engl J Med 357:965–976. doi: 10.1056/NEJMoa071533 PubMedCrossRefGoogle Scholar
  7. 7.
    Steinbrook R (2007) Erythropoietin, the FDA, and oncology. N Engl J Med 356:2448–2451. doi: 10.1056/NEJMp078100 PubMedCrossRefGoogle Scholar
  8. 8.
    Macdougall IC (2007) Epoetin-induced pure red cell aplasia: diagnosis and treatment. Curr Opin Nephrol Hypertens 16:585–588. doi: 10.1097/MNH.0b013e3282f0c4bf PubMedCrossRefGoogle Scholar
  9. 9.
    Fishbane S, Besarab A (2007) Mechanism of increased mortality risk with erythropoietin treatment to higher hemoglobin targets. Clin J Am Soc Nephrol 2:1274–1282. doi: 10.2215/CJN.02380607 PubMedCrossRefGoogle Scholar
  10. 10.
    Phrommintikul A, Haas SJ, Elsik M, Krum H (2007) Mortality and target haemoglobin concentrations in anaemic patients with chronic kidney disease treated with erythropoietin: a meta-analysis. Lancet 369:381–388. doi: 10.1016/S0140-6736(07)60194-9 PubMedCrossRefGoogle Scholar
  11. 11.
    Lacombe C (1996) Resistance to erythropoietin. N Engl J Med 334:660–662. doi: 10.1056/NEJM199603073341012 PubMedCrossRefGoogle Scholar
  12. 12.
    Van Dyke, Layrisse M, Lawrence JH, Garcia JF, Pollycove M (1961) Relation between severity of anemia and erythropoietin titer in human beings. Blood 18:187–201Google Scholar
  13. 13.
    Koury MJ, Bondurant MC (1990) Erythropoietin retards DNA breakdown and prevents programmed death in erythroid progenitor cells. Science 248:378–381. doi: 10.1126/science.2326648 PubMedCrossRefGoogle Scholar
  14. 14.
    Socolovsky M, Fallon AE, Wang S, Brugnara C, Lodish HF (1999) Fetal anemia and apoptosis of red cell progenitors in Stat5a-/-5b-/- mice: a direct role for Stat5 in Bcl-X(L) induction. Cell 98:181–191. doi: 10.1016/S0092-8674(00)81013-2 PubMedCrossRefGoogle Scholar
  15. 15.
    Motoyama N, Wang F, Roth KA et al (1995) Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267:1506–1510. doi: 10.1126/science.7878471 PubMedCrossRefGoogle Scholar
  16. 16.
    Kieran MW, Perkins AC, Orkin SH, Zon LI (1996) Thrombopoietin rescues in vitro erythroid colony formation from mouse embryos lacking the erythropoietin receptor. Proc Natl Acad Sci USA 93:9126–9131. doi: 10.1073/pnas.93.17.9126 PubMedCrossRefGoogle Scholar
  17. 17.
    Lindsten T, Ross AJ, King A et al (2000) The combined functions of proapoptotic Bcl-2 family members bak and bax are essential for normal development of multiple tissues. Mol Cell 6:1389–1399. doi: 10.1016/S1097-2765(00)00136-2 PubMedCrossRefGoogle Scholar
  18. 18.
    Wei MC, Zong WX, Cheng EH et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730. doi: 10.1126/science.1059108 PubMedCrossRefGoogle Scholar
  19. 19.
    Diwan A, Koesters AG, Odley AM et al (2007) Unrestrained erythroblast development in Nix-/- mice reveals a mechanism for apoptotic modulation of erythropoiesis. Proc Natl Acad Sci USA 104:6794–6799. doi: 10.1073/pnas.0610666104 PubMedCrossRefGoogle Scholar
  20. 20.
    Socolovsky M, Nam H, Fleming MD, Haase VH, Brugnara C, Lodish HF (2001) Ineffective erythropoiesis in Stat5a(-/-)5b(-/-) mice due to decreased survival of early erythroblasts. Blood 98:3261–3273. doi: 10.1182/blood.V98.12.3261 PubMedCrossRefGoogle Scholar
  21. 21.
    Vannucchi AM, Bianchi L, Cellai C et al (2001) Accentuated response to phenylhydrazine and erythropoietin in mice genetically impaired for their GATA-1 expression (GATA-1(low) mice). Blood 97:3040–3050. doi: 10.1182/blood.V97.10.3040 PubMedCrossRefGoogle Scholar
  22. 22.
    Giarratana MC, Kobari L, Lapillonne H et al (2005) Ex vivo generation of fully mature human red blood cells from hematopoietic stem cells. Nat Biotechnol 23:69–74. doi: 10.1038/nbt1047 PubMedCrossRefGoogle Scholar
  23. 23.
    Ballas SK, Clark MR, Mohandas N et al (1984) Red cell membrane and cation deficiency in Rh null syndrome. Blood 63:1046–1055PubMedGoogle Scholar
  24. 24.
    Kalfa TA, Pushkaran S, Mohandas N et al (2006) Rac GTPases regulate the morphology and deformability of the erythrocyte cytoskeleton. Blood 108:3637–3645. doi: 10.1182/blood-2006-03-005942 PubMedCrossRefGoogle Scholar
  25. 25.
    Bauer A, Tronche F, Wessely O et al (1999) The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev 13:2996–3002. doi: 10.1101/gad.13.22.2996 PubMedCrossRefGoogle Scholar
  26. 26.
    Chan JY, Kwong M, Lo M, Emerson R, Kuypers FA (2001) Reduced oxidative-stress response in red blood cells from p45NFE2-deficient mice. Blood 97:2151–2158. doi: 10.1182/blood.V97.7.2151 PubMedCrossRefGoogle Scholar
  27. 27.
    Peschle C, Magli MC, Cillo C et al (1977) Kinetics of erythroid and myeloid stem cells in post-hypoxia polycythaemia. Br J Haematol 37:345–352. doi: 10.1111/j.1365-2141.1977.tb01005.x PubMedCrossRefGoogle Scholar
  28. 28.
    Ou LC, Kim D, Layton WM Jr, Smith RP (1980) Splenic erythropoiesis in polycythemic response of the rat to high-altitude exposure. J Appl Physiol 48:857–861PubMedGoogle Scholar
  29. 29.
    Schweers RL, Zhang J, Randall MS et al (2007) NIX is required for programmed mitochondrial clearance during reticulocyte maturation. Proc Natl Acad Sci USA 104:19500–19505. doi: 10.1073/pnas.0708818104 PubMedCrossRefGoogle Scholar
  30. 30.
    Sandoval H, Thiagarajan P, Dasgupta SK et al (2008) Essential role for Nix in autophagic maturation of erythroid cells. Nature. doi: 10.1038/nature07006
  31. 31.
    Walsh M, Lutz RJ, Cotter TG, O’Connor R (2002) Erythrocyte survival is promoted by plasma and suppressed by a Bak-derived BH3 peptide that interacts with membrane-associated Bcl-X(L). Blood 99:3439–3448. doi: 10.1182/blood.V99.9.3439 PubMedCrossRefGoogle Scholar
  32. 32.
    Brodsky I, Dennis LH, Kahn SB (1966) Erythropoiesis in Friend leukemia: red blood cell survival and ferrokinetics. Cancer Res 26:1887–1892PubMedGoogle Scholar
  33. 33.
    Weiss MJ, Orkin SH (1995) Transcription factor GATA-1 permits survival and maturation of erythroid precursors by preventing apoptosis. Proc Natl Acad Sci USA 92:9623–9627. doi: 10.1073/pnas.92.21.9623 PubMedCrossRefGoogle Scholar
  34. 34.
    Silva M, Grillot D, Benito A, Richard C, Nunez G, Fernandez-Luna JL (1996) Erythropoietin can promote erythroid progenitor survival by repressing apoptosis through Bcl-XL and Bcl-2. Blood 88:1576–1582PubMedGoogle Scholar
  35. 35.
    Gregory T, Yu C, Ma A, Orkin SH, Blobel GA, Weiss MJ (1999) GATA-1 and erythropoietin cooperate to promote erythroid cell survival by regulating bcl-xL expression. Blood 94:87–96PubMedGoogle Scholar
  36. 36.
    Chen G, Cizeau J, Vande VC et al (1999) Nix and Nip3 form a subfamily of pro-apoptotic mitochondrial proteins. J Biol Chem 274:7–10. doi: 10.1074/jbc.274.1.7 PubMedCrossRefGoogle Scholar
  37. 37.
    Aerbajinai W, Giattina M, Lee YT, Raffeld M, Miller JL (2003) The proapoptotic factor Nix is coexpressed with Bcl-xL during terminal erythroid differentiation. Blood 102:712–717. doi: 10.1182/blood-2002-11-3324 PubMedCrossRefGoogle Scholar
  38. 38.
    Kelley LL, Koury MJ, Bondurant MC, Koury ST, Sawyer ST, Wickrema A (1993) Survival or death of individual proerythroblasts results from differing erythropoietin sensitivities: a mechanism for controlled rates of erythrocyte production. Blood 82:2340–2352PubMedGoogle Scholar
  39. 39.
    Karur VG, Lowell CA, Besmer P, Agosti V, Wojchowski DM (2006) Lyn kinase promotes erythroblast expansion and late-stage development. Blood 108:1524–1532. doi: 10.1182/blood-2005-09-008243 PubMedCrossRefGoogle Scholar
  40. 40.
    Menon MP, Karur V, Bogacheva O, Bogachev O, Cuetara B, Wojchowski DM (2006) Signals for stress erythropoiesis are integrated via an erythropoietin receptor-phosphotyrosine-343-Stat5 axis. J Clin Invest 116:683–694. doi: 10.1172/JCI25227 PubMedCrossRefGoogle Scholar
  41. 41.
    Ferrali M, Signorini C, Ciccoli L, Comporti M (1992) Iron release and membrane damage in erythrocytes exposed to oxidizing agents, phenylhydrazine, divicine and isouramil. Biochem J 285(Pt 1):295–301PubMedGoogle Scholar
  42. 42.
    Bogdanova A, Mihov D, Lutz H, Saam B, Gassmann M, Vogel J (2007) Enhanced erythro-phagocytosis in polycythemic mice overexpressing erythropoietin. Blood 110:762–769. doi: 10.1182/blood-2006-12-063602 PubMedCrossRefGoogle Scholar
  43. 43.
    Stohlman F Jr (1961) Humoral regulation of erythropoiesis. VII. Shortened survival of erythrocytes produced by erythropoietine or severe anemia. Proc Soc Exp Biol Med 107:884–887PubMedGoogle Scholar
  44. 44.
    Anderson C, Aronson I, Jacobs P (2000) Erythropoiesis: erythrocyte deformability is reduced and fragility increased by iron deficiency. Hematology. 4:457–460PubMedGoogle Scholar
  45. 45.
    Barosi G, Cazzola M, Frassoni F, Orlandi E, Stefanelli M (1981) Erythropoiesis in myelofibrosis with myeloid metaplasia: recognition of different classes of patients by erythrokinetics. Br J Haematol 48:263–272PubMedGoogle Scholar
  46. 46.
    Berlin NI, Lawrence JH, Lee HC (1951) The life span of the red blood cell in chronic leukemia and polycythemia. Science 114:385–387. doi: 10.1126/science.114.2963.385 PubMedCrossRefGoogle Scholar
  47. 47.
    Huff RL, Hennessy TG, Austin RE, Garcia JF, Roberts BM, Lawrence JH (1950) Plasma and red cell iron turnover in normal subjects and in patients having various hematopoietic disorders. J Clin Invest 29:1041–1052. doi: 10.1172/JCI102335 PubMedCrossRefGoogle Scholar
  48. 48.
    Syed F, Odley A, Hahn HS et al (2004) Physiological growth synergizes with pathological genes in experimental cardiomyopathy. Circ Res 95:1200–1206. doi: 10.1161/01.RES.0000150366.08972.7f PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Abhinav Diwan
    • 1
    • 2
    • 3
  • Andrew G. Koesters
    • 1
  • Devan Capella
    • 1
  • Hartmut Geiger
    • 4
  • Theodosia A. Kalfa
    • 4
  • Gerald W. DornII
    • 1
    • 3
    • 4
  1. 1.Center for Molecular Cardiovascular ResearchUniversity of CincinnatiCincinnatiUSA
  2. 2.St. Louis Veterans Administration (VA) Medical CenterU.S. Department of Veterans AffairsSt. LouisUSA
  3. 3.Washington University Center for PharmacogenomicsSt. LouisUSA
  4. 4.Department of PediatricsUniversity of Cincinnati, Children’s Hospital Medical CenterCincinnatiUSA

Personalised recommendations