, Volume 13, Issue 6, pp 771–781 | Cite as

Contribution of p53-mediated Bax transactivation in theaflavin-induced mammary epithelial carcinoma cell apoptosis

  • Lakshmishri Lahiry
  • Baisakhi Saha
  • Juni Chakraborty
  • Sankar Bhattacharyya
  • Sreya Chattopadhyay
  • Shuvomoy Banerjee
  • Tathagata Choudhuri
  • Debaprasad Mandal
  • Arindam Bhattacharyya
  • Gaurisankar Sa
  • Tanya Das
Original Paper


Theaflavins, the bioactive flavonoids of black tea, have been demonstrated to inhibit proliferation and induce apoptosis in a variety of cancer cells. However, the contribution of p53 in mammary epithelial carcinoma cell apoptosis by theaflavins remains unclear. It has been reported that p53 triggers apoptosis by inducing mitochondrial outer membrane permeabilization through transcription-dependent and -independent mechanisms. Using wild-type and mutant p53-expressing as well as p53-null cells we found a strong correlation between p53 status and theaflavin-induced breast cancer cell apoptosis. Apoptogenic effect was more pronounced in functional p53-expressing cells in which theaflavins raised p53 protein levels that harmonized with Bax up-regulation and migration to mitochondria. However, in the same cells, when p53-mediated transactivation was inhibited by pifithrin-α, theaflavins not only failed to increase transcription but also to induce apoptosis although p53 up-regulation was not altered. In contrast, Bax over-expression restored back theaflavin-induced apoptosis in pifithrin-α-inhibited/dominant-negative p53-expressing cells. Inhibition of Bax by RNA-interference also reduced theaflavin-induced apoptosis. These results not only indicated the requirement of p53-mediated transcriptional activation of Bax but also its role as down-stream effecter in theaflavin-induced apoptosis. Bax up-regulation resulted in mitochondrial transmembrane potential loss and cytochrome c release followed by activation of caspase cascade. In contrast, mitochondrial translocation of p53 and its interaction with Bcl-2 family proteins or activation of caspase-8 could not be traced thereby excluding the involvement of p53-mediated transcription-independent pathways. Together these findings suggest that in breast cancer cells, p53 promotes theaflavin-induced apoptosis in a transcription-dependent manner through mitochondrial death cascade.


Apoptosis Bax MTP p53 Theaflavins Transactivation 



Cyclosporin A






Dominant negative


Fluorescein isothiocyanate


Mitochondrial transmembrane potential


Normal mammary epithelial


Propidium iodide


Short-interfering RNA



We thank Mr. U. Ghosh and Mr. R. Dutta for technical help. This work was supported by research grants from DST, Government of India.


  1. 1.
    Mingo-Sion AM, Marietta PM, Koller E, Wolf DM, Van-Den-Berg CL (2004) Inhibition of JNK reduces G2/M transit independent of p53, leading to endoreduplication, decreased proliferation, and apoptosis in breast cancer cells. Oncogene 23:596–604PubMedCrossRefGoogle Scholar
  2. 2.
    Roos WP, Kaina B (2006) DNA damage-induced cell death by apoptosis. Trends Mol Med 12:440–450PubMedCrossRefGoogle Scholar
  3. 3.
    Olivier M, Hussain SP, Caron de Fromentel C, Hainaut P, Harris CC (2004) TP53 mutation spectra and load: a tool for generating hypotheses on the etiology of cancer. IARC Sci Publ 157:247–270PubMedGoogle Scholar
  4. 4.
    Kojima K, Konopleva M, McQueen T, O’brien S, Plunkett W, Andreeff M (2006) Mdm2 inhibitor Nutlin-3a induces p53-mediated apoptosis by transcription-dependent and transcription-independent mechanisms and may overcome Atm-mediated resistance to fludarabine in chronic lymphocytic leukemia. Blood 108:993–1000PubMedCrossRefGoogle Scholar
  5. 5.
    LeBras M, Rouy I, Brenner C (2006) The modulation of inter-organelle cross-talk to control apoptosis. Med Chem 2:1–12CrossRefGoogle Scholar
  6. 6.
    Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014PubMedCrossRefGoogle Scholar
  7. 7.
    Ding HF, Lin YL, McGill G, Juo P, Zhu H, Blenis J et al (2000) Essential role for caspase-8 in transcription-independent apoptosis triggered by p53. J Biol Chem 275:38905–38911PubMedCrossRefGoogle Scholar
  8. 8.
    Bacus SS, Gudkov AV, Lowe M, Lyass L, Yung Y, Komarov AP et al (2001) Taxol-induced apoptosis depends on MAP kinase pathways (ERK and p38) and is independent of p53. Oncogene 20:147–155PubMedCrossRefGoogle Scholar
  9. 9.
    Zhang H, Shi X, Zhang QJ, Hampong M, Paddon H, Wahyuningsih D et al (2002) Nocodazole-induced p53-dependent c-Jun N-terminal kinase activation reduces apoptosis in human colon carcinoma HCT116 cells. J Biol Chem 277:43648–43658PubMedCrossRefGoogle Scholar
  10. 10.
    Siddiqui IA, Zaman N, Aziz MH, Reagan-Shaw SR, Sarfaraz S, Adhami VM et al (2006) Inhibition of CWR22Rnu1 tumor growth and PSA secretion in athymic nude mice by green and black teas. Carcinogenesis 4:833–839Google Scholar
  11. 11.
    Way TD, Lee HH, Kao MC, Lin JK (2004) Black tea polyphenol theaflavins inhibit aromatase activity and attenuate tamoxifen resistance in HER2/neu-transfected human breast cancer cells through tyrosine kinase suppression. Eur J Cancer 40:2165–2174PubMedCrossRefGoogle Scholar
  12. 12.
    Choudhuri T, Pal S, Das T, Sa G (2005) Curcumin selectively induces apoptosis in deregulated cyclin D1-expressed cells at G2 phase of cell cycle in a p53-dependent manner. J Biol Chem 280:20059–20068PubMedCrossRefGoogle Scholar
  13. 13.
    Bhattacharyya A, Choudhuri T, Pal S, Chattopadhyay S, Datta GK, Sa G et al (2003) Apoptogenic effects of black tea on Ehrlich’s ascites carcinoma cell. Carcinogenesis 24:75–80PubMedCrossRefGoogle Scholar
  14. 14.
    Yamaguchi H, Wang HG (2001) The protein kinase PKB/Akt regulates cell survival and apoptosis by inhibiting Bax conformational change. Oncogene 20:7779–7786PubMedCrossRefGoogle Scholar
  15. 15.
    Sa G, Murugesan G, Jaye M, Ivashchenko Y, Fox PL (1995) Activation of cytosolic phospholipase A2 by basic fibroblast growth factor via a p42 mitogen-activated protein kinase-dependent phosphorylation pathway in endothelial cells. J Biol Chem 270:2360–2366PubMedCrossRefGoogle Scholar
  16. 16.
    Calcabrini A, García-Martínez JM, González L, Tendero MJ, Ortuño MT, Crateri P et al (2006) Inhibition of proliferation and induction of apoptosis in human breast cancer cells by lauryl gallate. Carcinogenesis 27:1699–1712PubMedCrossRefGoogle Scholar
  17. 17.
    Zhu X, Yu QS, Cutler RG, Culmsee CW, Holloway HW, Lahiri DK et al (2002) Novel p53 inactivators with neuroprotective action: syntheses and pharmacological evaluation of 2-imino-2,3,4,5,6,7-hexahydrobenzothiazole and 2-imino-2,3,4,5,6,7-hexahydrobenzoxazole derivatives. J Med Chem 45:5090–5097PubMedCrossRefGoogle Scholar
  18. 18.
    Moore MA, Tajima K, Anh PH, Aydemir G, Basu PS, Bhurgri Y et al (2003) Grand challenges in global health and the practical prevention program? Asian focus on cancer prevention in females of the developing world. Asian Pac J Cancer Prev 4:153–165PubMedGoogle Scholar
  19. 19.
    Kumar S, Walia V, Ray M, Elble RC (2007) p53 in breast cancer: mutation and countermeasures. Front Biosci 12:4168–4178PubMedCrossRefGoogle Scholar
  20. 20.
    Komarova EA, Neznanov N, Komarov PG, Chernov MV, Wang K, Gudkov AV (2003) p53 inhibitor pifithrin alpha can suppress heat shock and glucocorticoid signaling pathways. J Biol Chem 278:15465–15468PubMedCrossRefGoogle Scholar
  21. 21.
    Erster S, Mihara M, Kim RH, Petrenko O, Moll UM (2004) In vivo mitochondrial p53 translocation triggers a rapid first wave of cell death in response to DNA damage that can precede p53 target gene activation. Mol Cell Biol 24:6728–6741PubMedCrossRefGoogle Scholar
  22. 22.
    Haupt S, Berger M, Goldberg Z, Haupt Y (2003) Apoptosis – the p53 network. J Cell Sci 116:4077–4085PubMedCrossRefGoogle Scholar
  23. 23.
    Godefroy N, Bouleau S, Gruel G, Renaud F, Rincheval V, Mignotte B et al (2004) Transcriptional repression by p53 promotes a Bcl-2-insensitive and mitochondria-independent pathway of apoptosis. Nucleic Acids Res 15:4480–4490CrossRefGoogle Scholar
  24. 24.
    Talos F, Petrenko O, Mena P, Moll UM (2005) Mitochondrially targeted p53 has tumor suppressor activities in vivo. Cancer Res 65:9971–9981PubMedCrossRefGoogle Scholar
  25. 25.
    Zheng TS, Hunot S, Kuida K, Momoi T, Srinivasan A, Nicholson DW et al (2000) Deficiency in caspase-9 or caspase-3 induces compensatory caspase activation. Nat Med 6:1241–1247PubMedCrossRefGoogle Scholar
  26. 26.
    Janicke RU, Sprengart ML, Wati MR, Porter AG (1998) Caspase-3 is required for DNA fragmentation and morphological changes associated with apoptosis. J Biol Chem 273:9357–9360PubMedCrossRefGoogle Scholar
  27. 27.
    Hsu S, Lewis J, Singh B, Schoenlein P, Osaki T, Athar M et al (2003) Green tea polyphenol targets the mitochondria in tumor cells inducing caspase 3-dependent apoptosis. Anticancer Res 23:1533–1539PubMedGoogle Scholar
  28. 28.
    Orth K, Chinnaiyan AM, Garg M, Froelich CJ, Dixit VM (1996) The CED-3/ICE-like protease Mch2 is activated during apoptosis and cleaves the death substrate lamin A. J Biol Chem 271:16443–16446PubMedCrossRefGoogle Scholar
  29. 29.
    Ferguson HA, Marietta PM, Van-Den-Berg CL (2003) UV-induced apoptosis is mediated independent of caspase-9 in MCF-7 cells: a model for cytochrome c resistance. J Biol Chem 278:45793–45800PubMedCrossRefGoogle Scholar
  30. 30.
    Lang-Rollin I, Maniati M, Jabado O, Vekrellis K, Papantonis S, Rideout HJ et al (2005) Apoptosis and the conformational change of Bax induced by proteasomal inhibition of PC12 cells are inhibited by bcl-xL and bcl-2. Apoptosis 10:809–820PubMedCrossRefGoogle Scholar
  31. 31.
    Nister M, Tang M, Zhang XQ, Yin C, Beeche M, Hu X et al (2005) p53 must be competent for transcriptional regulation to suppress tumor formation. Oncogene 24:3563–3573PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lakshmishri Lahiry
    • 1
  • Baisakhi Saha
    • 1
  • Juni Chakraborty
    • 1
  • Sankar Bhattacharyya
    • 1
  • Sreya Chattopadhyay
    • 1
  • Shuvomoy Banerjee
    • 1
  • Tathagata Choudhuri
    • 1
  • Debaprasad Mandal
    • 1
  • Arindam Bhattacharyya
    • 1
  • Gaurisankar Sa
    • 1
  • Tanya Das
    • 1
  1. 1.Division of Molecular MedicineBose InstituteKolkataIndia

Personalised recommendations