, Volume 12, Issue 5, pp 869–876

Mitochondrial carriers and pores: Key regulators of the mitochondrial apoptotic program?

  • Michal Schwarz
  • Miguel A. Andrade-Navarro
  • Atan Gross


Mitochondria play a pivotal role in the process of apoptosis. Alterations in mitochondrial structure and function during apoptosis are regulated by proteins of the BCL-2 family, however their exact mechanism of action is largely unknown. Mitochondrial carriers and pores play an essential role in maintaining the normal function of mitochondria, and BCL-2 family members were shown to interact with several mitochondrial carriers/pores and to affect their function. This review focuses on the involvement of several of these mitochondrial carriers/pores in the regulation of the mitochondrial death pathway.


Apoptosis Mitochondrial carrier proteins Mitochondrial pores BCL-2 family members BID Mitochondrial carrier homolog 2 (Mtch2) ADP/ATP translocase (ANT) Voltage dependent anion channel (VDAC) 


  1. 1.
    Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9:459–470PubMedCrossRefGoogle Scholar
  2. 2.
    Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219PubMedCrossRefGoogle Scholar
  3. 3.
    Varfolomeev EE, Ashkenazi A (2004) Tumor necrosis factor: an apoptosis JuNKie? Cell 116:491–497PubMedCrossRefGoogle Scholar
  4. 4.
    Medema JP, Scaffidi C, Kischkel FC et al (1997) FLICE is activated by association with the CD95 death-inducing signaling complex (DISC). Embo J 16:2794–2804PubMedCrossRefGoogle Scholar
  5. 5.
    Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933PubMedGoogle Scholar
  6. 6.
    Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490PubMedCrossRefGoogle Scholar
  7. 7.
    Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501PubMedCrossRefGoogle Scholar
  8. 8.
    Gross A, Yin XM, Wang K et al (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 274:1156–1163PubMedCrossRefGoogle Scholar
  9. 9.
    Cory S, Adams JM (2002) The Bcl2 family: regulators of the cellular life-or-death switch. Nat Rev Cancer 2:647–656PubMedCrossRefGoogle Scholar
  10. 10.
    Willis SN, Adams JM (2005) Life in the balance: how BH3-only proteins induce apoptosis. Curr Opin Cell Biol 17:617–625PubMedCrossRefGoogle Scholar
  11. 11.
    Huang DC, Strasser A (2000) BH3-Only proteins-essential initiators of apoptotic cell death. Cell 103:839–842PubMedCrossRefGoogle Scholar
  12. 12.
    Schendel SL, Montal M, Reed JC (1998) Bcl-2 family proteins as ion-channels. Cell Death Differ 5:372–380PubMedCrossRefGoogle Scholar
  13. 13.
    Muchmore SW, Sattler M, Liang H et al (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381:335–341PubMedCrossRefGoogle Scholar
  14. 14.
    Colombini M (1979) A candidate for the permeability pathway of the outer mitochondrial membrane. Nature 279:643–645PubMedCrossRefGoogle Scholar
  15. 15.
    Colombini M (1980) Structure and mode of action of a voltage dependent anion-selective channel (VDAC) located in the outer mitochondrial membrane. Ann NY Acad Sci 341:552–563PubMedCrossRefGoogle Scholar
  16. 16.
    Tsujimoto Y, Shimizu S (2002) The voltage-dependent anion channel: an essential player in apoptosis. Biochimie 84:187–193PubMedCrossRefGoogle Scholar
  17. 17.
    Rostovtseva TK, Tan W, Colombini M (2005) On the role of VDAC in apoptosis: fact and fiction. J Bioenerg Biomembr 37:129–142PubMedCrossRefGoogle Scholar
  18. 18.
    Bernardi P, Petronilli V, Di Lisa F, Forte M (2001) A mitochondrial perspective on cell death. Trends Biochem Sci 26:112–117PubMedCrossRefGoogle Scholar
  19. 19.
    Shimizu S, Konishi A, Kodama T, Tsujimoto Y (2000) BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc Natl Acad Sci USA 97:3100–3105PubMedCrossRefGoogle Scholar
  20. 20.
    Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487PubMedCrossRefGoogle Scholar
  21. 21.
    Shimizu S, Ide T, Yanagida T, Tsujimoto Y (2000) Electrophysiological study of a novel large pore formed by Bax and the voltage-dependent anion channel that is permeable to cytochrome c. J Biol Chem 275:12321–12325PubMedCrossRefGoogle Scholar
  22. 22.
    Shi Y, Chen J, Weng C et al (2003) Identification of the protein-protein contact site and interaction mode of human VDAC1 with Bcl-2 family proteins. Biochem Biophys Res Commun 305:989–996PubMedCrossRefGoogle Scholar
  23. 23.
    Banerjee J, Ghosh S (2004) Bax increases the pore size of rat brain mitochondrial voltage-dependent anion channel in the presence of tBid. Biochem Biophys Res Commun 323:310–314PubMedCrossRefGoogle Scholar
  24. 24.
    Shimizu S, Shinohara Y, Tsujimoto Y (2000) Bax and Bcl-xL independently regulate apoptotic changes of yeast mitochondria that require VDAC but not adenine nucleotide translocator. Oncogene 19:4309–4318PubMedCrossRefGoogle Scholar
  25. 25.
    Shimizu S, Matsuoka Y, Shinohara Y, Yoneda Y, Tsujimoto Y (2001) Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J Cell Biol 152:237–250PubMedCrossRefGoogle Scholar
  26. 26.
    Ferri KF, Jacotot E, Blanco J et al (2000) Apoptosis control in syncytia induced by the HIV type 1-envelope glycoprotein complex: role of mitochondria and caspases. J Exp Med 192:1081–1092PubMedCrossRefGoogle Scholar
  27. 27.
    Shimizu S, Tsujimoto Y (2000) Proapoptotic BH3-only Bcl-2 family members induce cytochrome c release, but not mitochondrial membrane potential loss, and do not directly modulate voltage-dependent anion channel activity. Proc Natl Acad Sci USA 97:577–582PubMedCrossRefGoogle Scholar
  28. 28.
    Zaid H, Abu-Hamad S, Israelson A, Nathan I, Shoshan-Barmatz V (2005) The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ 12:751–760PubMedCrossRefGoogle Scholar
  29. 29.
    Shoshan-Barmatz V, Israelson A, Brdiczka D, Sheu SS (2006) The voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death. Curr Pharm Des 12:2249–2270PubMedCrossRefGoogle Scholar
  30. 30.
    Rostovtseva TK, Antonsson B, Suzuki M, Youle RJ, Colombini M, Bezrukov SM (2004) Bid, but not Bax, regulates VDAC channels. J Biol Chem 279:13575–13583PubMedCrossRefGoogle Scholar
  31. 31.
    Mikhailov V, Mikhailova M, Pulkrabek DJ, Dong Z, Venkatachalam MA, Saikumar P (2001) Bcl-2 prevents Bax oligomerization in the mitochondrial outer membrane. J Biol Chem 276:18361–18374PubMedCrossRefGoogle Scholar
  32. 32.
    Polcic P, Forte M (2003) Response of yeast to the regulated expression of proteins in the Bcl-2 family. Biochem J 374:393–402PubMedCrossRefGoogle Scholar
  33. 33.
    Vander Heiden MG, Chandel NS, Li XX, Schumacker PT, Colombini M, Thompson CB (2000) Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci USA 97:4666–4671PubMedCrossRefGoogle Scholar
  34. 34.
    Vander Heiden MG, Li XX, Gottleib E, Hill RB, Thompson CB, Colombini M (2001) Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J Biol Chem 276:19414–19419PubMedCrossRefGoogle Scholar
  35. 35.
    Tsujimoto Y, Shimizu S (2000) Bcl-2 family: life-or-death switch. FEBS Lett 466:6–10PubMedCrossRefGoogle Scholar
  36. 36.
    Pavlov EV, Priault M, Pietkiewicz D et al (2001) A novel, high conductance channel of mitochondria linked to apoptosis in mammalian cells and Bax expression in yeast. J Cell Biol 155:725–731PubMedCrossRefGoogle Scholar
  37. 37.
    Martinez-Caballero S, Dejean LM, Jonas EA, Kinnally KW (2005) The role of the mitochondrial apoptosis induced channel MAC in cytochrome c release. J Bioenerg Biomembr 37:155–164PubMedCrossRefGoogle Scholar
  38. 38.
    Dejean LM, Martinez-Caballero S, Kinnally KW (2006) Is MAC the knife that cuts cytochrome c from mitochondria during apoptosis? Cell Death Differ 13:1387–1395PubMedCrossRefGoogle Scholar
  39. 39.
    Dejean LM, Martinez-Caballero S, Guo L et al (2005) Oligomeric Bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol Biol Cell 16:2424–2432PubMedCrossRefGoogle Scholar
  40. 40.
    Palmieri F (2004) The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflugers Arch 447:689–709PubMedCrossRefGoogle Scholar
  41. 41.
    Arco AD, Satrustegui J (2005) New mitochondrial carriers: an overview. Cell Mol Life Sci 62:2204–2227PubMedCrossRefGoogle Scholar
  42. 42.
    Aquila H, Misra D, Eulitz M, Klingenberg M (1982) Complete amino acid sequence of the ADP/ATP carrier from beef heart mitochondria. Hoppe Seylers Z Physiol Chem 363:345–349PubMedGoogle Scholar
  43. 43.
    Klingenberg M (1980) The ADP-ATP translocation in mitochondria, a membrane potential controlled transport. J Membr Biol 56:97–105PubMedCrossRefGoogle Scholar
  44. 44.
    Fiore C, Trezeguet V, Le Saux A et al (1998) The mitochondrial ADP/ATP carrier: structural, physiological and pathological aspects. Biochimie 80:137–150PubMedCrossRefGoogle Scholar
  45. 45.
    Stepien G, Torroni A, Chung AB, Hodge JA, Wallace DC (1992) Differential expression of adenine nucleotide translocator isoforms in mammalian tissues and during muscle cell differentiation. J Biol Chem 267:14592–14597PubMedGoogle Scholar
  46. 46.
    Lunardi J, Hurko O, Engel WK, Attardi G (1992) The multiple ADP/ATP translocase genes are differentially expressed during human muscle development. J Biol Chem 267:15267–15270PubMedGoogle Scholar
  47. 47.
    Barath P, Luciakova K, Hodny Z, Li R, Nelson BD (1999) The growth-dependent expression of the adenine nucleotide translocase-2 (ANT2) gene is regulated at the level of transcription and is a marker of cell proliferation. Exp Cell Res 248:583–588PubMedCrossRefGoogle Scholar
  48. 48.
    Hunter DR, Haworth RA, Southard JH (1976) Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem 251:5069–5077PubMedGoogle Scholar
  49. 49.
    Petronilli V, Szabo I, Zoratti M (1989) The inner mitochondrial membrane contains ion-conducting channels similar to those found in bacteria. FEBS Lett 259:137–143PubMedCrossRefGoogle Scholar
  50. 50.
    Halestrap AP, McStay GP, Clarke SJ (2002) The permeability transition pore complex: another view. Biochimie 84:153–166PubMedCrossRefGoogle Scholar
  51. 51.
    Brenner C, Grimm S (2006) The permeability transition pore complex in cancer cell death. Oncogene 25:4744–4756PubMedCrossRefGoogle Scholar
  52. 52.
    Kokoszka JE, Waymire KG, Levy SE et al (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465PubMedCrossRefGoogle Scholar
  53. 53.
    Halestrap AP (2004) Mitochondrial permeability: dual role for the ADP/ATP translocator? Nature 427:461–465CrossRefGoogle Scholar
  54. 54.
    Crompton M, Virji S, Ward JM (1998) Cyclophilin-D binds strongly to complexes of the voltage-dependent anion channel and the adenine nucleotide translocase to form the permeability transition pore. Eur J Biochem 258:729–735PubMedCrossRefGoogle Scholar
  55. 55.
    Halestrap AP, Doran E, Gillespie JP, O'Toole A (2000) Mitochondria and cell death. Biochem Soc Trans 28:170–177PubMedGoogle Scholar
  56. 56.
    Le Quoc K, Le Quoc D (1988) Involvement of the ADP/ATP carrier in calcium-induced perturbations of the mitochondrial inner membrane permeability: importance of the orientation of the nucleotide binding site. Arch Biochem Biophys 265:249–257PubMedCrossRefGoogle Scholar
  57. 57.
    Hunter DR, Haworth RA (1979) The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 195:453–459PubMedCrossRefGoogle Scholar
  58. 58.
    Halestrap AP, Davidson AM (1990) Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 268:153–160PubMedGoogle Scholar
  59. 59.
    Halestrap AP, Woodfield KY, Connern CP (1997) Oxidative stress, thiol reagents, and membrane potential modulate the mitochondrial permeability transition by affecting nucleotide binding to the adenine nucleotide translocase. J Biol Chem 272:3346–3354PubMedCrossRefGoogle Scholar
  60. 60.
    Woodfield K, Ruck A, Brdiczka D, Halestrap AP (1998) Direct demonstration of a specific interaction between cyclophilin-D and the adenine nucleotide translocase confirms their role in the mitochondrial permeability transition. Biochem J 336 (Pt 2):287–290PubMedGoogle Scholar
  61. 61.
    Marzo I, Brenner C, Zamzami N et al (1998) Bax and adenine nucleotide translocator cooperate in the mitochondrial control of apoptosis. Science 281:2027–2031PubMedCrossRefGoogle Scholar
  62. 62.
    Marzo I, Brenner C, Kroemer G (1998) The central role of the mitochondrial megachannel in apoptosis: evidence obtained with intact cells, isolated mitochondria, and purified protein complexes. Biomed Pharmacother 52:248–251PubMedCrossRefGoogle Scholar
  63. 63.
    Zamzami N, El Hamel C, Maisse C et al (2000) Bid acts on the permeability transition pore complex to induce apoptosis. Oncogene 19:6342–6350PubMedCrossRefGoogle Scholar
  64. 64.
    Hoffmann B, Stockl A, Schlame M, Beyer K, Klingenberg M (1994) The reconstituted ADP/ATP carrier activity has an absolute requirement for cardiolipin as shown in cysteine mutants. J Biol Chem 269:1940–1944PubMedGoogle Scholar
  65. 65.
    Beyer K, Klingenberg M (1985) ADP/ATP carrier protein from beef heart mitochondria has high amounts of tightly bound cardiolipin, as revealed by 31P nuclear magnetic resonance. Biochemistry 24:3821–3826PubMedCrossRefGoogle Scholar
  66. 66.
    Beyer K, Nuscher B (1996) Specific cardiolipin binding interferes with labeling of sulfhydryl residues in the adenosine diphosphate/adenosine triphosphate carrier protein from beef heart mitochondria. Biochemistry 35:15784–15790PubMedCrossRefGoogle Scholar
  67. 67.
    Lutter M, Fang M, Luo X, Nishijima M, Xie X, Wang X (2000) Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol 2:754–761PubMedCrossRefGoogle Scholar
  68. 68.
    Liu J, Durrant D, Yang HS et al (2005) The interaction between tBid and cardiolipin or monolysocardiolipin. Biochem Biophys Res Commun 330:865–870PubMedCrossRefGoogle Scholar
  69. 69.
    Liu J, Weiss A, Durrant D, Chi NW, Lee RM (2004) The cardiolipin-binding domain of Bid affects mitochondrial respiration and enhances cytochrome c release. Apoptosis 9:533–541PubMedCrossRefGoogle Scholar
  70. 70.
    Kuwana T, Mackey MR, Perkins G et al (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342PubMedCrossRefGoogle Scholar
  71. 71.
    Kim TH, Zhao Y, Ding WX et al (2004) Bid-cardiolipin interaction at mitochondrial contact site contributes to mitochondrial cristae reorganization and cytochrome C release. Mol Biol Cell 15:3061–3072PubMedCrossRefGoogle Scholar
  72. 72.
    Gonzalvez F, Bessoule JJ, Rocchiccioli F, Manon S, Petit PX (2005) Role of cardiolipin on tBid and tBid/Bax synergistic effects on yeast mitochondria. Cell Death Differ 12:659–667PubMedCrossRefGoogle Scholar
  73. 73.
    Gonzalvez F, Pariselli F, Dupaigne P et al (2005) tBid interaction with cardiolipin primarily orchestrates mitochondrial dysfunctions and subsequently activates Bax and Bak. Cell Death Differ 12:614–626PubMedCrossRefGoogle Scholar
  74. 74.
    Grinberg M, Sarig R, Zaltsman Y et al (2002) tBID Homooligomerizes in the mitochondrial membrane to induce apoptosis. J Biol Chem 277:12237–12245PubMedCrossRefGoogle Scholar
  75. 75.
    Gross A (2005) Mitochondrial carrier homolog 2: a clue to cracking the BCL-2 family riddle? J Bioenerg Biomembr 37:113–119PubMedCrossRefGoogle Scholar
  76. 76.
    Grinberg M, Schwarz M, Zaltsman Y et al (2005) Mitochondrial carrier homolog 2 is a target of tBID in cells signaled to die by tumor necrosis factor alpha. Mol Cell Biol 25:4579–4590PubMedCrossRefGoogle Scholar
  77. 77.
    Zhang QH, Ye M, Wu XY et al (2000) Cloning and functional analysis of cDNAs with open reading frames for 300 previously undefined genes expressed in CD34+ hematopoietic stem/progenitor cells. Genome Res 10:1546–1560PubMedCrossRefGoogle Scholar
  78. 78.
    Yerushalmi GM, Leibowitz-Amit R, Shaharabany M, Tsarfaty I (2002) Met-HGF/SF signal transduction induces mimp, a novel mitochondrial carrier homologue, which leads to mitochondrial depolarization. Neoplasia 4:510–522PubMedCrossRefGoogle Scholar
  79. 79.
    Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R, Trezeguet V, Lauquin GJ, Brandolin G (2003) Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426:39–44PubMedCrossRefGoogle Scholar
  80. 80.
    Oh KJ, Barbuto S, Meyer N, Kim RS, Collier RJ, Korsmeyer SJ (2005) Conformational changes in BID, a pro-apoptotic BCL-2 family member, upon membrane binding. A site-directed spin labeling study. J Biol Chem 280:753– 767PubMedCrossRefGoogle Scholar
  81. 81.
    Wiedemann N, Pfanner N, Ryan MT (2001) The three modules of ADP/ATP carrier cooperate in receptor recruitment and translocation into mitochondria. Embo J 20:951– 960PubMedCrossRefGoogle Scholar
  82. 82.
    Xu X, Shi YC, Gao W et al (2002) The novel presenilin-1-associated protein is a proapoptotic mitochondrial protein. J Biol Chem 277:48913–48922PubMedCrossRefGoogle Scholar
  83. 83.
    Leibowitz-Amit R, Tsarfaty G, Abargil Y, Yerushalmi GM, Horev J, Tsarfaty I (2006) Mimp, a Mitochondrial Carrier Homologue, Inhibits Met-HGF/SF-Induced Scattering and Tumorigenicity by Altering Met-HGF/SF Signaling Pathways. Cancer Res 66:8687–8697PubMedCrossRefGoogle Scholar
  84. 84.
    Finn RD, Mistry J, Schuster-Bockler B et al (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–251Google Scholar
  85. 85.
    Altchuler SF, Madden TL, Schaffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  • Michal Schwarz
    • 1
  • Miguel A. Andrade-Navarro
    • 2
    • 3
  • Atan Gross
    • 1
  1. 1.Department of Biological RegulationWeizmann Institute of ScienceRehovotIsrael
  2. 2.Ottawa Health Research InstituteOttawaCanada
  3. 3.Faculty of Medicine, Department of Cellular and Molecular MedicineUniversity of OttawaOttawa

Personalised recommendations