Advertisement

Apoptosis

, Volume 12, Issue 5, pp 979–992 | Cite as

Mitochondrial dynamics in the regulation of neuronal cell death

  • Eric C. C. Cheung
  • Heidi M. McBride
  • Ruth S. SlackEmail author
Article

Abstract

Mitochondria undergo continuous fission and fusion events in physiological situations. Fragmentation of mitochondria during cell death has been shown to play a key role in cell death progression, including release of the mitochondrial apoptotic proteins. Ultrastructural changes in mitochondria, such as cristae remodeling, is also involved in cell death initiation. Here, we emphasize the important role of mitochondrial fission/fusion machinery in neuronal cell death. Unlike many other cell types such as immortalized cell lines, neurons are distinct morphologically and functionally. We will discuss how this uniqueness presents special challenges in the cellular response to neurotoxic stresses, and how this affects the mitochondrial dynamics in the regulation of cell death in neurons.

Keywords

Apoptosis Mitochondria Mitochondrial fission/fusion Neurons Excitotoxicity Oxidative stress DNA damage 

References

  1. 1.
    Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219PubMedGoogle Scholar
  2. 2.
    Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305(5684):626–629PubMedGoogle Scholar
  3. 3.
    Cregan SP, Dawson VL, Slack RS (2004) Role of AIF in caspase-dependent and caspase-independent cell death. Oncogene 23(16):2785–2796PubMedGoogle Scholar
  4. 4.
    Aarts MM, Tymianski M (2004) Molecular mechanisms underlying specificity of excitotoxic signaling in neurons. Curr Mol Med 4(2):137–147PubMedGoogle Scholar
  5. 5.
    Yuan J, Lipinski M, Degterev A (2003) Diversity in the mechanisms of neuronal cell death. Neuron 40(2):401–413PubMedGoogle Scholar
  6. 6.
    Velier JJ et al (1999) Caspase-8, caspase-3 are expressed by different populations of cortical neurons undergoing delayed cell death after focal stroke in the rat. J Neurosci 19(14):5932–5941PubMedGoogle Scholar
  7. 7.
    Benchoua A et al (2001) Specific caspase pathways are activated in the two stages of cerebral infarction. J Neurosci 21(18):7127–7134PubMedGoogle Scholar
  8. 8.
    Lindsten T, Zong WX, Thompson CB (2005) Defining the role of the Bcl-2 family of proteins in the nervous system. Neuroscientist 11(1):10–15PubMedGoogle Scholar
  9. 9.
    Cheung EC et al (2006) Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. Embo J 25(17):4061–4073PubMedGoogle Scholar
  10. 10.
    Dargusch R et al (2001) The role of Bax in glutamate-induced nerve cell death. J Neurochem 76(1):295–301PubMedGoogle Scholar
  11. 11.
    Dirnagl U, Iadecola C, Moskowitz MA (1999) Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci 22(9):391–397PubMedGoogle Scholar
  12. 12.
    Rothman SM, Olney JW (1986) Glutamate and the pathophysiology of hypoxic–ischemic brain damage. Ann Neurol 19(2):105–111PubMedGoogle Scholar
  13. 13.
    Schwarcz R, Whetsell Jr WO (1982) Post-mortem high affinity glutamate uptake in human brain. Neuroscience 7(7):1771–1778PubMedGoogle Scholar
  14. 14.
    Choi DW (1988) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1(8):623–634PubMedGoogle Scholar
  15. 15.
    Collins RC, Dobkin BH, Choi DW (1989) Selective vulnerability of the brain: new insights into the pathophysiology of stroke. Ann Intern Med 110(12):992–1000PubMedGoogle Scholar
  16. 16.
    Meyer FB (1989) Calcium, neuronal hyperexcitability and ischemic injury. Brain Res Brain Res Rev 14(3):227–243PubMedGoogle Scholar
  17. 17.
    Siesjo BK (1988) Mechanisms of ischemic brain damage. Crit Care Med 16(10):954–963PubMedCrossRefGoogle Scholar
  18. 18.
    Siesjo BK (1988) Historical overview. Calcium, ischemia, and death of brain cells. Ann N Y Acad Sci 522:638–661PubMedGoogle Scholar
  19. 19.
    Arundine M, Tymianski M (2003) Molecular mechanisms of calcium-dependent neurodegeneration in excitotoxicity. Cell Calcium 34(4–5):325–337PubMedGoogle Scholar
  20. 20.
    Castilho RF, Kowaltowski AJ, Vercesi AE (1998) 3,5,3-triiodothyronine induces mitochondrial permeability transition mediated by reactive oxygen species and membrane protein thiol oxidation. Arch Biochem Biophys 354(1):151–157PubMedGoogle Scholar
  21. 21.
    Dawson VL et al (1991) Nitric oxide mediates glutamate neurotoxicity in primary cortical cultures. Proc Natl Acad Sci USA 88(14):6368–6371PubMedGoogle Scholar
  22. 22.
    Stout AK et al (1998) Glutamate-induced neuron death requires mitochondrial calcium uptake. Nat Neurosci 1(5):366–373PubMedGoogle Scholar
  23. 23.
    Beckman JS (1991) The double-edged role of nitric oxide in brain function and superoxide-mediated injury. J Dev Physiol 15(1):53–59PubMedGoogle Scholar
  24. 24.
    Beckman JS, Crow JP (1993) Pathological implications of nitric oxide, superoxide and peroxynitrite formation. Biochem Soc Trans 21(2):330–334PubMedGoogle Scholar
  25. 25.
    Sattler R, Tymianski M (2000) Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med 78(1):3–13PubMedGoogle Scholar
  26. 26.
    Sattler R, Tymianski M (2001) Molecular mechanisms of glutamate receptor-mediated excitotoxic neuronal cell death. Mol Neurobiol 24(1–3):107–129PubMedGoogle Scholar
  27. 27.
    Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell Biol 2(1):67–71PubMedGoogle Scholar
  28. 28.
    Frank S et al (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1(4):515–525PubMedGoogle Scholar
  29. 29.
    Karbowski M et al (2004) Quantitation of mitochondrial dynamics by photolabeling of individual organelles shows that mitochondrial fusion is blocked during the Bax activation phase of apoptosis. J Cell Biol 164(4):493–499PubMedGoogle Scholar
  30. 30.
    Barsoum MJ et al (2006) Nitric oxide-induced mitochondrial fission is regulated by dynamin-related GTPases in neurons. Embo J 25(16):3900–3911Google Scholar
  31. 31.
    Arnoult D et al (2005) Bax/Bak-dependent release of DDP/TIMM8a promotes Drp1-mediated mitochondrial fission and mitoptosis during programmed cell death. Curr Biol 15(23):2112–2118PubMedGoogle Scholar
  32. 32.
    Chen H, Chan DC (2005) Emerging functions of mammalian mitochondrial fusion and fission. Hum Mol Genet 14(Spec 2):R283–R289PubMedGoogle Scholar
  33. 33.
    Karbowski M et al (2002) Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 159(6):931–938PubMedGoogle Scholar
  34. 34.
    Osteryoung KW, Nunnari J (2003) The division of endosymbiotic organelles. Science 302(5651):1698–1704PubMedGoogle Scholar
  35. 35.
    Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125(7):1241–1252PubMedGoogle Scholar
  36. 36.
    van der Bliek AM (2000) A mitochondrial division apparatus takes shape. J Cell Biol 151(2):F1–F4PubMedGoogle Scholar
  37. 37.
    Meeusen SL, Nunnari J (2005) How mitochondria fuse. Curr Opin Cell Biol 17(4):389–394PubMedGoogle Scholar
  38. 38.
    Jensen RE (2005) Control of mitochondrial shape. Curr Opin Cell Biol 17(4):384–388PubMedGoogle Scholar
  39. 39.
    Westermann B (2002) Merging mitochondria matters: cellular role and molecular machinery of mitochondrial fusion. EMBO Rep 3(6):527–531PubMedGoogle Scholar
  40. 40.
    Mozdy AD, Shaw JM (2003) A fuzzy mitochondrial fusion apparatus comes into focus. Nat Rev Mol Cell Biol 4(6):468–478PubMedGoogle Scholar
  41. 41.
    McBride HM, Neuspiel M, Wasiak S (2006) Mitochondria: more than just a powerhouse. Curr Biol 16(14):R551–R560PubMedGoogle Scholar
  42. 42.
    Jagasia R et al (2005) DRP-1-mediated mitochondrial fragmentation during EGL-1-induced cell death in C. elegans. Nature 433(7027):754–760PubMedGoogle Scholar
  43. 43.
    Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6(8):657–663PubMedGoogle Scholar
  44. 44.
    Chang DT, Reynolds IJ (2006) Differences in mitochondrial movement and morphology in young and mature primary cortical neurons in culture. Neuroscience 141(2):727–736PubMedGoogle Scholar
  45. 45.
    Li, Z et al (2004) The importance of dendritic mitochondria in the morphogenesis and plasticity of spines and synapses. Cell 119(6):873–887PubMedGoogle Scholar
  46. 46.
    Heath-Engel HM, Shore GC (2006) Mitochondrial membrane dynamics, cristae remodelling and apoptosis. Biochim Biophys Acta 1763(5–6):549–560PubMedGoogle Scholar
  47. 47.
    Perfettini JL, Roumier T, Kroemer G (2005) Mitochondrial fusion and fission in the control of apoptosis. Trends Cell Biol 15(4):179–183PubMedGoogle Scholar
  48. 48.
    Mukamel Z, Kimchi A (2004) Death-associated protein 3 localizes to the mitochondria and is involved in the process of mitochondrial fragmentation during cell death. J Biol Chem 279(35):36732–36738PubMedGoogle Scholar
  49. 49.
    Niemann A et al (2005) Ganglioside-induced differentiation associated protein 1 is a regulator of the mitochondrial network: new implications for Charcot-Marie-Tooth disease. J Cell Biol 170(7):1067–1078PubMedGoogle Scholar
  50. 50.
    Tondera D et al (2005) The mitochondrial protein MTP18 contributes to mitochondrial fission in mammalian cells. J Cell Sci 118(Pt 14):3049–3059PubMedGoogle Scholar
  51. 51.
    James DI et al (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278(38):36373–36379PubMedGoogle Scholar
  52. 52.
    Yoon Y et al (2003) The mitochondrial protein hFis1 regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol 23(15):5409–5420PubMedGoogle Scholar
  53. 53.
    Ingerman E et al (2005) Dnm1 forms spirals that are structurally tailored to fit mitochondria. J Cell Biol 170(7):1021–1027PubMedGoogle Scholar
  54. 54.
    Okamoto K, Shaw JM (2005) Mitochondrial morphology and dynamics in yeast and multicellular eukaryotes. Annu Rev Genet 39:503–536PubMedGoogle Scholar
  55. 55.
    Karbowski M, Jeong SY, Youle RJ (2004) Endophilin B1 is required for the maintenance of mitochondrial morphology. J Cell Biol 166(7):1027–1039PubMedGoogle Scholar
  56. 56.
    Yoon Y (2004) Sharpening the scissors: mitochondrial fission with aid. Cell Biochem Biophys 41(2):193–206PubMedGoogle Scholar
  57. 57.
    Lee YJ et al (2004) Roles of the mammalian mitochondrial fission and fusion mediators Fis1, Drp1, and Opa1 in apoptosis. Mol Biol Cell 15(11):5001–5011PubMedGoogle Scholar
  58. 58.
    Harder Z, Zunino R, McBride H (2004) Sumo1 conjugates mitochondrial substrates and participates in mitochondrial fission. Curr Biol 14(4):340–345PubMedGoogle Scholar
  59. 59.
    Martinou I et al (1999) The release of cytochrome c from mitochondria during apoptosis of NGF-deprived sympathetic neurons is a reversible event. J Cell Biol 144(5):883–889PubMedGoogle Scholar
  60. 60.
    Sheridan JW, Bishop CJ, Simmons RJ (1981) Biophysical and morphological correlates of kinetic change and death in a starved human melanoma cell line. J Cell Sci 49:119–137PubMedGoogle Scholar
  61. 61.
    Zhuang J, Dinsdale D, Cohen GM (1998) Apoptosis, in human monocytic THP.1 cells, results in the release of cytochrome c from mitochondria prior to their ultracondensation, formation of outer membrane discontinuities and reduction in inner membrane potential. Cell Death Differ 5(11):953–962PubMedGoogle Scholar
  62. 62.
    Martinou JC, Youle RJ (2006) Which came first, the cytochrome c release or the mitochondrial fission? Cell Death Differ 13(8):1291–1295PubMedGoogle Scholar
  63. 63.
    Germain M et al (2005) Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. Embo J 24(8):1546–1556PubMedGoogle Scholar
  64. 64.
    Breckenridge DG et al (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 160(7):1115–1127PubMedGoogle Scholar
  65. 65.
    Pierrat B et al (2001) SH3GLB, a new endophilin-related protein family featuring an SH3 domain. Genomics 71(2):222–334PubMedGoogle Scholar
  66. 66.
    Wei MC et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292(5517):727–730PubMedGoogle Scholar
  67. 67.
    Esseiva AC et al (2004) Temporal dissection of Bax-induced events leading to fission of the single mitochondrion in Trypanosoma brucei. EMBO Rep 5(3):268–273PubMedGoogle Scholar
  68. 68.
    Arnoult D et al (2005) Release of OPA1 during apoptosis participates in the rapid and complete release of cytochrome c and subsequent mitochondrial fragmentation. J Biol Chem 280(42):35742–35750PubMedGoogle Scholar
  69. 69.
    Sugioka R, Shimizu S, Tsujimoto Y (2004) Fzo1, a protein involved in mitochondrial fusion, inhibits apoptosis. J Biol Chem 279(50):52726–52734PubMedGoogle Scholar
  70. 70.
    Kuwana T et al (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111(3):331–342PubMedGoogle Scholar
  71. 71.
    Delivani P et al (2006) Role for CED-9 and Egl-1 as regulators of mitochondrial fission and fusion dynamics. Mol Cell 21(6):761–773PubMedGoogle Scholar
  72. 72.
    Parone PA et al (2006) Inhibiting the mitochondrial fission machinery does not prevent Bax/Bak-dependent apoptosis. Mol Cell Biol 26(20):7397–7408PubMedGoogle Scholar
  73. 73.
    Alirol E et al (2006) The Mitochondrial Fission Protein hFis1 Requires the Endoplasmic Reticulum Gateway to Induce Apoptosis. Mol Biol Cell 17(11):4593–4605Google Scholar
  74. 74.
    Yethon JA et al (2003) Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis. J Biol Chem 278(49):48935–48941PubMedGoogle Scholar
  75. 75.
    Basanez G et al (2002) Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J Biol Chem 277(51):49360–49365PubMedGoogle Scholar
  76. 76.
    Jahani-Asl A, Cheung ECC, Neuspiel M, MacLaurin JG, Fortin A, Park DS, McBride H, Slack RS (2006) Mitofusin 2 Protects Cerebellar Granule Neurons Against Acute Injury. submittedGoogle Scholar
  77. 77.
    Chen H, Chomyn A, Chan DC (2005) Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 280(28):26185–26192PubMedGoogle Scholar
  78. 78.
    Chen H et al (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160(2):189–200PubMedGoogle Scholar
  79. 79.
    Neuspiel M et al (2005) Activated mitofusin 2 signals mitochondrial fusion, interferes with Bax activation, and reduces susceptibility to radical induced depolarization. J Biol Chem 280(26):25060–25070PubMedGoogle Scholar
  80. 80.
    Eura Y et al (2003) Two mitofusin proteins, mammalian homologues of FZO, with distinct functions are both required for mitochondrial fusion. J Biochem (Tokyo) 134(3):333–344Google Scholar
  81. 81.
    Rojo M et al (2002) Membrane topology and mitochondrial targeting of mitofusins, ubiquitous mammalian homologs of the transmembrane GTPase Fzo. J Cell Sci 115(Pt 8):1663–1674PubMedGoogle Scholar
  82. 82.
    Santel A et al (2003) Mitofusin-1 protein is a generally expressed mediator of mitochondrial fusion in mammalian cells. J Cell Sci 116(Pt 13):2763–2774PubMedGoogle Scholar
  83. 83.
    Zuchner S et al (2004) Mutations in the mitochondrial GTPase mitofusin 2 cause Charcot-Marie-Tooth neuropathy type 2A. Nat Genet 36(5):449–451PubMedGoogle Scholar
  84. 84.
    Cipolat S et al (2004) OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proc Natl Acad Sci USA 101(45):15927–15932PubMedGoogle Scholar
  85. 85.
    Ishihara N, Eura Y, Mihara K (2004) Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci 117(Pt 26):6535–6546PubMedGoogle Scholar
  86. 86.
    Olichon A et al (2002) The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett 523(1–3):171–176PubMedGoogle Scholar
  87. 87.
    Alexander C et al (2000) OPA1, encoding a dynamin-related GTPase, is mutated in autosomal dominant optic atrophy linked to chromosome 3q28. Nat Genet 26(2):211–215PubMedGoogle Scholar
  88. 88.
    Delettre C et al (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26(2):207–210PubMedGoogle Scholar
  89. 89.
    Delettre C et al (2001) Mutation spectrum and splicing variants in the OPA1 gene. Hum Genet 109(6):584–591PubMedGoogle Scholar
  90. 90.
    Delettre C et al (2000) Nuclear gene OPA1, encoding a mitochondrial dynamin-related protein, is mutated in dominant optic atrophy. Nat Genet 26(2):207–210PubMedGoogle Scholar
  91. 91.
    Delettre C et al (2001) Mutation spectrum and splicing variants in the OPA1 gene. Hum Genet 109(6):584–591PubMedGoogle Scholar
  92. 92.
    Herlan M et al (2003) Processing of Mgm1 by the rhomboid-type protease Pcp1 is required for maintenance of mitochondrial morphology and of mitochondrial DNA. J Biol Chem 278(30):27781–27788PubMedGoogle Scholar
  93. 93.
    Sesaki H et al (2003) Cells lacking Pcp1p/Ugo2p, a rhomboid-like protease required for Mgm1p processing, lose mtDNA and mitochondrial structure in a Dnm1p-dependent manner, but remain competent for mitochondrial fusion. Biochem Biophys Res Commun 308(2):276–283PubMedGoogle Scholar
  94. 94.
    Sik A et al (2004) Self-regulated cleavage of the mitochondrial intramembrane-cleaving protease PARL yields Pbeta, a nuclear-targeted peptide. J Biol Chem 279(15):15323–15329PubMedGoogle Scholar
  95. 95.
    McQuibban GA, Saurya S, Freeman M (2003) Mitochondrial membrane remodelling regulated by a conserved rhomboid protease. Nature 423(6939):537–541PubMedGoogle Scholar
  96. 96.
    Cipolat S et al (2006) Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126(1):163–175PubMedGoogle Scholar
  97. 97.
    Ishihara N et al (2006) Regulation of mitochondrial morphology through proteolytic cleavage of OPA1. Embo J 25(13):2966–2977PubMedGoogle Scholar
  98. 98.
    Casari G et al (1998) Spastic paraplegia and OXPHOS impairment caused by mutations in paraplegin, a nuclear-encoded mitochondrial metalloprotease. Cell 93(6):973–983PubMedGoogle Scholar
  99. 99.
    Harding AE (1983) Classification of the hereditary ataxias and paraplegias. Lancet 1(8334):1151–1155PubMedGoogle Scholar
  100. 100.
    Ferreirinha F et al (2004) Axonal degeneration in paraplegin-deficient mice is associated with abnormal mitochondria and impairment of axonal transport. J Clin Invest 113(2):231–242PubMedGoogle Scholar
  101. 101.
    Nolden M et al (2005) The m-AAA protease defective in hereditary spastic paraplegia controls ribosome assembly in mitochondria. Cell 123(2):277–289PubMedGoogle Scholar
  102. 102.
    Atorino L et al (2003) Loss of m-AAA protease in mitochondria causes complex I deficiency and increased sensitivity to oxidative stress in hereditary spastic paraplegia. J Cell Biol 163(4):777–787PubMedGoogle Scholar
  103. 103.
    Karbowski M et al (2006) Role of Bax and Bak in mitochondrial morphogenesis. Nature 443(7112):658–662PubMedGoogle Scholar
  104. 104.
    Bach D et al (2003) Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity. J Biol Chem 278(19):17190–17197PubMedGoogle Scholar
  105. 105.
    Pich S et al (2005) The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum Mol Genet 14(11):1405–1415PubMedGoogle Scholar
  106. 106.
    Chen KH et al (2004) Dysregulation of HSG triggers vascular proliferative disorders. Nat Cell Biol 6(9):872–883PubMedGoogle Scholar
  107. 107.
    Gjedde A, Marrett S, Vafaee M (2002) Oxidative and nonoxidative metabolism of excited neurons and astrocytes. J Cereb Blood Flow Metab 22(1):1–14PubMedGoogle Scholar
  108. 108.
    Tanaka K, Kanbe T, Kuroiwa T (1985) Three-dimensional behaviour of mitochondria during cell division and germ tube formation in the dimorphic yeast Candida albicans. J Cell Sci 73:207–220PubMedGoogle Scholar
  109. 109.
    Liu DX, Greene LA (2001) Neuronal apoptosis at the G1/S cell cycle checkpoint. Cell Tissue Res 305(2):217–228PubMedGoogle Scholar
  110. 110.
    Herrup K et al (2004) Divide and die: cell cycle events as triggers of nerve cell death. J Neurosci 24(42):9232–9239PubMedGoogle Scholar
  111. 111.
    Nguyen MD, Mushynski WE, Julien JP (2002) Cycling at the interface between neurodevelopment and neurodegeneration. Cell Death Differ 9(12):1294–1306PubMedGoogle Scholar
  112. 112.
    Park DS et al (2000) Cell cycle regulators in neuronal death evoked by excitotoxic stress: implications for neurodegeneration and its treatment. Neurobiol Aging 21(6):771–781PubMedGoogle Scholar
  113. 113.
    Park DS et al (2000) Involvement of retinoblastoma family members and E2F/DP complexes in the death of neurons evoked by DNA damage. J Neurosci 20(9):3104–3114PubMedGoogle Scholar
  114. 114.
    Park DS et al (1997) G1/S cell cycle blockers and inhibitors of cyclin-dependent kinases suppress camptothecin-induced neuronal apoptosis. J Neurosci 17(4):1256–1270PubMedGoogle Scholar
  115. 115.
    Kruman II et al (2004) Cell cycle activation linked to neuronal cell death initiated by DNA damage. Neuron 41(4):549–561PubMedGoogle Scholar
  116. 116.
    Park DS et al (1998) Cyclin-dependent kinases participate in death of neurons evoked by DNA-damaging agents. J Cell Biol 143(2):457–467PubMedGoogle Scholar
  117. 117.
    Cheung EC, Slack RS (2004) Emerging role for ERK as a key regulator of neuronal apoptosis. Sci STKE 251:PE45Google Scholar
  118. 118.
    Subramaniam S, Unsicker K (2006) Extracellular signal-regulated kinase as an inducer of non-apoptotic neuronal death. Neuroscience 138(4):1055–1065PubMedGoogle Scholar
  119. 119.
    Subramaniam S et al (2004) ERK activation promotes neuronal degeneration predominantly through plasma membrane damage and independently of caspase-3. J Cell Biol 165(3):357–369PubMedGoogle Scholar
  120. 120.
    Hughes JP et al (2003) Mitogen and stress response kinase-1 (MSK1) mediates excitotoxic induced death of hippocampal neurones. J Neurochem 86(1):25–32PubMedGoogle Scholar
  121. 121.
    Levinthal DJ, Defranco DB (2005) Reversible oxidation of ERK-directed protein phosphatases drives oxidative toxicity in neurons. J Biol Chem 280(7):5875–5883PubMedGoogle Scholar
  122. 122.
    Chu CT et al (2004) Oxidative neuronal injury. The dark side of ERK1/2. Eur J Biochem 271(11):2060–2066PubMedGoogle Scholar
  123. 123.
    Aarts M et al (2002) Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science 298(5594):846–850PubMedGoogle Scholar
  124. 124.
    Sattler R et al (1999) Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science 284(5421):1845–1848PubMedGoogle Scholar
  125. 125.
    Aarts M et al (2003) A key role for TRPM7 channels in anoxic neuronal death. Cell 115(7):863–877PubMedGoogle Scholar
  126. 126.
    Szabadkai G et al (2004) Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell) This work is highly controversial and other labs have had opposite results (Ref. 1 and 2) 16(1):59–68Google Scholar
  127. 127.
    Mannella CA (2006) The relevance of mitochondrial membrane topology to mitochondrial function. Biochim Biophys Acta 1762(2):140–147PubMedGoogle Scholar
  128. 128.
    Mannella CA (2006) Structure and dynamics of the mitochondrial inner membrane cristae. Biochim Biophys Acta 1763(5–6):542–548PubMedGoogle Scholar
  129. 129.
    Frey TG, Mannella CA (2000) The internal structure of mitochondria. Trends Biochem Sci 25(7):319–324PubMedGoogle Scholar
  130. 130.
    Scorrano L et al (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2(1):55–67PubMedGoogle Scholar
  131. 131.
    Frezza C et al (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126(1):177–189PubMedGoogle Scholar
  132. 132.
    Griparic L et al (2004) Loss of the intermembrane space protein Mgm1/OPA1 induces swelling and localized constrictions along the lengths of mitochondria. J Biol Chem 279(18):18792–18798PubMedGoogle Scholar
  133. 133.
    Kim TH et al (2004) Bid-cardiolipin interaction at mitochondrial contact site contributes to mitochondrial cristae reorganization and cytochrome C release. Mol Biol Cell 15(7):3061–3072PubMedGoogle Scholar
  134. 134.
    Degli Esposti M, Dive C (2003) Mitochondrial membrane permeabilisation by Bax/Bak. Biochem Biophys Res Commun 304(3):455–461PubMedGoogle Scholar
  135. 135.
    Epand RF et al (2002) The apoptotic protein tBid promotes leakage by altering membrane curvature. J Biol Chem 277(36):32632–32639PubMedGoogle Scholar
  136. 136.
    John GB et al (2005) The mitochondrial inner membrane protein mitofilin controls cristae morphology. Mol Biol Cell 16(3):1543–1554PubMedGoogle Scholar
  137. 137.
    Arselin G et al (2004) The modulation in subunits e and g amounts of yeast ATP synthase modifies mitochondrial cristae morphology. J Biol Chem 279(39):40392–40399PubMedGoogle Scholar
  138. 138.
    Paumard P et al (2002) The ATP synthase is involved in generating mitochondrial cristae morphology. Embo J 21(3):221–230PubMedGoogle Scholar
  139. 139.
    Cregan SP et al (2002) Apoptosis-inducing factor is involved in the regulation of caspase-independent neuronal cell death. J Cell Biol 158(3):507–517PubMedGoogle Scholar
  140. 140.
    Yu SW et al (2002) Mediation of poly(ADP-ribose) polymerase-1-dependent cell death by apoptosis-inducing factor. Science 297(5579):259–263PubMedGoogle Scholar
  141. 141.
    Hong SJ, Dawson TM, Dawson VL (2004) Nuclear and mitochondrial conversations in cell death: PARP-1 and AIF signaling. Trends Pharmacol Sci 25(5):259–264PubMedGoogle Scholar
  142. 142.
    Cheung EC et al (2006) Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis. Embo J 25(17):4061–4073Google Scholar
  143. 143.
    Joza N et al (2005) Muscle-specific loss of apoptosis-inducing factor leads to mitochondrial dysfunction, skeletal muscle atrophy, and dilated cardiomyopathy. Mol Cell Biol 25(23):10261–10272PubMedGoogle Scholar
  144. 144.
    Vahsen N et al (2004) AIF deficiency compromises oxidative phosphorylation. Embo J 23(23):4679–4689PubMedGoogle Scholar
  145. 145.
    Olichon A et al (2002) The human dynamin-related protein OPA1 is anchored to the mitochondrial inner membrane facing the inter-membrane space. FEBS Lett 523(1–3):171–176PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  • Eric C. C. Cheung
    • 1
  • Heidi M. McBride
    • 2
  • Ruth S. Slack
    • 1
    Email author
  1. 1.University of Ottawa, Department of Cellular Molecular MedicineOttawa Health Research InstituteOttawa
  2. 2.University of Ottawa Heart InstituteCanada

Personalised recommendations