, Volume 12, Issue 5, pp 815–833

The mitochondrial permeability transition pore and its involvement in cell death and in disease pathogenesis



Current research on the mitochondrial permeability transition pore (PTP) and its role in cell death faces a paradox. Initially considered as an in vitro artifact of little pathophysiological relevance, in recent years the PTP has received considerable attention as a potential mechanism for the execution of cell death. The recent successful use of PTP desensitizers in several disease paradigms leaves little doubt about its relevance in pathophysiology; and emerging findings that link the PTP to key cellular signalling pathways are increasing the interest on the pore as a pharmacological target. Yet, recent genetic data have challenged popular views on the molecular nature of the PTP, and called into question many early conclusions about its structure. Here we review basic concepts about PTP structure, function and regulation within the framework of intracellular death signalling, and its role in disease pathogenesis.


Apoptosis Mitochondria Permeability transition pore 


  1. 1.
    Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933PubMedGoogle Scholar
  2. 2.
    van Loo G, Saelens X, van Gurp M, MacFarlane M, Martin SJ, Vandenabeele P (2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 9:1031–1042PubMedGoogle Scholar
  3. 3.
    Tsujimoto Y (2003) Cell death regulation by the Bcl-2 protein family in the mitochondria. J Cell Physiol 195:158–167PubMedGoogle Scholar
  4. 4.
    Kuwana T, Newmeyer DD (2003) Bcl-2-family proteins and the role of mitochondria in apoptosis. Curr Opin Cell Biol 15:691–699PubMedGoogle Scholar
  5. 5.
    Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nat Rev Mol Cell Biol 4:552–565PubMedGoogle Scholar
  6. 6.
    Ekert PG, Vaux DL (2005) The mitochondrial death squad: hardened killers or innocent bystanders? Curr Opin Cell Biol 17:626–630PubMedGoogle Scholar
  7. 7.
    Heath-Engel HM, Shore GC (2006) Mitochondrial membrane dynamics, cristae remodelling and apoptosis. Biochim Biophys Acta 1763:549–560PubMedGoogle Scholar
  8. 8.
    Rizzuto R, Duchen MR, Pozzan T (2004) Flirting in little space: The ER/mitochondria Ca2+ liaison. Sci STKE 2004:re1Google Scholar
  9. 9.
    Desagher S, Martinou JC (2000) Mitochondria as the central control point of apoptosis. Trends Cell Biol 10:369–377PubMedGoogle Scholar
  10. 10.
    Saelens X, Festjens N, Walle LV, van Gurp M, van Loo G, Vandenabeele P (2004) Toxic proteins released from mitochondria in cell death. Oncogene 23:2861–2874PubMedGoogle Scholar
  11. 11.
    Scorrano L, Korsmeyer SJ (2003) Mechanisms of cytochrome c release by proapoptotic BCL-2 family members. Biochem Biophys Res Commun 304:437–444PubMedGoogle Scholar
  12. 12.
    Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X (1997) Prevention of apoptosis by Bcl-2: Release of cytochrome c from mitochondria blocked. Science 275:1129–1132PubMedGoogle Scholar
  13. 13.
    Susin SA, Zamzami N, Castedo M, Hirsch T, Marchetti P, Macho A, Daugas E, Geuskens M, Kroemer G (1996) Bcl-2 inhibits the mitochondrial release of an apoptogenic protease. J Exp Med 184:1331–1341PubMedGoogle Scholar
  14. 14.
    Li LY, Luo X, Wang X (2001) Endonuclease G is an apoptotic DNase when released from mitochondria. Nature 412:95–99PubMedGoogle Scholar
  15. 15.
    Suzuki Y, Imai Y, Nakayama H, Takahashi K, Takio K, Takahashi R (2001) A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol Cell 8:613–621PubMedGoogle Scholar
  16. 16.
    Du C, Fang M, Li Y, Li L, Wang X (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102:33–42PubMedGoogle Scholar
  17. 17.
    Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127–1155PubMedGoogle Scholar
  18. 18.
    Mitchell P (1979) Keilin's respiratory chain concept and its chemiosmotic consequences. Science 206:1148–1159PubMedGoogle Scholar
  19. 19.
    Bernardi P, Scorrano L, Colonna R, Petronilli V, Di Lisa F (1999) Mitochondria and cell death. Mechanistic aspects and methodological issues. Eur J Biochem 264:687–701PubMedGoogle Scholar
  20. 20.
    Crompton M (1999) The mitochondrial permeability transition pore and its role in cell death. Biochem J 341 (Pt 2):233–249Google Scholar
  21. 21.
    Bernardi P, Krauskopf A, Basso E, Petronilli V, Blachly-Dyson E, Di Lisa F, Forte MA (2006) The mitochondrial permeability transition from in vitro artifact to disease target. Febs J 273:2077–2099PubMedGoogle Scholar
  22. 22.
    Hunter FE Jr, Ford L (1955) Inactivation of oxidative and phosphorylative systems in mitochondria by preincubation with phosphate and other ions. J Biol Chem 216:357–369PubMedGoogle Scholar
  23. 23.
    Gunter TE, Pfeiffer DR (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755–C786PubMedGoogle Scholar
  24. 24.
    Hunter DR, Haworth RA (1979) The Ca2+-induced membrane transition in mitochondria. I. The protective mechanisms. Arch Biochem Biophys 195:453–459PubMedGoogle Scholar
  25. 25.
    Crompton M, Costi A, Hayat L (1987) Evidence for the presence of a reversible Ca2+-dependent pore activated by oxidative stress in heart mitochondria. Biochem J 245:915–918PubMedGoogle Scholar
  26. 26.
    Halestrap AP, McStay GP, Clarke SJ (2002) The permeability transition pore complex: Another view. Biochimie 84:153–166PubMedGoogle Scholar
  27. 27.
    Zoratti M, Szabo I, De Marchi U (2005) Mitochondrial permeability transitions: How many doors to the house? Biochim Biophys Acta 1706:40–52PubMedGoogle Scholar
  28. 28.
    He L, Lemasters JJ (2002) Regulated and unregulated mitochondrial permeability transition pores: a new paradigm of pore structure and function? FEBS Lett 512:1–7PubMedGoogle Scholar
  29. 29.
    Vinogradov A, Scarpa A, Chance B (1972) Calcium and pyridine nucleotide interaction in mitochondrial membranes. Arch Biochem Biophys 152:646–654PubMedGoogle Scholar
  30. 30.
    Di Lisa F, Menabo R, Canton M, Barile M, Bernardi P (2001) Opening of the mitochondrial permeability transition pore causes depletion of mitochondrial and cytosolic NAD+ and is a causative event in the death of myocytes in postischemic reperfusion of the heart. J Biol Chem 276:2571–2575PubMedGoogle Scholar
  31. 31.
    Ichas F, Jouaville LS, Mazat JP (1997) Mitochondria are excitable organelles capable of generating and conveying electrical and calcium signals. Cell 89:1145–1153PubMedGoogle Scholar
  32. 32.
    Pacher P, Hajnoczky G (2001) Propagation of the apoptotic signal by mitochondrial waves. Embo J 20:4107–4121PubMedGoogle Scholar
  33. 33.
    Belzacq AS, Vieira HL, Kroemer G, Brenner C (2002) The adenine nucleotide translocator in apoptosis. Biochimie 84:167–176PubMedGoogle Scholar
  34. 34.
    Bernardi P, Petronilli V (1996) The permeability transition pore as a mitochondrial calcium release channel: a critical appraisal. J Bioenerg Biomembr 28:131–138PubMedGoogle Scholar
  35. 35.
    O’Reilly CM, Fogarty KE, Drummond RM, Tuft RA, Walsh JV Jr (2003) Quantitative analysis of spontaneous mitochondrial depolarizations. Biophys J 85:3350–3357PubMedGoogle Scholar
  36. 36.
    Vergun O, Votyakova TV, Reynolds IJ (2003) Spontaneous changes in mitochondrial membrane potential in single isolated brain mitochondria. Biophys J 85:3358–3366PubMedGoogle Scholar
  37. 37.
    Crompton M, Barksby E, Johnson N, Capano M (2002) Mitochondrial intermembrane junctional complexes and their involvement in cell death. Biochimie 84:143–152PubMedGoogle Scholar
  38. 38.
    Pfeiffer DR, Tchen TT (1973) The role of Ca2+ in control of malic enzyme activity in bovine adrenal cortex mitochondria. Biochem Biophys Res Commun 50:807–813PubMedGoogle Scholar
  39. 39.
    Pfeiffer DR, Tchen TT (1975) The activation of adrenal cortex mitochondrial malic enzyme by Ca2+ and Mg2+. Biochemistry 14:89–96PubMedGoogle Scholar
  40. 40.
    Pfeiffer DR, Kuo TH, Tchen TT (1976) Some effects of Ca2+, Mg2+, and Mn2+ on the ultrastructure, light-scattering properties, and malic enzyme activity of adrenal cortex mitochondria. Arch Biochem Biophys 176:556–563PubMedGoogle Scholar
  41. 41.
    Dodoni G, Canton M, Petronilli V, Bernardi P, Di Lisa F (2004) Induction of the mitochondrial permeability transition by the DNA alkylating agent N-methyl-N′-nitro-N-nitrosoguanidine. Sorting cause and consequence of mitochondrial dysfunction. Biochim Biophys Acta 1658:58–63PubMedGoogle Scholar
  42. 42.
    De Giorgi F, Lartigue L, Bauer MK, Schubert A, Grimm S, Hanson GT, Remington SJ, Youle RJ, Ichas F (2002) The permeability transition pore signals apoptosis by directing Bax translocation and multimerization. Faseb J 16:607–609PubMedGoogle Scholar
  43. 43.
    Colombini M (2004) VDAC: the channel at the interface between mitochondria and the cytosol. Mol Cell Biochem 256–257:107–115PubMedGoogle Scholar
  44. 44.
    Shoshan-Barmatz V, Israelson A, Brdiczka D, Sheu SS (2006) The voltage-dependent anion channel (VDAC): function in intracellular signalling, cell life and cell death. Curr Pharm Des 12:2249–2270PubMedGoogle Scholar
  45. 45.
    Halestrap AP, Davidson AM (1990) Inhibition of Ca2(+)-induced large-amplitude swelling of liver and heart mitochondria by cyclosporin is probably caused by the inhibitor binding to mitochondrial-matrix peptidyl-prolyl cis-trans isomerase and preventing it interacting with the adenine nucleotide translocase. Biochem J 268:153–160PubMedGoogle Scholar
  46. 46.
    Henry-Mowatt J, Dive C, Martinou JC, James D (2004) Role of mitochondrial membrane permeabilization in apoptosis and cancer. Oncogene 23:2850–2860PubMedGoogle Scholar
  47. 47.
    Sharpe JC, Arnoult D, Youle RJ (2004) Control of mitochondrial permeability by Bcl-2 family members. Biochim Biophys Acta 1644:107–113PubMedGoogle Scholar
  48. 48.
    Schlattner U, Tokarska-Schlattner M, Wallimann T (2006) Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta 1762:164–180PubMedGoogle Scholar
  49. 49.
    Robey RB, Hay N (2006) Mitochondrial hexokinases, novel mediators of the antiapoptotic effects of growth factors and Akt. Oncogene 25:4683–4696PubMedGoogle Scholar
  50. 50.
    Mathupala SP, Ko YH, Pedersen PL (2006) Hexokinase II: Cancer's double-edged sword acting as both facilitator and gatekeeper of malignancy when bound to mitochondria. Oncogene 25:4777–4786PubMedGoogle Scholar
  51. 51.
    Kokoszka JE, Waymire KG, Levy SE, Sligh JE, Cai J, Jones DP, MacGregor GR, Wallace DC (2004) The ADP/ATP translocator is not essential for the mitochondrial permeability transition pore. Nature 427:461–465PubMedGoogle Scholar
  52. 52.
    Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD (2005) Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 434:658–662PubMedGoogle Scholar
  53. 53.
    Basso E, Fante L, Fowlkes J, Petronilli V, Forte MA, Bernardi P (2005) Properties of the permeability transition pore in mitochondria devoid of Cyclophilin D. J Biol Chem 280:18558–18561PubMedGoogle Scholar
  54. 54.
    Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434:652–658PubMedGoogle Scholar
  55. 55.
    Schinzel AC, Takeuchi O, Huang Z, Fisher JK, Zhou Z, Rubens J, Hetz C, Danial NN, Moskowitz MA, Korsmeyer SJ (2005) Cyclophilin D is a component of mitochondrial permeability transition and mediates neuronal cell death after focal cerebral ischemia. Proc Natl Acad Sci USA 102:12005–12010PubMedGoogle Scholar
  56. 56.
    Krauskopf A, Eriksson O, Craigen WJ, Forte MA, Bernardi P (2006) Properties of the permeability transition in VDAC1(–/–) mitochondria. Biochim Biophys Acta 1757:590–595PubMedGoogle Scholar
  57. 57.
    Menze MA, Hutchinson K, Laborde SM, Hand SC (2005) Mitochondrial permeability transition in the crustacean Artemia franciscana: Absence of a calcium-regulated pore in the face of profound calcium storage. Am J Physiol Regul Integr Comp Physiol 289:R68–R76PubMedGoogle Scholar
  58. 58.
    Forte M, Bernardi P (2005) Genetic dissection of the permeability transition pore. J Bioenerg Biomembr 37:121–128PubMedGoogle Scholar
  59. 59.
    Schultheiss HP, Klingenberg M (1984) Immunochemical characterization of the adenine nucleotide translocator. Organ specificity and conformation specificity. Eur J Biochem 143:599–605PubMedGoogle Scholar
  60. 60.
    Rottenberg H, Marbach M (1990) Regulation of Ca2+ transport in brain mitochondria. I. The mechanism of spermine enhancement of Ca2+ uptake and retention. Biochim Biophys Acta 1016:77–86PubMedGoogle Scholar
  61. 61.
    Halestrap AP (2004) Mitochondrial permeability: Dual role for the ADP/ATP translocator? Nature 430:983Google Scholar
  62. 62.
    Le-Quoc K, Le-Quoc D (1985) Crucial role of sulfhydryl groups in the mitochondrial inner membrane structure. J Biol Chem 260:7422–7428PubMedGoogle Scholar
  63. 63.
    Szabo I, Zoratti M (1993) The mitochondrial permeability transition pore may comprise VDAC molecules. I. Binary structure and voltage dependence of the pore. FEBS Lett 330:201–205PubMedGoogle Scholar
  64. 64.
    Szabo I, De Pinto V, Zoratti M (1993) The mitochondrial permeability transition pore may comprise VDAC molecules. II. The electrophysiological properties of VDAC are compatible with those of the mitochondrial megachannel. FEBS Lett 330:206–210PubMedGoogle Scholar
  65. 65.
    Zizi M, Forte M, Blachly-Dyson E, Colombini M (1994) NADH regulates the gating of VDAC, the mitochondrial outer membrane channel. J Biol Chem 269:1614–1616PubMedGoogle Scholar
  66. 66.
    Gincel D, Zaid H, Shoshan-Barmatz V (2001) Calcium binding and translocation by the voltage-dependent anion channel: a possible regulatory mechanism in mitochondrial function. Biochem J 358:147–155PubMedGoogle Scholar
  67. 67.
    Gincel D, Shoshan-Barmatz V (2004) Glutamate interacts with VDAC and modulates opening of the mitochondrial permeability transition pore. J Bioenerg Biomembr 36:179–186PubMedGoogle Scholar
  68. 68.
    Pastorino JG, Shulga N, Hoek JB (2002) Mitochondrial binding of hexokinase II inhibits Bax-induced cytochrome c release and apoptosis. J Biol Chem 277:7610–7618PubMedGoogle Scholar
  69. 69.
    Pastorino JG, Hoek JB, Shulga N (2005) Activation of glycogen synthase kinase 3beta disrupts the binding of hexokinase II to mitochondria by phosphorylating voltage-dependent anion channel and potentiates chemotherapy-induced cytotoxicity. Cancer Res 65:10545–10554PubMedGoogle Scholar
  70. 70.
    Cheng EH, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ (2003) VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301:513–517PubMedGoogle Scholar
  71. 71.
    McGuinness O, Yafei N, Costi A, Crompton M (1990) The presence of two classes of high-affinity cyclosporin A binding sites in mitochondria. Evidence that the minor component is involved in the opening of an inner-membrane Ca(2+)-dependent pore. Eur J Biochem 194:671–679PubMedGoogle Scholar
  72. 72.
    Bernardi P (1992) Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by the proton electrochemical gradient. Evidence that the pore can be opened by membrane depolarization. J Biol Chem 267:8834–8839PubMedGoogle Scholar
  73. 73.
    Griffiths EJ, Halestrap AP (1991) Further evidence that cyclosporin A protects mitochondria from calcium overload by inhibiting a matrix peptidyl-prolyl cis-trans isomerase. Implications for the immunosuppressive and toxic effects of cyclosporin. Biochem J 274 (Pt 2):611–614Google Scholar
  74. 74.
    Gunter TE (1994) Cation transport by mitochondria. J Bioenerg Biomembr 26:465–469PubMedGoogle Scholar
  75. 75.
    Bernardi P, Broekemeier KM, Pfeiffer DR (1994) Recent progress on regulation of the mitochondrial permeability transition pore; a cyclosporin-sensitive pore in the inner mitochondrial membrane. J Bioenerg Biomembr 26:509–517PubMedGoogle Scholar
  76. 76.
    Marchetti P, Castedo M, Susin SA, Zamzami N, Hirsch T, Macho A, Haeffner A, Hirsch F, Geuskens M, Kroemer G (1996) Mitochondrial permeability transition is a central coordinating event of apoptosis. J Exp Med 184:1155–1160PubMedGoogle Scholar
  77. 77.
    Lemasters JJ, Nieminen AL, Qian T, Trost LC, Elmore SP, Nishimura Y, Crowe RA, Cascio WE, Bradham CA, Brenner DA, Herman B (1998) The mitochondrial permeability transition in cell death: A common mechanism in necrosis, apoptosis and autophagy. Biochim Biophys Acta 1366:177–196PubMedGoogle Scholar
  78. 78.
    Bernardi P, Vassanelli S, Veronese P, Colonna R, Szabo I, Zoratti M (1992) Modulation of the mitochondrial permeability transition pore. Effect of protons and divalent cations. J Biol Chem 267:2934–2939PubMedGoogle Scholar
  79. 79.
    Nicolli A, Petronilli V, Bernardi P (1993) Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by matrix pH. Evidence that the pore open-closed probability is regulated by reversible histidine protonation. Biochemistry 32:4461–4465PubMedGoogle Scholar
  80. 80.
    Beatrice MC, Stiers DL, Pfeiffer DR (1984) The role of glutathione in the retention of Ca2+ by liver mitochondria. J Biol Chem 259:1279–1287PubMedGoogle Scholar
  81. 81.
    Costantini P, Chernyak BV, Petronilli V, Bernardi P (1996) Modulation of the mitochondrial permeability transition pore by pyridine nucleotides and dithiol oxidation at two separate sites. J Biol Chem 271:6746–6751PubMedGoogle Scholar
  82. 82.
    Petronilli V, Nicolli A, Costantini P, Colonna R, Bernardi P (1994) Regulation of the permeability transition pore, a voltage-dependent mitochondrial channel inhibited by cyclosporin A. Biochim Biophys Acta 1187:255–259PubMedGoogle Scholar
  83. 83.
    Costantini P, Colonna R, Bernardi P (1998) Induction of the mitochondrial permeability transition by N-ethylmaleimide depends on secondary oxidation of critical thiol groups. Potentiation by copper-ortho-phenanthroline without dimerization of the adenine nucleotide translocase. Biochim Biophys Acta 1365:385–392PubMedGoogle Scholar
  84. 84.
    Giorgio M, Migliaccio E, Orsini F, Paolucci D, Moroni M, Contursi C, Pelliccia G, Luzi L, Minucci S, Marcaccio M, Pinton P, Rizzuto R, Bernardi P, Paolucci F, Pelicci PG (2005) Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell 122:221–233PubMedGoogle Scholar
  85. 85.
    Eriksson O, Fontaine E, Bernardi P (1998) Chemical modification of arginines by 2,3-butanedione and phenylglyoxal causes closure of the mitochondrial permeability transition pore. J Biol Chem 273:12669–12674PubMedGoogle Scholar
  86. 86.
    Linder MD, Morkunaite-Haimi S, Kinnunen PK, Bernardi P, Eriksson O (2002) Ligand-selective modulation of the permeability transition pore by arginine modification. Opposing effects of p-hydroxyphenylglyoxal and phenylglyoxal. J Biol Chem 277:937–942PubMedGoogle Scholar
  87. 87.
    Speer O, Morkunaite-Haimi S, Liobikas J, Franck M, Hensbo L, Linder MD, Kinnunen PK, Wallimann T, Eriksson O (2003) Rapid suppression of mitochondrial permeability transition by methylglyoxal. Role of reversible arginine modification. J Biol Chem 278:34757–34763PubMedGoogle Scholar
  88. 88.
    Johans M, Milanesi E, Franck M, Johans C, Liobikas J, Panagiotaki M, Greci L, Principato G, Kinnunen PK, Bernardi P, Costantini P, Eriksson O (2005) Modification of permeability transition pore arginine(s) by phenylglyoxal derivatives in isolated mitochondria and mammalian cells. Structure-function relationship of arginine ligands. J Biol Chem 280:12130–12136PubMedGoogle Scholar
  89. 89.
    Scarpa A, Azzone GF (1970) The mechanism of ion translocation in mitochondria. 4. Coupling of K +efflux with Ca2+ uptake. Eur J Biochem 12:328–335PubMedGoogle Scholar
  90. 90.
    Selwyn MJ, Dawson AP, Dunnett SJ (1970) Calcium transport in mitochondria. FEBS Lett 10:1–5PubMedGoogle Scholar
  91. 91.
    Sparagna GC, Gunter KK, Sheu SS, Gunter TE (1995) Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J Biol Chem 270:27510–27515PubMedGoogle Scholar
  92. 92.
    Carafoli E, Tiozzo R, Lugli G, Crovetti F, Kratzing C (1974) The release of calcium from heart mitochondria by sodium. J Mol Cell Cardiol 6:361–371PubMedGoogle Scholar
  93. 93.
    Jung DW, Baysal K, Brierley GP (1995) The sodium-calcium antiport of heart mitochondria is not electroneutral. J Biol Chem 270:672–678PubMedGoogle Scholar
  94. 94.
    Pozzan T, Bragadin M, Azzone GF (1977) Disequilibrium between steady-state Ca2+ accumulation ratio and membrane potential in mitochondria. Pathway and role of Ca2+ efflux. Biochemistry 16:5618–5625PubMedGoogle Scholar
  95. 95.
    Bernardi P, Azzone GF (1982) A membrane potential-modulated pathway for Ca2+ efflux in rat liver mitochondria. FEBS Lett 139:13–16PubMedGoogle Scholar
  96. 96.
    Bernardi P, Azzone GF (1983) Regulation of Ca2+ efflux in rat liver mitochondria. Role of membrane potential. Eur J Biochem 134:377–383PubMedGoogle Scholar
  97. 97.
    Gunter TE, Gunter KK (2001) Uptake of calcium by mitochondria: transport and possible function. IUBMB Life 52:197–204PubMedGoogle Scholar
  98. 98.
    Chalmers S, Nicholls DG (2003) The relationship between free and total calcium concentrations in the matrix of liver and brain mitochondria. J Biol Chem 278:19062–19070PubMedGoogle Scholar
  99. 99.
    Haouzi D, Cohen I, Vieira HL, Poncet D, Boya P, Castedo M, Vadrot N, Belzacq AS, Fau D, Brenner C, Feldmann G, Kroemer G (2002) Mitochondrial permeability transition as a novel principle of hepatorenal toxicity in vivo. Apoptosis 7:395–405PubMedGoogle Scholar
  100. 100.
    Crompton M, Costi A (1988) Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Eur J Biochem 178:489–501PubMedGoogle Scholar
  101. 101.
    Broekemeier KM, Carpenter-Deyo L, Reed DJ, Pfeiffer DR (1992) Cyclosporin A protects hepatocytes subjected to high Ca2+ and oxidative stress. FEBS Lett 304:192–194PubMedGoogle Scholar
  102. 102.
    Pastorino JG, Snyder JW, Serroni A, Hoek JB, Farber JL (1993) Cyclosporin and carnitine prevent the anoxic death of cultured hepatocytes by inhibiting the mitochondrial permeability transition. J Biol Chem 268:13791–13798PubMedGoogle Scholar
  103. 103.
    Zoeteweij JP, van de Water B, de Bont HJ, Mulder GJ, Nagelkerke JF (1993) Calcium-induced cytotoxicity in hepatocytes after exposure to extracellular ATP is dependent on inorganic phosphate. Effects on mitochondrial calcium. J Biol Chem 268:3384–3388PubMedGoogle Scholar
  104. 104.
    Duchen MR, McGuinness O, Brown LA, Crompton M (1993) On the involvement of a cyclosporin A sensitive mitochondrial pore in myocardial reperfusion injury. Cardiovasc Res 27:1790–1794PubMedCrossRefGoogle Scholar
  105. 105.
    Griffiths EJ, Halestrap AP (1995) Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J 307(Pt 1):93–98Google Scholar
  106. 106.
    Scorrano L, Penzo D, Petronilli V, Pagano F, Bernardi P (2001) Arachidonic acid causes cell death through the mitochondrial permeability transition. Implications for tumor necrosis factor-alpha aopototic signaling. J Biol Chem 276:12035–12040PubMedGoogle Scholar
  107. 107.
    Penzo D, Petronilli V, Angelin A, Cusan C, Colonna R, Scorrano L, Pagano F, Prato M, Di Lisa F, Bernardi P (2004) Arachidonic acid released by phospholipase A(2) activation triggers Ca(2+)-dependent apoptosis through the mitochondrial pathway. J Biol Chem 279:25219–25225PubMedGoogle Scholar
  108. 108.
    Shi YF, Sahai BM, Green DR (1989) Cyclosporin A inhibits activation-induced cell death in T-cell hybridomas and thymocytes. Nature 339:625–626PubMedGoogle Scholar
  109. 109.
    Zamzami N, Marchetti P, Castedo M, Hirsch T, Susin SA, Masse B, Kroemer G (1996) Inhibitors of permeability transition interfere with the disruption of the mitochondrial transmembrane potential during apoptosis. FEBS Lett 384:53–57PubMedGoogle Scholar
  110. 110.
    Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell Biol 2:67–71PubMedGoogle Scholar
  111. 111.
    Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629PubMedGoogle Scholar
  112. 112.
    Lin DT, Lechleiter JD (2002) Mitochondrial targeted cyclophilin D protects cells from cell death by peptidyl prolyl isomerization. J Biol Chem 277:31134–31141PubMedGoogle Scholar
  113. 113.
    Schubert A, Grimm S (2004) Cyclophilin D, a component of the permeability transition-pore, is an apoptosis repressor. Cancer Res 64:85–93PubMedGoogle Scholar
  114. 114.
    Green DR (2005) Apoptotic pathways: Ten minutes to dead. Cell 121:671–674PubMedGoogle Scholar
  115. 115.
    Halestrap A (2005) Biochemistry: A pore way to die. Nature 434:578–579PubMedGoogle Scholar
  116. 116.
    Pastorino JG, Chen ST, Tafani M, Snyder JW, Farber JL (1998) The overexpression of Bax produces cell death upon induction of the mitochondrial permeability transition. J Biol Chem 273:7770–7775PubMedGoogle Scholar
  117. 117.
    Narita M, Shimizu S, Ito T, Chittenden T, Lutz RJ, Matsuda H, Tsujimoto Y (1998) Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad Sci USA 95:14681–14686PubMedGoogle Scholar
  118. 118.
    Jurgensmeier JM, Xie Z, Deveraux Q, Ellerby L, Bredesen D, Reed JC (1998) Bax directly induces release of cytochrome c from isolated mitochondria. Proc Natl Acad Sci USA 95:4997–5002PubMedGoogle Scholar
  119. 119.
    von Ahsen O, Renken C, Perkins G, Kluck RM, Bossy-Wetzel E, Newmeyer DD (2000) Preservation of mitochondrial structure and function after Bid- or Bax-mediated cytochrome c release. J Cell Biol 150:1027–1036PubMedGoogle Scholar
  120. 120.
    Martinou JC, Green DR (2001) Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2:63–67PubMedGoogle Scholar
  121. 121.
    Tafani M, Karpinich NO, Hurster KA, Pastorino JG, Schneider T, Russo MA, Farber JL (2002) Cytochrome c release upon Fas receptor activation depends on translocation of full-length bid and the induction of the mitochondrial permeability transition. J Biol Chem 277:10073–10082PubMedGoogle Scholar
  122. 122.
    Marzo I, Brenner C, Zamzami N, Susin SA, Beutner G, Brdiczka D, Remy R, Xie ZH, Reed JC, Kroemer G (1998) The permeability transition pore complex: a target for apoptosis regulation by caspases and bcl-2-related proteins. J Exp Med 187:1261–1271PubMedGoogle Scholar
  123. 123.
    Brenner C, Cadiou H, Vieira HL, Zamzami N, Marzo I, Xie Z, Leber B, Andrews D, Duclohier H, Reed JC, Kroemer G (2000) Bcl-2 and Bax regulate the channel activity of the mitochondrial adenine nucleotide translocator. Oncogene 19:329–336PubMedGoogle Scholar
  124. 124.
    Shimizu S, Eguchi Y, Kamiike W, Funahashi Y, Mignon A, Lacronique V, Matsuda H, Tsujimoto Y (1998) Bcl-2 prevents apoptotic mitochondrial dysfunction by regulating proton flux. Proc Natl Acad Sci USA 95:1455–1459PubMedGoogle Scholar
  125. 125.
    Shimizu S, Narita M, Tsujimoto Y (1999) Bcl-2 family proteins regulate the release of apoptogenic cytochrome c by the mitochondrial channel VDAC. Nature 399:483–487PubMedGoogle Scholar
  126. 126.
    Shimizu S, Konishi A, Kodama T, Tsujimoto Y (2000) BH4 domain of antiapoptotic Bcl-2 family members closes voltage-dependent anion channel and inhibits apoptotic mitochondrial changes and cell death. Proc Natl Acad Sci USA 97:3100–3105PubMedGoogle Scholar
  127. 127.
    Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14:2060–2071PubMedGoogle Scholar
  128. 128.
    Eskes R, Desagher S, Antonsson B, Martinou JC (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20:929–935PubMedGoogle Scholar
  129. 129.
    Milanesi E, Costantini P, Gambalunga A, Colonna R, Petronilli V, Cabrelle A, Semenzato G, Cesura AM, Pinard E, Bernardi P (2006) The mitochondrial effects of small organic ligands of BCL-2: sensitization of BCL-2-overexpressing cells to apoptosis by a pyrimidine-2,4,6-trione derivative. J Biol Chem 281:10066–10072PubMedGoogle Scholar
  130. 130.
    Mattson MP, Chan SL (2003) Calcium orchestrates apoptosis. Nat Cell Biol 5:1041–1043PubMedGoogle Scholar
  131. 131.
    Pinton P, Ferrari D, Rapizzi E, Di Virgilio F, Pozzan T, Rizzuto R (2001) The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: Significance for the molecular mechanism of Bcl-2 action. Embo J 20:2690–2701PubMedGoogle Scholar
  132. 132.
    Scorrano L, Oakes SA, Opferman JT, Cheng EH, Sorcinelli MD, Pozzan T, Korsmeyer SJ (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: A control point for apoptosis. Science 300:135–139PubMedGoogle Scholar
  133. 133.
    Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: Releasing power for life and unleashing the machineries of death. Cell 112:481–490PubMedGoogle Scholar
  134. 134.
    Demaurex N, Distelhorst C (2003) Cell biology. Apoptosis–the calcium connection. Science 300:65–67PubMedGoogle Scholar
  135. 135.
    Annis MG, Yethon JA, Leber B, Andrews DW (2004) There is more to life and death than mitochondria: Bcl-2 proteins at the endoplasmic reticulum. Biochim Biophys Acta 1644:115–123PubMedGoogle Scholar
  136. 136.
    Csordas G, Madesh M, Antonsson B, Hajnoczky G (2002) tcBid promotes Ca(2+) signal propagation to the mitochondria: control of Ca(2+) permeation through the outer mitochondrial membrane. Embo J 21:2198–2206PubMedGoogle Scholar
  137. 137.
    Pagliarini DJ, Dixon JE (2006) Mitochondrial modulation: reversible phosphorylation takes center stage? Trends Biochem Sci 31:26–34PubMedGoogle Scholar
  138. 138.
    Horbinski C, Chu CT (2005) Kinase signaling cascades in the mitochondrion: a matter of life or death. Free Radic Biol Med 38:2–11PubMedGoogle Scholar
  139. 139.
    Montero M, Lobaton CD, Moreno A, Alvarez J (2002) A novel regulatory mechanism of the mitochondrial Ca2+ uniporter revealed by the p38 mitogen-activated protein kinase inhibitor SB202190. Faseb J 16:1955–1957PubMedGoogle Scholar
  140. 140.
    Martindale JJ, Wall JA, Martinez-Longoria DM, Aryal P, Rockman HA, Guo Y, Bolli R, Glembotski CC (2005) Overexpression of mitogen-activated protein kinase kinase 6 in the heart improves functional recovery from ischemia in vitro and protects against myocardial infarction in vivo. J Biol Chem 280:669–676PubMedGoogle Scholar
  141. 141.
    Schroeter H, Boyd CS, Ahmed R, Spencer JP, Duncan RF, Rice-Evans C, Cadenas E (2003) c-Jun N-terminal kinase (JNK)-mediated modulation of brain mitochondria function: New target proteins for JNK signalling in mitochondrion-dependent apoptosis. Biochem J 372:359–369PubMedGoogle Scholar
  142. 142.
    Chauhan D, Li G, Hideshima T, Podar K, Mitsiades C, Mitsiades N, Munshi N, Kharbanda S, Anderson KC (2003) JNK-dependent release of mitochondrial protein, Smac, during apoptosis in multiple myeloma (MM) cells. J Biol Chem 278:17593–17596PubMedGoogle Scholar
  143. 143.
    Kharbanda S, Saxena S, Yoshida K, Pandey P, Kaneki M, Wang Q, Cheng K, Chen YN, Campbell A, Sudha T, Yuan ZM, Narula J, Weichselbaum R, Nalin C, Kufe D (2000) Translocation of SAPK/JNK to mitochondria and interaction with Bcl-x(L) in response to DNA damage. J Biol Chem 275:322–327PubMedGoogle Scholar
  144. 144.
    Thomson M (2002) Evidence of undiscovered cell regulatory mechanisms: Phosphoproteins and protein kinases in mitochondria. Cell Mol Life Sci 59:213–219PubMedGoogle Scholar
  145. 145.
    Lee I, Salomon AR, Ficarro S, Mathes I, Lottspeich F, Grossman LI, Huttemann M (2005) cAMP-dependent tyrosine phosphorylation of subunit I inhibits cytochrome c oxidase activity. J Biol Chem 280:6094–6100PubMedGoogle Scholar
  146. 146.
    Miyazaki T, Neff L, Tanaka S, Horne WC, Baron R (2003) Regulation of cytochrome c oxidase activity by c-Src in osteoclasts. J Cell Biol 160:709–718PubMedGoogle Scholar
  147. 147.
    Devin A, Rigoulet M (2006) Mechanisms of mitochondrial response to variations in energy demand in eukaryotic cells. Am J Physiol Cell Physiol Aug 30; [Epub ahead of print]Google Scholar
  148. 148.
    Majumder PK, Pandey P, Sun X, Cheng K, Datta R, Saxena S, Kharbanda S, Kufe D (2000) Mitochondrial translocation of protein kinase C delta in phorbol ester-induced cytochrome c release and apoptosis. J Biol Chem 275:21793–21796PubMedGoogle Scholar
  149. 149.
    Sumitomo M, Ohba M, Asakuma J, Asano T, Kuroki T, Hayakawa M (2002) Protein kinase Cdelta amplifies ceramide formation via mitochondrial signaling in prostate cancer cells. J Clin Invest 109:827–836PubMedGoogle Scholar
  150. 150.
    Denning MF, Wang Y, Tibudan S, Alkan S, Nickoloff BJ, Qin JZ (2002) Caspase activation and disruption of mitochondrial membrane potential during UV radiation-induced apoptosis of human keratinocytes requires activation of protein kinase C. Cell Death Differ 9:40–52PubMedGoogle Scholar
  151. 151.
    Baines CP, Song CX, Zheng YT, Wang GW, Zhang J, Wang OL, Guo Y, Bolli R, Cardwell EM, Ping P (2003) Protein kinase Cepsilon interacts with and inhibits the permeability transition pore in cardiac mitochondria. Circ Res 92:873–880PubMedGoogle Scholar
  152. 152.
    Ruvolo PP, Deng X, Carr BK, May WS (1998) A functional role for mitochondrial protein kinase Calpha in Bcl2 phosphorylation and suppression of apoptosis. J Biol Chem 273:25436–25442PubMedGoogle Scholar
  153. 153.
    Costa AD, Quinlan CL, Andrukhiv A, West IC, Jaburek M, Garlid KD (2006) The direct physiological effects of mitoK(ATP) opening on heart mitochondria. Am J Physiol Heart Circ Physiol 290:H406–H415PubMedGoogle Scholar
  154. 154.
    Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241PubMedGoogle Scholar
  155. 155.
    Harada H, Becknell B, Wilm M, Mann M, Huang LJ, Taylor SS, Scott JD, Korsmeyer SJ (1999) Phosphorylation and inactivation of BAD by mitochondria-anchored protein kinase A. Mol Cell 3:413–422PubMedGoogle Scholar
  156. 156.
    Lee HJ, Bach JH, Chae HS, Lee SH, Joo WS, Choi SH, Kim KY, Lee WB, Kim SS (2004) Mitogen-activated protein kinase/extracellular signal-regulated kinase attenuates 3-hydroxykynurenine-induced neuronal cell death. J Neurochem 88:647–656PubMedGoogle Scholar
  157. 157.
    Ishikawa Y, Kusaka E, Enokido Y, Ikeuchi T, Hatanaka H (2003) Regulation of Bax translocation through phosphorylation at Ser-70 of Bcl-2 by MAP kinase in NO-induced neuronal apoptosis. Mol Cell Neurosci 24:451–459PubMedGoogle Scholar
  158. 158.
    Nebigil CG, Etienne N, Messaddeq N, Maroteaux L (2003) Serotonin is a novel survival factor of cardiomyocytes: mitochondria as a target of 5-HT2B receptor signaling. Faseb J 17:1373–1375PubMedGoogle Scholar
  159. 159.
    Bijur GN, Jope RS (2003) Rapid accumulation of Akt in mitochondria following phosphatidylinositol 3-kinase activation. J Neurochem 87:1427–1435PubMedCrossRefGoogle Scholar
  160. 160.
    Juhaszova M, Zorov DB, Kim SH, Pepe S, Fu Q, Fishbein KW, Ziman BD, Wang S, Ytrehus K, Antos CL, Olson EN, Sollott SJ (2004) Glycogen synthase kinase-3beta mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest 113:1535–1549PubMedGoogle Scholar
  161. 161.
    Zaid H, Abu-Hamad S, Israelson A, Nathan I, Shoshan-Barmatz V (2005) The voltage-dependent anion channel-1 modulates apoptotic cell death. Cell Death Differ 12:751–760PubMedGoogle Scholar
  162. 162.
    Beutner G, Ruck A, Riede B, Brdiczka D (1998) Complexes between porin, hexokinase, mitochondrial creatine kinase and adenylate translocator display properties of the permeability transition pore. Implication for regulation of permeability transition by the kinases. Biochim Biophys Acta 1368:7–18PubMedGoogle Scholar
  163. 163.
    Beutner G, Ruck A, Riede B, Welte W, Brdiczka D (1996) Complexes between kinases, mitochondrial porin and adenylate translocator in rat brain resemble the permeability transition pore. FEBS Lett 396:189–195PubMedGoogle Scholar
  164. 164.
    Dolder M, Walzel B, Speer O, Schlattner U, Wallimann T (2003) Inhibition of the mitochondrial permeability transition by creatine kinase substrates. Requirement for microcompartmentation. J Biol Chem 278:17760–17766PubMedGoogle Scholar
  165. 165.
    Gottlob K, Majewski N, Kennedy S, Kandel E, Robey RB, Hay N (2001) Inhibition of early apoptotic events by Akt/PKB is dependent on the first committed step of glycolysis and mitochondrial hexokinase. Genes Dev 15:1406–1418PubMedGoogle Scholar
  166. 166.
    Bryson JM, Coy PE, Gottlob K, Hay N, Robey RB (2002) Increased hexokinase activity, of either ectopic or endogenous origin, protects renal epithelial cells against acute oxidant-induced cell death. J Biol Chem 277:11392–11400PubMedGoogle Scholar
  167. 167.
    Rathmell JC, Fox CJ, Plas DR, Hammerman PS, Cinalli RM, Thompson CB (2003) Akt-directed glucose metabolism can prevent Bax conformation change and promote growth factor-independent survival. Mol Cell Biol 23:7315–7328PubMedGoogle Scholar
  168. 168.
    Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, Chandel NS, Thompson CB, Robey RB, Hay N (2004) Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell 16:819–830PubMedGoogle Scholar
  169. 169.
    Warburg O (1956) On the origin of cancer cells. Science 123:309–314PubMedGoogle Scholar
  170. 170.
    Shinohara Y, Ishida T, Hino M, Yamazaki N, Baba Y, Terada H (2000) Characterization of porin isoforms expressed in tumor cells. Eur J Biochem 267:6067–6073PubMedGoogle Scholar
  171. 171.
    Vander Heiden MG, Chandel NS, Schumacker PT, Thompson CB (1999) Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange. Mol Cell 3:159–167PubMedGoogle Scholar
  172. 172.
    Gottlieb E, Armour SM, Harris MH, Thompson CB (2003) Mitochondrial membrane potential regulates matrix configuration and cytochrome c release during apoptosis. Cell Death Differ 10:709–717PubMedGoogle Scholar
  173. 173.
    Vander Heiden MG, Chandel NS, Li XX, Schumacker PT, Colombini M, Thompson CB (2000) Outer mitochondrial membrane permeability can regulate coupled respiration and cell survival. Proc Natl Acad Sci USA 97:4666–4671PubMedGoogle Scholar
  174. 174.
    Azoulay-Zohar H, Israelson A, Abu-Hamad S, Shoshan-Barmatz V (2004) In self-defence: hexokinase promotes voltage-dependent anion channel closure and prevents mitochondria-mediated apoptotic cell death. Biochem J 377:347–355PubMedGoogle Scholar
  175. 175.
    Shimizu S, Matsuoka Y, Shinohara Y, Yoneda Y, Tsujimoto Y (2001) Essential role of voltage-dependent anion channel in various forms of apoptosis in mammalian cells. J Cell Biol 152:237–250PubMedGoogle Scholar
  176. 176.
    Saito M, Korsmeyer SJ, Schlesinger PH (2000) BAX-dependent transport of cytochrome c reconstituted in pure liposomes. Nat Cell Biol 2:553–555PubMedGoogle Scholar
  177. 177.
    Basanez G, Nechushtan A, Drozhinin O, Chanturiya A, Choe E, Tutt S, Wood KA, Hsu Y, Zimmerberg J, Youle RJ (1999) Bax, but not Bcl-XL, decreases the lifetime of planar phospholipid bilayer membranes at subnanomolar concentrations. Proc Natl Acad Sci USA 96:5492–5497PubMedGoogle Scholar
  178. 178.
    Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim D, Chang BS, Thompson CB, Wong SL, Ng SL, Fesik SW (1996) X-ray and NMR structure of human Bcl-XL, an inhibitor of programmed cell death. Nature 381:335–341PubMedGoogle Scholar
  179. 179.
    Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G (1999) Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 96:615–624PubMedGoogle Scholar
  180. 180.
    McDonnell JM, Fushman D, Milliman CL, Korsmeyer SJ, Cowburn D (1999) Solution structure of the proapoptotic molecule BID: a structural basis for apoptotic agonists and antagonists. Cell 96:625–634PubMedGoogle Scholar
  181. 181.
    Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103:645–654PubMedGoogle Scholar
  182. 182.
    Minn AJ, Velez P, Schendel SL, Liang H, Muchmore SW, Fesik SW, Fill M, Thompson CB (1997) Bcl-x(L) forms an ion channel in synthetic lipid membranes. Nature 385:353–357PubMedGoogle Scholar
  183. 183.
    Antonsson B, Conti F, Ciavatta A, Montessuit S, Lewis S, Martinou I, Bernasconi L, Bernard A, Mermod JJ, Mazzei G, Maundrell K, Gambale F, Sadoul R, Martinou JC (1997) Inhibition of Bax channel-forming activity by Bcl-2. Science 277:370–372PubMedGoogle Scholar
  184. 184.
    Schendel SL, Xie Z, Montal MO, Matsuyama S, Montal M, Reed JC (1997) Channel formation by antiapoptotic protein Bcl-2. Proc Natl Acad Sci USA 94:5113–5118PubMedGoogle Scholar
  185. 185.
    De Marchi U, Campello S, Szabo I, Tombola F, Martinou JC, Zoratti M (2004) Bax does not directly participate in the Ca(2+)-induced permeability transition of isolated mitochondria. J Biol Chem 279:37415–37422PubMedGoogle Scholar
  186. 186.
    Kuwana T, Mackey MR, Perkins G, Ellisman MH, Latterich M, Schneiter R, Green DR, Newmeyer DD (2002) Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342PubMedGoogle Scholar
  187. 187.
    Dejean LM, Martinez-Caballero S, Guo L, Hughes C, Teijido O, Ducret T, Ichas F, Korsmeyer SJ, Antonsson B, Jonas EA, Kinnally KW (2005) Oligomeric Bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol Biol Cell 16:2424–2432PubMedGoogle Scholar
  188. 188.
    Martinez-Caballero S, Dejean LM, Jonas EA, Kinnally KW (2005) The role of the mitochondrial apoptosis induced channel MAC in cytochrome c release. J Bioenerg Biomembr 37:155–164PubMedGoogle Scholar
  189. 189.
    Gross A, Jockel J, Wei MC, Korsmeyer SJ (1998) Enforced dimerization of BAX results in its translocation, mitochondrial dysfunction and apoptosis. Embo J 17:3878–3885PubMedGoogle Scholar
  190. 190.
    Desagher S, Osen-Sand A, Nichols A, Eskes R, Montessuit S, Lauper S, Maundrell K, Antonsson B, Martinou JC (1999) Bid-induced conformational change of Bax is responsible for mitochondrial cytochrome c release during apoptosis. J Cell Biol 144:891–901PubMedGoogle Scholar
  191. 191.
    Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V, Ross AJ, Roth KA, MacGregor GR, Thompson CB, Korsmeyer SJ (2001) Proapoptotic BAX and BAK: A requisite gateway to mitochondrial dysfunction and death. Science 292:727–730PubMedGoogle Scholar
  192. 192.
    Vyssokikh M, Zorova L, Zorov D, Heimlich G, Jurgensmeier J, Schreiner D, Brdiczka D (2004) The intra-mitochondrial cytochrome c distribution varies correlated to the formation of a complex between VDAC and the adenine nucleotide translocase: This affects Bax-dependent cytochrome c release. Biochim Biophys Acta 1644:27–36PubMedGoogle Scholar
  193. 193.
    Cuconati A, Mukherjee C, Perez D, White E (2003) DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells. Genes Dev 17:2922–2932PubMedGoogle Scholar
  194. 194.
    Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T, Tokino T, Taniguchi T, Tanaka N (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058PubMedGoogle Scholar
  195. 195.
    Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7:683–694PubMedGoogle Scholar
  196. 196.
    Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014PubMedGoogle Scholar
  197. 197.
    Basanez G, Sharpe JC, Galanis J, Brandt TB, Hardwick JM, Zimmerberg J (2002) Bax-type apoptotic proteins porate pure lipid bilayers through a mechanism sensitive to intrinsic monolayer curvature. J Biol Chem 277:49360–49365PubMedGoogle Scholar
  198. 198.
    Ricci JE, Gottlieb RA, Green DR (2003) Caspase-mediated loss of mitochondrial function and generation of reactive oxygen species during apoptosis. J Cell Biol 160:65–75PubMedGoogle Scholar
  199. 199.
    Paroni G, Henderson C, Schneider C, Brancolini C (2002) Caspase-2 can trigger cytochrome C release and apoptosis from the nucleus. J Biol Chem 277:15147–15161PubMedGoogle Scholar
  200. 200.
    Lassus P, Opitz-Araya X, Lazebnik Y (2002) Requirement for caspase-2 in stress-induced apoptosis before mitochondrial permeabilization. Science 297:1352–1354PubMedGoogle Scholar
  201. 201.
    Robertson JD, Gogvadze V, Kropotov A, Vakifahmetoglu H, Zhivotovsky B, Orrenius S (2004) Processed caspase-2 can induce mitochondria-mediated apoptosis independently of its enzymatic activity. EMBO Rep 5:643–648PubMedGoogle Scholar
  202. 202.
    Gogvadze V, Orrenius S, Zhivotovsky B (2006) Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim Biophys Acta 1757:639–647PubMedGoogle Scholar
  203. 203.
    Mannella CA (2006) Structure and dynamics of the mitochondrial inner membrane cristae. Biochim Biophys Acta 1763:542–548PubMedGoogle Scholar
  204. 204.
    Bernardi P, Azzone GF (1981) Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes. J Biol Chem 256:7187–7192PubMedGoogle Scholar
  205. 205.
    Cipolat S, Rudka T, Hartmann D, Costa V, Serneels L, Craessaerts K, Metzger K, Frezza C, Annaert W, D’Adamio L, Derks C, Dejaegere T, Pellegrini L, D’Hooge R, Scorrano L, De Strooper B (2006) Mitochondrial rhomboid PARL regulates cytochrome c release during apoptosis via OPA1-dependent cristae remodeling. Cell 126:163–175PubMedGoogle Scholar
  206. 206.
    Frezza C, Cipolat S, Martins de Brito O, Micaroni M, Beznoussenko GV, Rudka T, Bartoli D, Polishuck RS, Danial NN, De Strooper B, Scorrano L (2006) OPA1 controls apoptotic cristae remodeling independently from mitochondrial fusion. Cell 126:177–189PubMedGoogle Scholar
  207. 207.
    Youle RJ, Karbowski M (2005) Mitochondrial fission in apoptosis. Nat Rev Mol Cell Biol 6:657–663PubMedGoogle Scholar
  208. 208.
    Scorrano L, Ashiya M, Buttle K, Weiler S, Oakes SA, Mannella CA, Korsmeyer SJ (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2:55–67PubMedGoogle Scholar
  209. 209.
    Kim TH, Zhao Y, Ding WX, Shin JN, He X, Seo YW, Chen J, Rabinowich H, Amoscato AA, Yin XM (2004) Bid-cardiolipin interaction at mitochondrial contact site contributes to mitochondrial cristae reorganization and cytochrome c release. Mol Biol Cell 15:3061–3072PubMedGoogle Scholar
  210. 210.
    Armstrong JS (2006) The role of the mitochondrial permeability transition in cell death. Mitochondrion 6:225–234PubMedGoogle Scholar
  211. 211.
    Karbowski M, Youle RJ (2003) Dynamics of mitochondrial morphology in healthy cells and during apoptosis. Cell Death Differ 10:870–880PubMedGoogle Scholar
  212. 212.
    Frank S, Gaume B, Bergmann-Leitner ES, Leitner WW, Robert EG, Catez F, Smith CL, Youle RJ (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525PubMedGoogle Scholar
  213. 213.
    James DI, Parone PA, Mattenberger Y, Martinou JC (2003) hFis1, a novel component of the mammalian mitochondrial fission machinery. J Biol Chem 278:36373–36379PubMedGoogle Scholar
  214. 214.
    Petrosillo G, Ruggiero FM, Paradies G (2003) Role of reactive oxygen species and cardiolipin in the release of cytochrome c from mitochondria. Faseb J 17:2202–2208PubMedGoogle Scholar
  215. 215.
    Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S (2002) Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA 99:1259–1263PubMedGoogle Scholar
  216. 216.
    Piccotti L, Buratta M, Giannini S, Gresele P, Roberti R, Corazzi L (2004) Binding and release of cytochrome c in brain mitochondria is influenced by membrane potential and hydrophobic interactions with cardiolipin. J Membr Biol 198:43–53PubMedGoogle Scholar
  217. 217.
    Gottlieb E (2006) OPA1 and PARL keep a lid on apoptosis. Cell 126:27–29PubMedGoogle Scholar
  218. 218.
    Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB (1997) Bcl-XL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91:627–637PubMedGoogle Scholar
  219. 219.
    Azzone GF, Azzi A (1965) Volume changes in liver mitochondria. Proc Natl Acad Sci USA 53:1084–1089PubMedGoogle Scholar
  220. 220.
    Ankarcrona M, Dypbukt JM, Bonfoco E, Zhivotovsky B, Orrenius S, Lipton SA, Nicotera P (1995) Glutamate-induced neuronal death: A succession of necrosis or apoptosis depending on mitochondrial function. Neuron 15:961–973PubMedGoogle Scholar
  221. 221.
    Troyano A, Sancho P, Fernandez C, de Blas E, Bernardi P, Aller P (2003) The selection between apoptosis and necrosis is differentially regulated in hydrogen peroxide-treated and glutathione-depleted human promonocytic cells. Cell Death Differ 10:889–898PubMedGoogle Scholar
  222. 222.
    Gramaglia D, Gentile A, Battaglia M, Ranzato L, Petronilli V, Fassetta M, Bernardi P, Rasola A (2004) Apoptosis to necrosis switching downstream of apoptosome formation requires inhibition of both glycolysis and oxidative phosphorylation in a BCL-X(L)- and PKB/AKT-independent fashion. Cell Death Differ 11:342–353PubMedGoogle Scholar
  223. 223.
    Holmuhamedov EL, Jovanovic S, Dzeja PP, Jovanovic A, Terzic A (1998) Mitochondrial ATP-sensitive K+ channels modulate cardiac mitochondrial function. Am J Physiol 275:H1567–1576PubMedGoogle Scholar
  224. 224.
    Kowaltowski AJ, Seetharaman S, Paucek P, Garlid KD (2001) Bioenergetic consequences of opening the ATP-sensitive K(+) channel of heart mitochondria. Am J Physiol Heart Circ Physiol 280:H649–657PubMedGoogle Scholar
  225. 225.
    Gogvadze V, Robertson JD, Enoksson M, Zhivotovsky B, Orrenius S (2004) Mitochondrial cytochrome c release may occur by volume-dependent mechanisms not involving permeability transition. Biochem J 378:213–217PubMedGoogle Scholar
  226. 226.
    Eliseev RA, Salter JD, Gunter KK, Gunter TE (2003) Bcl-2 and tBid proteins counter-regulate mitochondrial potassium transport. Biochim Biophys Acta 1604:1–5PubMedGoogle Scholar
  227. 227.
    Murphy E, Imahashi K, Steenbergen C (2005) Bcl-2 regulation of mitochondrial energetics. Trends Cardiovasc Med 15:283–290PubMedGoogle Scholar
  228. 228.
    Griffiths EJ, Halestrap AP (1993) Protection by Cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol 25:1461–1469PubMedGoogle Scholar
  229. 229.
    Li PA, Uchino H, Elmer E, Siesjo BK (1997) Amelioration by cyclosporin A of brain damage following 5 or 10 min of ischemia in rats subjected to preischemic hyperglycemia. Brain Res 753:133–140PubMedGoogle Scholar
  230. 230.
    Friberg H, Ferrand-Drake M, Bengtsson F, Halestrap AP, Wieloch T (1998) Cyclosporin A, but not FK 506, protects mitochondria and neurons against hypoglycemic damage and implicates the mitochondrial permeability transition in cell death. J Neurosci 18:5151–5159PubMedGoogle Scholar
  231. 231.
    Irwin WA, Bergamin N, Sabatelli P, Reggiani C, Megighian A, Merlini L, Braghetta P, Columbaro M, Volpin D, Bressan GM, Bernardi P, Bonaldo P (2003) Mitochondrial dysfunction and apoptosis in myopathic mice with collagen VI deficiency. Nat Genet 35:367–371PubMedGoogle Scholar
  232. 232.
    Keep M, Elmer E, Fong KS, Csiszar K (2001) Intrathecal cyclosporin prolongs survival of late-stage ALS mice. Brain Res 894:327–331PubMedGoogle Scholar
  233. 233.
    Klohn PC, Soriano ME, Irwin W, Penzo D, Scorrano L, Bitsch A, Neumann HG, Bernardi P (2003) Early resistance to cell death and to onset of the mitochondrial permeability transition during hepatocarcinogenesis with 2-acetylaminofluorene. Proc Natl Acad Sci USA 100:10014–10019PubMedGoogle Scholar
  234. 234.
    Soriano ME, Nicolosi L, Bernardi P (2004) Desensitization of the permeability transition pore by cyclosporin a prevents activation of the mitochondrial apoptotic pathway and liver damage by tumor necrosis factor-alpha. J Biol Chem 279:36803–36808PubMedGoogle Scholar
  235. 235.
    Di Lisa F, Bernardi P (2006) Mitochondria and ischemia-reperfusion injury of the heart: fixing a hole. Cardiovasc Res 70:191–199PubMedGoogle Scholar
  236. 236.
    Clarke SJ, McStay GP, Halestrap AP (2002) Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem 277:34793–34799PubMedGoogle Scholar
  237. 237.
    Argaud L, Gateau-Roesch O, Muntean D, Chalabreysse L, Loufouat J, Robert D, Ovize M (2005) Specific inhibition of the mitochondrial permeability transition prevents lethal reperfusion injury. J Mol Cell Cardiol 38:367–374PubMedGoogle Scholar
  238. 238.
    Green DR, Evan GI (2002) A matter of life and death. Cancer Cell 1:19–30PubMedGoogle Scholar
  239. 239.
    Chandra J, Mansson E, Gogvadze V, Kaufmann SH, Albertioni F, Orrenius S (2002) Resistance of leukemic cells to 2-chlorodeoxyadenosine is due to a lack of calcium-dependent cytochrome c release. Blood 99:655–663PubMedGoogle Scholar
  240. 240.
    Verrier F, Deniaud A, Lebras M, Metivier D, Kroemer G, Mignotte B, Jan G, Brenner C (2004) Dynamic evolution of the adenine nucleotide translocase interactome during chemotherapy-induced apoptosis. Oncogene 23:8049–8064PubMedGoogle Scholar
  241. 241.
    Brenner C, Grimm S (2006) The permeability transition pore complex in cancer cell death. Oncogene 25:4744–4756PubMedGoogle Scholar
  242. 242.
    Rotem R, Heyfets A, Fingrut O, Blickstein D, Shaklai M, Flescher E (2005) Jasmonates: novel anticancer agents acting directly and selectively on human cancer cell mitochondria. Cancer Res 65:1984–1993PubMedGoogle Scholar
  243. 243.
    Lieser MJ, Park J, Natori S, Jones BA, Bronk SF, Gores GJ (1998) Cholestasis confers resistance to the rat liver mitochondrial permeability transition. Gastroenterology 115:693–701PubMedGoogle Scholar
  244. 244.
    Korenaga M, Okuda M, Otani K, Wang T, Li Y, Weinman SA (2005) Mitochondrial dysfunction in hepatitis C. J Clin Gastroenterol 39:S162–S166PubMedGoogle Scholar
  245. 245.
    Hoek JB, Cahill A, Pastorino JG (2002) Alcohol and mitochondria: A dysfunctional relationship. Gastroenterology 122:2049–2063PubMedGoogle Scholar
  246. 246.
    Jobsis GJ, Keizers H, Vreijling JP, de Visser M, Speer MC, Wolterman RA, Baas F, Bolhuis PA (1996) Type VI collagen mutations in Bethlem myopathy, an autosomal dominant myopathy with contractures. Nat Genet 14:113–115PubMedGoogle Scholar
  247. 247.
    Camacho Vanegas O, Bertini E, Zhang RZ, Petrini S, Minosse C, Sabatelli P, Giusti B, Chu ML, Pepe G (2001) Ullrich scleroatonic muscular dystrophy is caused by recessive mutations in collagen type VI. Proc Natl Acad Sci USA 98:7516–7521PubMedGoogle Scholar
  248. 248.
    Folbergrova J, Li PA, Uchino H, Smith ML, Siesjö BK (1997) Changes in the bioenergetic state of rat hippocampus during 2.5 min of ischemia, and prevention of cell damage by cyclosporin A in hyperglycemic subjects. Exp Brain Res 114:44–50PubMedGoogle Scholar
  249. 249.
    Ferrand-Drake M, Friberg H, Wieloch T (1999) Mitochondrial permeability transition induced DNAfragmentation in the rat hippocampus following hypoglycemia. Neuroscience 90:1325–1338PubMedGoogle Scholar
  250. 250.
    Scheff SW, Sullivan PG (1999) Cyclosporin A significantly ameliorates cortical damage following experimental traumatic brain injury in rodents. J Neurotrauma 16:783–792PubMedCrossRefGoogle Scholar
  251. 251.
    Alessandri B, Rice AC, Levasseur J, DeFord M, Hamm RJ, Bullock MR (2002) Cyclosporin A improves brain tissue oxygen consumption and learning #8260; memory performance after lateral fluid percussion injury in rats. J Neurotrauma 19:829–841PubMedGoogle Scholar
  252. 252.
    Vanderluit JL, McPhail LT, Fernandes KJ, Kobayashi NR, Tetzlaff W (2003) In vivo application of mitochondrial pore inhibitors blocks the induction of apoptosis in axotomized neonatal facial motoneurons. Cell Death Differ 10:969–976PubMedGoogle Scholar
  253. 253.
    Fox DA, Poblenz AT, He L, Harris JB, Medrano CJ (2003) Pharmacological strategies to block rod photoreceptor apoptosis caused by calcium overload: a mechanistic target-site approach to neuroprotection. Eur J Ophthalmol 13 (Suppl. 3):S44–S56PubMedGoogle Scholar
  254. 254.
    Masubuchi Y, Suda C, Horie T (2005) Involvement of mitochondrial permeability transition in acetaminophen- induced liver injury in mice. J Hepatol 42:110–116PubMedGoogle Scholar
  255. 255.
    Yoshiba M, Sekiyama K, Inoue K, Fujita R (1995) Interferon and cyclosporin A in the treatment of fulminant viral hepatitis. J Gastroenterol 30:67–73PubMedGoogle Scholar
  256. 256.
    Kawakami T, Sato S, Suzuki K (2000) Beneficial effect of Cyclosporin A on acute hepatic injury induced by galactosamine and lipopolysaccharide in rats. Hepatol Res 18:284–297PubMedGoogle Scholar
  257. 257.
    Feldmann G, Haouzi D, Moreau A, Durand SA, Bringuier A, Berson A, Mansouri A, Fau D, Pessayre D (2000) Opening of the mitochondrial permeability transition pore causes matrix expansion and outer membrane rupture in Fas-mediated hepatic apoptosis in mice. Hepatology 31:674–683PubMedGoogle Scholar
  258. 258.
    Crouser ED, Julian MW, Huff JE, Joshi MS, Bauer JA, Gadd ME, Wewers MD, Pfeiffer DR (2004) Abnormal permeability of inner and outer mitochondrial membranes contributes independently to mitochondrial dysfunction in the liver during acute endotoxemia. Crit Care Med 32:478–488PubMedGoogle Scholar
  259. 259.
    Angelin A, Tiepolo T, Sabatelli P, Grumati P, Bergamin N, Golfieri C, Mattioli E, Gualandi F, Ferlini A, Merlini L, Maraldi NM, Bonaldo P, Bernardi P (2007) Mitochondrial dysfunction in the pathogenesis of Ullrich congenital muscular dystrophy and prospective therapy with cyclosporins. Proc Natl Acad Sci USA Jan 10; [Epub ahead of print]Google Scholar
  260. 260.
    Plin C, Haddad PS, Tillement JP, Elimadi A, Morin D (2004) Protection by cyclosporin A of mitochondrial and cellular functions during a cold preservation-warm reperfusion of rat liver. Eur J Pharmacol 495:111–118Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  1. 1.CNR Institute of Neuroscience and Department of Biomedical SciencesUniversity of PadovaPadovaItaly

Personalised recommendations