Apoptosis

, Volume 12, Issue 5, pp 923–939 | Cite as

Sphingolipids and cell death

  • Albert Morales
  • Hyunmi Lee
  • Felix M. Goñi
  • Richard Kolesnick
  • José C. Fernandez-Checa
Article

Abstract

Sphingolipids (SLs) have been considered for many years as predominant building blocks of biological membranes with key structural functions and little relevance in cellular signaling. However, this view has changed dramatically in recent years with the recognition that certain SLs such as ceramide, sphingosine 1-phosphate and gangliosides, participate actively in signal transduction pathways, regulating many different cell functions such as proliferation, differentiation, adhesion and cell death. In particular, ceramide has attracted considerable attention in cell biology and biophysics due to its key role in the modulation of membrane physical properties, signaling and cell death regulation. This latter function is largely exerted by the ability of ceramide to activate the major pathways governing cell death such as the endoplasmic reticulum and mitochondria. Overall, the evidence so far indicates a key function of SLs in disease pathogenesis and hence their regulation may be of potential therapeutic relevance in different pathologies including liver diseases, neurodegeneration and cancer biology and therapy.

Keywords

Ceramide Gangliosides Membranes Transbilayer trafficking Mitochondria Endoplasmic reticulum 

References

  1. 1.
    Kolesnick R (2002) The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J Clin Invest 110:3–8PubMedGoogle Scholar
  2. 2.
    Ogretmen B, Hannun YA (2004) Biologically active sphingolipids in cancer pathogenesis and treatment. Nat Rev Cancer 4:604–616PubMedGoogle Scholar
  3. 3.
    Hofmann K, Dixit VM (1998) Ceramide in apoptosis–does it really matter? Trends Biochem Sci 23:374–377PubMedGoogle Scholar
  4. 4.
    Kolesnick R, Hannun YA (1999) Ceramide and apoptosis. Trends Biochem Sci 24:224–227PubMedGoogle Scholar
  5. 5.
    Grullich C, Sullards MC, Fukz Z, Merrill AH Jr, Kolesnick R (2000) CD95(Fas/APO-1) signals ceramide generation independent of the effector stage of apoptosis. J Biol Chem 275:8650–8656PubMedGoogle Scholar
  6. 6.
    Kolesnick R, Kronke M (1998) Regulation of ceramide production and apoptosis. Annu Rev Physiol 60:643–665PubMedGoogle Scholar
  7. 7.
    Marchesini N, Hannun YA (2004) Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem Cell Biol 82:27–44PubMedGoogle Scholar
  8. 8.
    Morales A, Colell A, Mari M, Garcia-Ruiz C, Fernandez-Checa JC (2004) Glycosphingolipids and mitochondria: role in apoptosis and disease. Glyconjug J 20:579–588Google Scholar
  9. 9.
    Merrill AH (2002) De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J Biol Chem 277:25843–25846PubMedGoogle Scholar
  10. 10.
    Pewzner-Jung Y, Ben-Dor S, Futerman AH (2006) When do Lasses (longevity assurance genes) become CerS (ceramide synthases)? Insights into the regulation of ceramide synthesis. J Biol Chem 281:25001–25005PubMedGoogle Scholar
  11. 11.
    Futerman AH, Rietzman H (2005) The ins and outs of sphingolipid synthesis. Trends Cell Biol 15:312–318PubMedGoogle Scholar
  12. 12.
    Lynch DV, Dunn TM (2004) An introduction to plant sphingolipids and a review of recent advances in understanding their metabolism and function. New Phytologist 161:677–702Google Scholar
  13. 13.
    Butron A, Santiago R, Mansilla P, Pintos-Varela C, Ordas A, Malvar RA (2006) Maize (Zea mays L.) genetic factors for preventing fumonisin contamination. J Agric Food Chem 54:6113–6117PubMedGoogle Scholar
  14. 14.
    Stockmann-Juvala H, Naarala J, Loikkanen J, Vahakangas K, Savolainen K (2006) Fumonisin B1-induced apoptosis in neuroblastoma, glioblastoma and hypothalamic cell lines. Toxicology 225:234–241PubMedGoogle Scholar
  15. 15.
    Clarke CJ, Snook CF, Tani M, Matmati N, Marchesini N, Hannun YA (2006) The extended family of neutral sphingomyelinases. Biochemistry 45:11247–11256PubMedGoogle Scholar
  16. 16.
    Tomiuk S, Hofmann K, Nix M, Zumbansen M, Stoffel W (1998) Cloned mammalian neutral sphingomyelinase: functions in sphingolipid signaling?. Proc Natl Acad Sci USA 95:3638–3643PubMedGoogle Scholar
  17. 17.
    Sawai H, Domae N, Nagan N, Hannun YA (1999) Function of the cloned putative neutral sphingomyelinase as lyso-platelet activating factor-phospholipase C. J Biol Chem 274: 38131–38139PubMedGoogle Scholar
  18. 18.
    Marchesini N, Luberto C, Hannun YA (2003) Biochemical properties of mammalian neutral sphingomyelinase 2 and its role in sphingolipid metabolism. J Biol Chem 278:13775–13783PubMedGoogle Scholar
  19. 19.
    Krut O, Wiegmann K, Kashkar H, Yazdanpanah B, Kronke M (2006) Novel tumor necrosis factor-responsive mammalian neutral sphingomyelinase-3 is a C-tail-anchored protein. J Biol Chem 281:13784–13793PubMedGoogle Scholar
  20. 20.
    Schissel SL, Jiang X, Tweedie-Hardman J et al (1998) Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J Biol Chem 273:2738–2746PubMedGoogle Scholar
  21. 21.
    Liu P, Anderson RG (1995) Compartmentalized production of ceramide at the cell surface. J Biol Chem 270:27179–27185PubMedGoogle Scholar
  22. 22.
    Grassme H, Cremesti A, Kolesnick R, Gulbins E (2003) Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22:5457–5470PubMedGoogle Scholar
  23. 23.
    Garcia-Ruiz C, Colell A, Mari M et al (2003) Defective TNF-alpha-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. J Clin Invest 111:197–208PubMedGoogle Scholar
  24. 24.
    Llacuna L, Mari M, Garcia-Ruiz C, Fernandez-Checa JC, Morales A (2006) Critical role of acidic sphingomyelinase in murine hepatic ischemia-reperfusion injury. Hepatology 44:561–572PubMedGoogle Scholar
  25. 25.
    Garcia-Ruiz C, Mari M, Morales A, Colell A, Ardite E, Fernandez-Checa JC (2000) Human placenta sphingomyelinase, an exogenous acidic pH-optimum sphingomyelinase, induces oxidative stress, glutathione depletion, and apoptosis in rat hepatocytes. Hepatology 32:56–65PubMedGoogle Scholar
  26. 26.
    Mari M, Colell A, Morales A et al (2004) Acidic sphingomyelinase downregulates the liver-specific methionine adenosyltransferase 1A, contributing to tumor necrosis factor-induced lethal hepatitis. J Clin Invest 113:895–904PubMedGoogle Scholar
  27. 27.
    Valaperta R, Chigomo V, Basso L et al (2006) Plasma membrane production of ceramide from ganglioside GM3 in human fibroblasts. FASEB J 20:1227–1229PubMedGoogle Scholar
  28. 28.
    El Bawab S, Roddy P, Qian T, Bielawska A, Lemasterss JJ, Hannun YA (2000) Molecular cloning and characterization of a human mitochondrial ceramidase. J Biol Chem 275:21508–21513PubMedGoogle Scholar
  29. 29.
    Bionda C, Portoukalian J, Schmitt D, Rodriguez-Lafrasse C, Ardail D (2004) Subcellular compartmentalization of ceramide metabolism: MAM (mitochondria-associated membrane) and/or mitochondria? Biochem J 382:527–533PubMedGoogle Scholar
  30. 30.
    Taha TA, Hannun YA, Obeid LM (2006) Sphingosine kinase: biochemical and cellular regulation and role in disease. J Biochem Mol Biol 39:113–131PubMedGoogle Scholar
  31. 31.
    Allende ML, Sasaki T, Kawai H et al (2004) Mice deficient in sphingosine kinase 1 are rendered lymphopenic by FTY720. J Biol Chem 279:52487–52492PubMedGoogle Scholar
  32. 32.
    Dressler KA, Kolesnick RN (1990) Ceramide-1-phosphate, a novel phospholipid in human leukemia (HL-60) cells. J Biol Chem 265:14917–14921PubMedGoogle Scholar
  33. 33.
    Gómez-Muñoz A (2006) Ceramide-1-phosphate/ceramde: a switch between life and death. Biochim Biophys Acta in pressGoogle Scholar
  34. 34.
    Bajjalieh SM, Martin TFJ, Floor E (1989) Synaptic vesicle ceramide kinase. A calcium-stimulated lipid kinase that copurifies with brain synaptic vesicles. J Biol Chem 264:14354–14360PubMedGoogle Scholar
  35. 35.
    Sugiura M, Kono K, Liu H et al (2002) Ceramide kinase, a novel lipid kinase. J Biol Chem 277:23294–23300PubMedGoogle Scholar
  36. 36.
    Perry RJ, Ridgway ND (2005) Molecular mechanisms and regulation of ceramide transport. Biochim Biophys Acta 1734:220–234PubMedGoogle Scholar
  37. 37.
    Hanada K, Kumagai K, Yasuda S et al (2003) Molecular machinery for non-vesicular trafficking of ceramide. Nature 426:803–809PubMedGoogle Scholar
  38. 38.
    Kumagai K, Yasuda S, Okemoto K, Nishijima M, Kobayashi S, Hanaka K (2005) CERT mediates intermembrane transfer of various molecular species of ceramides. J Biol Chem 280: 6488–6495PubMedGoogle Scholar
  39. 39.
    Perry RJ, Ridway ND (2006) Oxysterol-binding protein and vesicle-associated membrane protein-associated protein are required for sterol-dependent activation of the ceramide transport protein. Mol Biol Cell 17:2604–2616PubMedGoogle Scholar
  40. 40.
    Giussani P, Maceyka M, Le Stunff M et al (2006) Sphingosine-1-phosphate phosphohydrolase regulates endoplasmic reticulum-to-Golgi trafficking of ceramide. Mol Cell Biol 26:5055–5069PubMedGoogle Scholar
  41. 41.
    Basu S, Kaufman B, Roseman S (1973) Enzymatic synthesis of glucocerebroside by a glucosyltransferase from embryonic chicken brain. J Biol Chem 248:1388–1394PubMedGoogle Scholar
  42. 42.
    Basu S, Schutz AM, Basu M, Roseman S (1971) Enzymatic synthesis of galactosylcerebroside by a galactosyltransferase from endoplasmic chicken brain. J Biol Chem 246:4272–4279PubMedGoogle Scholar
  43. 43.
    Yamashita T, Wada R, Sasaki T et al (1999) A vital role for glycosphingolipid synthesis during development and differentiation. Proc Natl Acad Sci USA 96:9142–9147PubMedGoogle Scholar
  44. 44.
    Basu S (1991) The serendipity of ganglioside biosynthesis: pathway to CARS and HY-CARS glycosyltransferases. Glycobiology 1:469–475PubMedGoogle Scholar
  45. 45.
    Lovat PE, Corazzari M, DiSano F, Piacentini M, Redfern CP (2005) The role of gangliosides in fenretinide-induced apoptosis of neuroblastoma. Cancer Lett 228:105–110PubMedGoogle Scholar
  46. 46.
    Hail N, Kim HJ, Lotan R (2006) Mechanisms of fenretinide-induced apoptosis. Apoptosis 11:1677–1694PubMedGoogle Scholar
  47. 47.
    Blitterswijk WJ, Van Der Luit A, Veldman R, Verheij M, Borst J (2003) Ceramide: second messenguer or modulator of membrane structure and dynamics? Biochem J 369:199–211PubMedGoogle Scholar
  48. 48.
    Goñi FM, Alonso A (2006) Biophysics of sphingolipids I. Membrane properties of sphingosine, ceramides and other simple sphingolipids. Biochim Biophys Acta in pressGoogle Scholar
  49. 49.
    Koiv A, Mustonen P, Kinnunen PKJ (1993) Influence of sphingosine on the thermal phase behaviour of neutral and acidic phospholipid liposomes. Chem Phys Lipids 66:123–134PubMedGoogle Scholar
  50. 50.
    Kinnunen PKJ, Rytomaa M, Koiv A, Lehtonen J, Mustonen P, Aro A (1993) Sphingosine-mediated membrane association of DNA and its reversal by phosphatidic-acid. Chem Phys Lipids 66:75–88PubMedGoogle Scholar
  51. 51.
    Siskind LJ, Fluss S, Bui M, Colombini M (2005) Sphingosine forms channels in membranes that differ greatly from those formed by ceramide. J Bioenerg Biomemb 37:227–236Google Scholar
  52. 52.
    Contreras FX, Sot J, Alonso A, Goñi FM (2006) Sphingosine increases the permeability of model and cell membranes. Biophys J 90:4085–4092PubMedGoogle Scholar
  53. 53.
    Holopainen JM, Lehtonen JY, Kinnunen PKJ (1997) Lipid microdomains in dimyristoylphosphatidylcholine-ceramide liposomes. Chem Phys Lipids 88:1–13PubMedGoogle Scholar
  54. 54.
    Holopainen JM, Subramanian M, Kinnunen PKJ (1998) Sphingomyelinase induces lipid microdomain formation in a fluid phosphatidylcholine/sphingomyelin membrane. Biochemistry 37:17562–17570PubMedGoogle Scholar
  55. 55.
    Huang HW, Goldberg EM, Zidovetzki Z (1996) Ceramides induces structural defects into phosphatidylcholine bilayers and activates phospholipase A2. Biochem Biophys Res Commun 220:834–838PubMedGoogle Scholar
  56. 56.
    Veiga MP, Arrondo JLR, Goñi FM, Alonso A (1999) Ceramides in Phospholipid Membranes: Effects on Bilayer Stability and Transition to Nonlamellar Phases. Biophys J 76:342–350PubMedGoogle Scholar
  57. 57.
    Fanani ML, Hartel S, Oliveira RG, Maggio B (2002) Bidirectional control of sphingomyelinase activity and surface topography in lipid monolayers. Biophys J 83:3416–3424PubMedGoogle Scholar
  58. 58.
    Härtel S, Fanani ML, Maggio B (2005) Shape transitions and lattice structuring of ceramide-enriched domains generated by sphingomyelinase in lipid monolayers. Biophys J 88:287–304PubMedGoogle Scholar
  59. 59.
    Sot J, Bagatoll LA, Goñi FM, Alonso A (2006) Detergent-resistant, ceramide-enriched domains in sphingomyelin/ceramide bilayers. Biophys J 90:903–914PubMedGoogle Scholar
  60. 60.
    Bai JN, Pagano (1997) Measurement of spontaneous transfer and transbilayer movement of BODIPY-labeled lipids in lipid vesicles. Biochemistry 36:8840–8848PubMedGoogle Scholar
  61. 61.
    Lopez-Montero I, Rodriguez N, Cribier S, Pohl A, Velez L, Devaux PF (2005) Rapid transbilayer movement of ceramides in phospholipid vesicles and in human erythrocytes. J Biol Chem 280:25811–25819PubMedGoogle Scholar
  62. 62.
    Contreras FX, Basañez G, Alonso A, Herrmann A, Goñi FM (2005) Asymmetric addition of ceramides but not dihydroceramides promotes transbilayer (flip-flop) lipid motion in membranes. Biophys J 88:348–359PubMedGoogle Scholar
  63. 63.
    Contreras FX, Villar AV, Alonso A, Kolesnick RN, Goñi FM (2003) Sphingomyelinase activity causes transbilayer lipid translocation in model and cell membranes. J Biol Chem 278:37169–37174PubMedGoogle Scholar
  64. 64.
    Pascher I (1976) Molecular arrangements in sphingolipids. Conformation and hydrogen bonding of ceramide and their implication on membrane stability and permeability. Biochim Biophys Acta 455:433–451PubMedGoogle Scholar
  65. 65.
    Ruiz-Arguello MB, Basañez G, Goñi FM, Alonso A (1996) Different effects of enzyme-generated ceramides and diacylglycerols in phospholipid membrane fusion and leakage. J Biol Chem 271:26616–26621PubMedGoogle Scholar
  66. 66.
    Montes LR, Ruiz-Arguello MB, Goñi FM, Alonso A (2002) Membrane restructuring via ceramide results in enhanced solute efflux. J Biol Chem 277:11788–11794PubMedGoogle Scholar
  67. 67.
    Siskind LJ, Colombini M (2000) The lipids C2- and C16-ceramide form large stable channels. Implications for apoptosis. J Biol Chem 275:38640–38644PubMedGoogle Scholar
  68. 68.
    Siskind LJ, Kolesnick R, Colombini M (2006) Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations. Mitochondrion 6:118–125PubMedGoogle Scholar
  69. 69.
    Hannun YA, Obeid LM (2002) The Ceramide-centric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J Biol Chem 277:25847–25850PubMedGoogle Scholar
  70. 70.
    Lozano J, Berra E, Municio MM et al (1994) Protein kinase C ζ isoform is critical for κB-dependent promoter activation by sphingomyelinase. J Biol Chem 269:19200–19202PubMedGoogle Scholar
  71. 71.
    Muller G, Ayoub M, Storz P, Rennecke J, Fabbro D, Pfizenmaier K (1995) PKCz is a molecular switch in signal transduction of TNF-α, bifunctionally regulated by ceramide and arachidonic acid. EMBO J 14:1961–1969PubMedGoogle Scholar
  72. 72.
    Zhang Y, Yao B, Delikat S et al (1997) Kinase suppressor of Ras is ceramide-activated protein kinase. Cell 89:63–72PubMedGoogle Scholar
  73. 73.
    Huwiler A, Brunner J, Hummel R et al (1996) Ceramide-binding and activation defines protein kinase c-Raf as a ceramide-activated protein kinase. Proc Natl Acad Sci USA 93:6959–6963PubMedGoogle Scholar
  74. 74.
    Dobrowsky RT, Kamibayashi C, Mumby MC, Hannun YA (1993) Ceramide activates heterotrimeric protein phosphatase 2A. J Biol Chem 268:15523–15530PubMedGoogle Scholar
  75. 75.
    Ruvolo PP, Clark W, Mumby M, Gao F, May WS (2002) A functional role for the B56 alpha-subunit of protein phosphatase 2A in ceramide-mediated regulation of Bcl2 phosphorylation status and function. J Biol Chem 277: 22847–22852PubMedGoogle Scholar
  76. 76.
    Verheij M, Bose R, Lin XH et al (1996) Requirement for ceramide-initiated SAPK/JNK signaling in stress-induced apoptosis. Nature 380:75–79PubMedGoogle Scholar
  77. 77.
    Xin M, Deng X (2006) Protein phosphatase 2A enhances the proapoptotic function of Bax through dephosphorylation. J Biol Chem 281:18859–18867PubMedGoogle Scholar
  78. 78.
    Heinrich M, Wickel M, Schneider-Brachert W et al (1999) Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J 18:5252–5263PubMedGoogle Scholar
  79. 79.
    Heinrich M, Neumeyer J, Jakob M et al (2004) Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ 11:550–563PubMedGoogle Scholar
  80. 80.
    Simons K, Ehehalt R (2002) Cholesterol, lipid rafts, and disease. J Clin Invest 110:597–603PubMedGoogle Scholar
  81. 81.
    Rotolo JA, Zhang J, Donepudi M, Lee H, Fuks Z, Kolesnick R (2005) Caspase-dependent and -independent activation of acid sphingomyelinase signaling. J Biol Chem 280:26425–26434PubMedGoogle Scholar
  82. 82.
    Bollinger CR, Teichgraber V, Gulbins E (2005) Ceramide-enriched membrane domains. Biochim Biophys Acta 1746:284–294PubMedGoogle Scholar
  83. 83.
    Gulbins E, Kolesnick R (2003) Raft ceramide in molecular medicine. Oncogene 22:7070–7077PubMedGoogle Scholar
  84. 84.
    Morita Y, Perez GI, Paris F et al (2000) Oocyte apoptosis is suppressed by disruption of the acid sphingomyelinase gene or by sphingosine-1-phosphate therapy. Nat Med 6:1109–1114PubMedGoogle Scholar
  85. 85.
    Perez GI, Jurisicova A, Matikainen T et al (2005) A central role for ceramide in the age-related acceleration of apoptosis in the female germline. FASEB J 19:860–862PubMedGoogle Scholar
  86. 86.
    Potten CS (1990) A comprehensive study of the radiobiological response of the murine (BDF1) small intestine. Int J Radiat Biol 58:925–973PubMedGoogle Scholar
  87. 87.
    Potten CS, Booth C, Pritchard DM (1997) The intestinal epithelial stem cell: the mucosal governor. Int J Exp Pathol 78:219–243PubMedGoogle Scholar
  88. 88.
    Petrache I, Natarajan V, Zhen L et al (2005) Ceramide upregulation causes pulmonary cell apoptosis and emphysema-like disease in mice. Nat Med 11:491–498PubMedGoogle Scholar
  89. 89.
    Ch’ang HJ, Maj JG, Paris F et al (2005) ATM regulates target switching to escalating doses of radiation in the intestines. Nat Med 11:484–490PubMedGoogle Scholar
  90. 90.
    Lin T, Genestier L, Pinkosli MJ et al (2000) Role of acidic sphingomyelinase in Fas/CD95-mediated cell death. J Biol Chem 275:8657–8663PubMedGoogle Scholar
  91. 91.
    Luberto C (2002) Inhibition of tumor necrosis factor-induced cell death in MCF-7 by a novel inhibitor of neutral sphingomyelinase. J Biol Chem 277:41128–41139PubMedGoogle Scholar
  92. 92.
    Liu JJ, Wang JY, Hertervig E et al (2000) Activation of neutral sphingomyelinase participates in ethanol-induced apoptosis in HepG2 cells. Alcohol Alcohol 35:569–573PubMedGoogle Scholar
  93. 93.
    Scarlatti F, Bauvy C, Ventruti A et al (2004) Ceramide-mediated macroautophagy involves inhibition of protein kinase B and up-regulation of beclin 1. J Biol Chem 279:18384–18391PubMedGoogle Scholar
  94. 94.
    Daido S, Kanzawa T, Yamamoto A, Takeuchi H, Kondo Y, Kondo S (2004) Pivotal role of the cell death factor BNIP3 in ceramide-induced autophagic cell death in malignant glioma cells. Cancer Res 64:4286–4293PubMedGoogle Scholar
  95. 95.
    Dunn W (1994) Autophagy and related mechanisms of lysosome-mediated protein degradation. Trends Cell Biol 4:139–143PubMedGoogle Scholar
  96. 96.
    Levine B, Yuan J (2005) Autophagy in cell death: an innocent convict? J Clin Invest 115:2679–2688PubMedGoogle Scholar
  97. 97.
    Boya P, Gonzalez-Polo RA, Casares N et al (2005) Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 25:1025–1040PubMedGoogle Scholar
  98. 98.
    Leist M, Jäättelä M (2001) Four death and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2:589–598PubMedGoogle Scholar
  99. 99.
    Kroemer G, Martin SJ (2005) Caspase-independent cell death. Nat Med 11:725–730PubMedGoogle Scholar
  100. 100.
    Ferri K, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:E255–E263PubMedGoogle Scholar
  101. 101.
    Walter L, Hajnoczky G (2005) Mitochondria and endoplasmic reticulum: the lethal interorganelle cross-talk. J Bioenerg Biomem 37:191–206Google Scholar
  102. 102.
    Shiraishi H, Okamoto H, Yoshimura A, Yoshida H (2006) ER stress-induced apoptosis and caspase-12 activation occurs downstream of mitochondrial apoptosis involving Apaf-1. J Cell Sci 119:3958–3966PubMedGoogle Scholar
  103. 103.
    Boya P, Cohen I, Zamzami N, Vieira HL, Kroemer G (2002) Endoplasmic reticulum stress-induced cell death requires mitochondrial membrane permeabilization. Cell Death Differ 9: 465–467PubMedGoogle Scholar
  104. 104.
    Simmen T, Aslan JE, Blagoveschchenskaya AD et al (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 24:717–729PubMedGoogle Scholar
  105. 105.
    Marciniak SJ, Ron D (2006) Endoplasmic reticulum stress signaling in disease. Physiol Rev 86:1133–1149PubMedGoogle Scholar
  106. 106.
    Wu J, Kaufman RJ (2006) From acute ER stress to physiological roles of the Unfolded Protein Response. Cell Death Differ 13:374–384PubMedGoogle Scholar
  107. 107.
    Hwang C, Sinskey AJ, Lodish HF (1992) Oxidized redox state of glutathione in the endoplasmic reticulum. Science 257:1496–1502PubMedGoogle Scholar
  108. 108.
    Zhao L, Ackerman SL (2006) Endoplasmic reticulum stress in health and disease. Curr Opin Cell Biol 18:444–452PubMedGoogle Scholar
  109. 109.
    Ron D (2006) Stressed cells cope with protein overload. Science 313:52–53PubMedGoogle Scholar
  110. 110.
    Hollien J, Weissmann JS (2006) Decay of Endoplasmic Reticulum-Localized mRNAs During the Unfolded Protein Response. Science 313:104–107PubMedGoogle Scholar
  111. 111.
    Harding HP, Zhang Y, Zeng H et al (2003) An integrated stress response regulates amino acid metabolism and resistance to oxidative stress. Mol Cell 11:619–633PubMedGoogle Scholar
  112. 112.
    Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC (2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22:8608–8618PubMedGoogle Scholar
  113. 113.
    Ledeen RW, Wu G (2002) Ganglioside function in calcium homeostasis and signaling. Neurochem Res 27:637–647PubMedGoogle Scholar
  114. 114.
    d’Azzo A, Tessitore A, Sano R (2006) Gangliosides as apoptotic signals in ER stress response. Cell Death Differ 13:404–414PubMedGoogle Scholar
  115. 115.
    Pelled D, Lloyd-Evans E, Riebeling C, Jeyakumar M, Platt FM, Futerman AH (2003) Inhibition of calcium uptake via the sarco/endoplasmic reticulum Ca2+-ATPase in a mouse model of Sandhoff disease and prevention by treatment with N-butyldeoxynojirimycin. J Biol Chem 278: 29496–29501PubMedGoogle Scholar
  116. 116.
    Lloyd-Evans E, Pelled D, Riebeling C et al (2003) Glucosylceramide and glucosylsphingosine modulate calcium mobilization from brain microsomes via different mechanisms. J Biol Chem 278:23594–23599PubMedGoogle Scholar
  117. 117.
    Tessitore A, del P Martin M, Sano R et al (2004) GM1-ganglioside-mediated activation of the unfolded protein response causes neuronal death in a neurodegenerative gangliosidosis. Mol Cell 10:753–766Google Scholar
  118. 118.
    Carracedo A, Lorente M, Egia A et al (2006) The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell 9:301–312PubMedGoogle Scholar
  119. 119.
    Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629PubMedGoogle Scholar
  120. 120.
    Gogvadze V, Orrenius S, Zhivotovsky B (2006) Multiple pathways of cytochrome c release from mitochondria in apoptosis. Biochim Biophys Acta 1757:639–647PubMedGoogle Scholar
  121. 121.
    Zamzami N, Kroemer G (2001) The mitochondrion in apoptosis: how Pandora's box opens. Nat Rev Mol Cell Biol 2:67–71PubMedGoogle Scholar
  122. 122.
    Martinou JC, Green DR (2001) Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2:63–67PubMedGoogle Scholar
  123. 123.
    Garcia-Ruiz C, Colell A, Mari M, Morales A, Fernandez-Checa JC (1997) Direct effect of ceramide on the mitochondrial electron transport chain leads to generation of reactive oxygen species. Role of mitochondrial glutathione. J Biol Chem 272:11369–11377PubMedGoogle Scholar
  124. 124.
    Dai Q, Liu J, Chen J, Durrant D, McIntyre TM, Lee RM (2004) Mitochondrial ceramide increases in UV-irradiated HeLa cells and is mainly derived from hydrolysis of sphingomyelin. Oncogene 23:3650–3658PubMedGoogle Scholar
  125. 125.
    Birbes H, Luberto C, Hsu YT, El Bawab S, Hannun YA, Obeid LM (2005) A mitochondrial pool of sphingomyelin is involved in TNFalpha-induced Bax translocation to mitochondria. Biochem J 386:445–451PubMedGoogle Scholar
  126. 126.
    Dindo D, Dahm F, Szluc Z et al (2006) Cationic long-chain ceramide LCL-30 induced cell death by mitochondrial targeting in SW403 cells. Mol Cancer Ther 5:1520–1529PubMedGoogle Scholar
  127. 127.
    Gudz TI, Tserng KY, Hoppel Cl (1997) Direct inhibition of mitochondrial respiratory chain complex III by cell-permeable ceramide. J Biol Chem 272:24154–24158PubMedGoogle Scholar
  128. 128.
    Quillet-Mary A, Jaffrezou JP, Mansat V, Bordier C, Naval J, Laurent G (1997) Implication of mitochondrial hydrogen peroxide generation in ceramide-induced apoptosis. J Biol Chem 272:21388–21395PubMedGoogle Scholar
  129. 129.
    Birbes H, El Bawab S, Hannun YA, Obeid LM (2001) Selective hydrolysis of a mitochondrial pool of sphingomyelin induces apoptosis. FASEB J 15:2669–2679PubMedGoogle Scholar
  130. 130.
    Novgorodov SA, Szule ZM, Luberto C et al (2005) Positively charged ceramide is a potent inducer of mitochondrial permeabilization. J Biol Chem 280:16096–16105PubMedGoogle Scholar
  131. 131.
    Rippo MR, Malisan F, Ravagnan L et al (2000) GD3 ganglioside directly targets mitochondria in a bcl-2-controlled fashion. FASEB J 14:2047–2054PubMedGoogle Scholar
  132. 132.
    García-Ruiz C, Colell A, París R, Fernández-Checa JC (2000) Direct interaction of GD3 ganglioside with mitochondria generates reactive oxygen species followed by mitochondrial permeability transition, cytochrome c release and caspase activation. FASEB J 14:847–858PubMedGoogle Scholar
  133. 133.
    Garcia-Ruiz C, Colell A, Morales A, Calvo M, Enrich C, Fernandez-Checa JC (2002) Trafficking of ganglioside GD3 to mitochondria by tumor necrosis factor-alpha. J Biol Chem 277:36443–36448PubMedGoogle Scholar
  134. 134.
    DeMaria R, Lenti T, Malissan F et al (1997) Requirement for GD3 ganglioside in ceramide-induced apoptosis. Science 277:1652–1655Google Scholar
  135. 135.
    Colell A, Morales A, Fernandez-Checa JC, Garcia-Ruiz C (2002) Ceramide generated by acidic sphingomyelinase contributes to tumor necrosis factor-mediated apoptosis in HT-29 cells through glycosphingolipid generation. Possible role of ganglioside GD3. FEBS Lett 526:135–141PubMedGoogle Scholar
  136. 136.
    Copani A, Melchiorri D, Caricasole A et al (2002) Beta-amyloid-induced synthesis of ganglioside GD3 is a requisite for cell cycle reactivation and apoptosis in neurons. J Neurosci 22:3963–3968PubMedGoogle Scholar
  137. 137.
    Garofalo T, Giammarioli AM, Misasi R et al (2005) Lipid microdomains contribute to apoptosis-associated modifications of mitochondria in T cells. Cell Death Differ 12:1378–1389PubMedGoogle Scholar
  138. 138.
    Braun T, Carvalho G, Fabre C, Grosjean J, Fenaux P, Kroemer G (2006) Targeting NF-kappaB in hematologic malignancies. Cell Death Differ 13:748–758PubMedGoogle Scholar
  139. 139.
    Colell A, Garcia-Ruiz C, Roman J, Ballesta, Fernandez-Checa JC (2001) Ganglioside GD3 enhances apoptosis by suppressing the nuclear factor-kappaB-dependent survival pathway. FASEB J 15:1068–1070PubMedGoogle Scholar
  140. 140.
    Paris R, Morales A, Coll O, Sanchez-Reyes A, Garcia-Ruiz C, Fernandez-Checa JC (2002) Ganglioside GD3 sensitizes human hepatoma cells to cancer therapy. J Biol Chem 277:49870–49876PubMedGoogle Scholar
  141. 141.
    Malisan F, Franchi L, Tomassini B et al (2002) Acetylation suppresses the proapoptotic activity of GD3 ganglioside. J Exp Med 196:1535–1541PubMedGoogle Scholar
  142. 142.
    Chapman PB, Wu D, Ragupath G et al (2004) Sequential immunization of melanoma patients with GD3 ganglioside vaccine and anti-idiotypic monoclonal antibody that mimics GD3 ganglioside. Clin Cancer Res 10:4717–4723PubMedGoogle Scholar
  143. 143.
    Mari M, Caballero F, Colell A et al (2006) Mitochondrial free cholesterol loading sensitizes to TNF- and Fas-mediated steatohepatitis. Cell Metab 4:185–198PubMedGoogle Scholar
  144. 144.
    Segui B, Cuvillier O, Adam-Klagues S et al (2001) Involvement of FAN in TNF-induced apoptosis. J Clin Invest 108:143–151PubMedGoogle Scholar
  145. 145.
    Malagarie-Cazenave S, Segui B, Leveque S et al (2004) Role of FAN in tumor necrosis factor-alpha and lipopolysaccharide-induced interleukin-6 secretion and lethality in D-galactosamine-sensitized mice. J Biol Chem 279:18648–18655PubMedGoogle Scholar
  146. 146.
    Gupta S, Natarajan R, Payne SG et al (2004) Deoxycholic acid activates c-Jun N-terminal kinase pathway via FAS-receptor activation in primary hepatocytes. Role of acidic sphingomyelinase-mediated ceramide generation in FAS receptor activation. J Biol Chem 279:5821–5828PubMedGoogle Scholar
  147. 147.
    Corazza N, Jakob S, Schaer C et al (2006) TRAIL receptor-mediated JNK activation and Bim phosphorylation critically regulate Fas-mediated liver damage and lethality. J Clin Invest 116:2493–2499PubMedCrossRefGoogle Scholar
  148. 148.
    Malhi H, Bronk SD, Werneburg NW, Gores GJ (2006) Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem 281:12093–12101PubMedGoogle Scholar
  149. 149.
    Osawa Y, Hannun YA, Proia RL, Brenner DA (2005) Roles of AKT and sphingosine kinase in the antiapoptotic effects of bile duct ligation in mouse liver. Hepatology 42:1320–1328PubMedGoogle Scholar
  150. 150.
    Zheng DM, Kitamura T, Ikejima K et al (2006) Sphingosine 1-phosphate protects rat liver sinusoidal endothelial cells from ethanol-induced apoptosis: role of intracellular calcium and nitric oxide. Hepatology 44:1278–1287PubMedGoogle Scholar
  151. 151.
    Cutler RG, Kelly JK, Storie K et al (2004) Involvement of oxidative stress-induced abnormalities in ceramide and cholesterol metabolism in brain aging and Alzheimer's disease. Proc Natl Acad Sci USA 101:2070–2075PubMedGoogle Scholar
  152. 152.
    Lee JT, Xu J, Lee JM et al (2004) Amyloid-β peptide induces oligodendrocyte death by activating the neutral sphingomyelinase-ceramide pathway. J Cell Biol 164:123–131PubMedGoogle Scholar
  153. 153.
    Jana A, Pahan K (2004) Fibrillar amyloid-b peptides kill human primary neurons via NADPH oxidase-mediated activation of neutral sphingomyelinase. J Biol Chem 279:51451–51459PubMedGoogle Scholar
  154. 154.
    Grimm MO, Grimm HS, Patzold AJ et al (2005) Regulation of cholesterol and sphingomyelin metabolism by amyloid-β and presenilin. Nat Cell Biol 7:1118–1123PubMedGoogle Scholar
  155. 155.
    Yu ZF, Nikolova-Karakashian M, Zhou D, Cheng G, Schuchman EH, Mattson MP (2000) Pivotal role for acidic sphingomyelinase in cerebral ischemia-induced ceramide and cytokine production, and neuronal apoptosis. J Mol Neurosci 15:85–97PubMedGoogle Scholar
  156. 156.
    Simon BM, Malisan F, Testi R, Nicotera P, Leist M (2002) Disialoganglioside GD3 in released by microglia and induces oligodendrocyte apoptosis. Cell Death Differ 9:758–767PubMedGoogle Scholar
  157. 157.
    Selzner M, Bielaswska A, Morse MA et al (2001) Induction of apoptotic cell death and prevention of turmor growth by ceramide analogues in metastatic human colon cancer. Cancer Res 61:1233–1240PubMedGoogle Scholar
  158. 158.
    Morales A, Paris R, Villanueva A, Llacuna L, Garcia-Ruiz C, Fernandez-Checa JC (2006) Pharmacological inhibition of small interfering RNA targeting acid ceramidase sensitizes hepatoma cells to chemotherapy and reduces tumor growth in vivo. Oncogene in pressGoogle Scholar
  159. 159.
    Visentin B, Vekich JA, Sibbald BJ et al (2006) Validation of an anti-sphingosine-1-phosphate antibody as a potential therapeutic in reducing growth, invasion, and angiogenesis in multiple tumor lineages. Cancer Cell 9:225–238PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  • Albert Morales
    • 1
  • Hyunmi Lee
    • 2
  • Felix M. Goñi
    • 3
  • Richard Kolesnick
    • 2
  • José C. Fernandez-Checa
    • 1
  1. 1.Liver Unit and Centro de Investigaciones Biomédicas Esther Koplowitz, IMDiM, Hospital, Clínic i Provincial, Instituto Investigaciones Biomédicas August Pi i Sunyer (IDIBAPS), CIBER-HEPAD and Department of Cell Death and Proliferation, Instituto Investigaciones Biomédicas Barcelona, Consejo Superior de Investigaciones CientíficasBarcelonaSpain
  2. 2.Laboratory of Signal TransductionMemorial Sloan-Kettering Cancer CenterNew YorkUSA
  3. 3.Unidad de Biofisica (Centro Mixto CSIC-UPV/EHU)and Departamento de Bioquimica, Universidad del Pais VascoBilbaoSpain

Personalised recommendations