, Volume 12, Issue 5, pp 951–968 | Cite as

IP3 receptors in cell survival and apoptosis: Ca2+ release and beyond

  • Suresh K. Joseph
  • György HajnóczkyEmail author


Inositol 1,4,5-trisphosphate receptors (IP3Rs) serve to discharge Ca2+ from ER stores in response to agonist stimulation. The present review summarizes the role of these receptors in models of Ca2+-dependent apoptosis. In particular we focus on the regulation of IP3Rs by caspase-3 cleavage, cytochrome c, anti-apoptotic proteins and Akt kinase. We also address the evidence that some of the effects of IP3Rs in apoptosis may be independent of their ion-channel function. The role of IP3Rs in delivering Ca2+ to the mitochondria is discussed from the perspective of the factors determining inter-organellar dynamics and the spatial proximity of mitochondria and ER membranes.


Apoptosis Calcium Endoplasmic reticulum IP3 IP3 receptor Mitochondria 



Nuclear factor of activated T-cells


endoplasmic reticulum


murine embryo fibroblasts


Human immunodeficiency virus




B cell lymphoma 2


B cell lymphoma xL


Inositol 1,4,5-trisphosphate receptors


Ryanodine receptor


Ligand for Fas receptor (CD95)


Voltage dependent anion selective channel


cytoplasmic free [Ca2+]


mitochondrial matrix free [Ca2+]


outer mitochondrial membrane


inner mitochondrial membrane


permeability transition pore


  1. 1.
    Mikoshiba K (2006) Inositol 1,4,5-trisphosphate IP(3) receptors and their role in neuronal cell function. J Neurochem 97:1627–1633PubMedGoogle Scholar
  2. 2.
    Patel S, Joseph SK, Thomas AP (1999) Molecular properties of inositol 1,4,5-trisphosphate receptors. Cell Calcium 25:247–264PubMedGoogle Scholar
  3. 3.
    Patterson RL, Boehning D, Snyder SH (2004) Inositol 1,4,5-trisphosphate receptors as signal integrators. Annual reviews in Biochemistry 73:437–465Google Scholar
  4. 4.
    McCormack JG, Halestrap AP, Denton RM (1990) Role of calcium ions in regulation of mammalian intramitochondrial metabolism. Physiol Rev 70:391–425PubMedGoogle Scholar
  5. 5.
    Robb-Gaspers LD, Rutter GA, Burnett P, Hajnoczky G, Denton RM, Thomas AP (1998) Coupling between cytosolic and mitochondrial calcium oscillations: role in the regulation of hepatic metabolism. Biochim Biophys Acta 1366:17–32PubMedGoogle Scholar
  6. 6.
    Walter L, Hajnoczky G (2005) Mitochondria and endoplasmic reticulum: the lethal interorganelle cross-talk. J Bioenerg Biomembr 37:191–206PubMedGoogle Scholar
  7. 7.
    Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408PubMedGoogle Scholar
  8. 8.
    Hanson CJ, Bootman MD, Roderick HL (2004) Cell signalling: IP3 receptors channel calcium into cell death. Curr Biol 14:R933–R935PubMedGoogle Scholar
  9. 9.
    Orrenius S, Zhivotovsky B, Nicotera P (2003) Regulation of cell death: the calcium-apoptosis link. Nature review Molecular Cell Biology 4:552–565Google Scholar
  10. 10.
    Demaurex N, Distelhorst C (2003) Cell biology. Apoptosis—the calcium connection. Science 300:65–67PubMedGoogle Scholar
  11. 11.
    Randriamampita C, Trautmann A (2004) Ca2+ signals and T lymphocytes; “New mechanisms and functions in Ca2+ signalling”. Biol Cell 96:69–78PubMedGoogle Scholar
  12. 12.
    Bhakta NR, Lewis RS (2005) Real-time measurement of signaling and motility during T cell development in the thymus. Semin Immunol 17:411–420PubMedGoogle Scholar
  13. 13.
    Kurosaki T (2002) Regulation of B-cell signal transduction by adaptor proteins. Nat Rev Immunol 2:354–363PubMedGoogle Scholar
  14. 14.
    Zhong F, Davis MC, McColl KS, Distelhorst CW (2006) Bcl-2 differentially regulates Ca2+ signals according to the strength of T cell receptor activation. J Cell Biol 172:127–137PubMedGoogle Scholar
  15. 15.
    McFarlane SM, Anderson HM, Tucker SJ, Jupp OJ, MacEwan DJ (2000) Unmodified calcium concentrations in tumour necrosis factor receptor subtype-mediated apoptotic cell death. Mol Cell Biochem 211:19–26PubMedGoogle Scholar
  16. 16.
    Binah O, Shilkrut M, Yaniv G, Larisch S (2004) The Fas receptor-1,4,5-IP3 cascade: a potential target for treating heart failure and arrhythmias. Ann NY Acad Sci 1015:338–350PubMedGoogle Scholar
  17. 17.
    Wozniak AL, Wang X, Stieren ES, Scarbrough SG, Elferink CJ, Boehning D (2006) Fas apoptosis is mediated by phospholipase C-gamma1 activation and cytosolic Ca2+ elevation. J Cell BiolGoogle Scholar
  18. 18.
    Pinton P, Ferrari D, Rapizzi E, Di Virgilio F, Pozzan T, Rizzuto R (2001) The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J 20:2690–2701PubMedGoogle Scholar
  19. 19.
    Nutt LK, Chandra J, Pataer A et al (2002) Bax-mediated Ca2+ mobilization promotes cytochrome c release during apoptosis. J Biol Chem 277:20301–20308PubMedGoogle Scholar
  20. 20.
    Assefa Z, Bultynck G, Szlufcik K et al (2004) Caspase-3-induced Truncation of Type 1 Inositol trisphosphate receptor accelerates apoptotic cell death and induces inositol trisphosphate-independent calcium release during apoptosis. J Biol Chem 279:43227–43236PubMedGoogle Scholar
  21. 21.
    Nawrocki ST, Carew JS, Dunner K Jr et al (2005) Bortezomib inhibits PKR-like endoplasmic reticulum (ER) kinase and induces apoptosis via ER stress in human pancreatic cancer cells. Cancer Res 65:11510–11519PubMedGoogle Scholar
  22. 22.
    Baffy G, Miyashita T, Williamson JR, Reed JC (1993) Apoptosis induced by withdrawal of Interleukin-3 from an IL-3 dependent hematopoetic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced bcl-2 oncoprotein production. J Biol Chem 268:6511–6519PubMedGoogle Scholar
  23. 23.
    Breckenridge DG, Germain M, Mathai JP, Nguyen M, Shore GC (2003) Regulation of apoptosis by endoplasmic reticulum pathways. Oncogene 22:8608–8618PubMedGoogle Scholar
  24. 24.
    Boyce M, Yuan J (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13:363–373PubMedGoogle Scholar
  25. 25.
    Camello C, Lomax R, Petersen OH, Tepikin AV (2002) Calcium leak from intracellular stores—the enigma of calcium signalling. Cell Calcium 32:355–361PubMedGoogle Scholar
  26. 26.
    Khan AA, Soloski MJ, Sharp AH et al (1996) Lymphocyte apoptosis: Mediation by increased type 3 inositol 1,4,5-trisphosphate receptor. Science 273:503–506PubMedGoogle Scholar
  27. 27.
    Blackshaw S, Sawa A, Sharp AH, Ross CA, Snyder SH, Khan AA (2000) Type 3 inositol 1,4,5-trisphosphate receptor modulates cell death. FASEB J 14:1375–1379PubMedGoogle Scholar
  28. 28.
    Mendes CC, Gomes DA, Thompson M et al (2005) The type III inositol 1,4,5-trisphosphate receptor preferentially transmits apoptotic Ca2+ signals into mitochondria. J Biol Chem 280:40892–40900PubMedGoogle Scholar
  29. 29.
    Jayaraman T, Marks AR (1997) T cells deficient in Inositol 1,4,5-trisphosphate receptor are resistant to apoptosis. Mol Cell Biol 17:3005–3012PubMedGoogle Scholar
  30. 30.
    Jayaraman T, Marks AR (2000) Calcineurin is downstream of the inositol 1,4,5-trisphosphate receptor in the apoptotic and cell growth pathways. J Biol Chem 275:6417–6420PubMedGoogle Scholar
  31. 31.
    Hirota J, Baba M, Matsumoto M, Furuichi T, Takatsu K, Mikoshiba K (1998) T-cell-receptor signalling in inositol 1,4,5-trisphosphate receptor (IP3R) type-1-deficient mice: is IP3R type 1 essential for T-cell-receptor signalling? Biochem J 333:615–619PubMedGoogle Scholar
  32. 32.
    Futatsugi A, Nakamura T, Yamada MK et al (2005) IP3 receptor types 2 and 3 mediate exocrine secretion underlying energy metabolism. Science 309:2232–2234PubMedGoogle Scholar
  33. 33.
    Miyakawa T, Maeda A, Yamazawa T, Hirose K, Kurasaki T, Iino M (1999) Encoding of calcium signals by differential expression of IP3 receptor subtypes. EMBO J 18:1303–1308PubMedGoogle Scholar
  34. 34.
    Sugawara H, Kurosaki M, Takata M, Kurosaki T (1997) Genetic evidence for involvement of type 1, type 2 and type 3 inositol 1,4,5-trisphosphate receptors in signal transduction through the B-cell antigen receptor. EMBO J 16:3078–3088PubMedGoogle Scholar
  35. 35.
    White C, Li C, Yang J et al (2005) The endoplasmic reticulum gateway to apoptosis by Bcl-X(L) modulation of the InsP3R. Nat Cell Biol 7:1021–1028PubMedGoogle Scholar
  36. 36.
    Hirota J, Furuichi T, Mikoshiba K (1999) Inositol 1,4,5-trisphosphate receptor type-I is a substrate for caspase-3 and is cleaved in apoptosis in a caspase-3 dependent manner. J Biol Chem 274:34433–34437PubMedGoogle Scholar
  37. 37.
    Diaz F, Bourguignon LY (2000) Selective down-regulation of IP3 receptor subtypes by caspases and calpains during TNFalpha apoptosis of human T-lymphoma cells. Cell Calcium 27:315–328PubMedGoogle Scholar
  38. 38.
    Haug LS, Walaas I, Ostvold AC (2000) Degradation of the type-I Inositol 1,4,5-trsiphosphate receptor by caspase-3 in SH-SY5Y Neuroblastoma cells undergoing apoptosis. J Neurochem 75:1852–1861PubMedGoogle Scholar
  39. 39.
    Boehning D, Patterson RL, Sedaghat L, Glebova NO, Kurosaki T, Snyder SH (2003) Cytochrome c binds to inositol (1,4,5) trisphosphate receptors, amplifying calcium-dependent apoptosis. Nat Cell Biol 5:1051–1061PubMedGoogle Scholar
  40. 40.
    Bhanumathy CD, Nakao SK, Joseph SK (2006) Mechanism of proteasomal degradation of inositol trisphosphate receptors in CHO-K1 cells. J Biol Chem 281:3722–3730PubMedGoogle Scholar
  41. 41.
    Sergeev IN (2004) Genistein induces Ca2+ -mediated, calpain/caspase-12-dependent apoptosis in breast cancer cells. Biochem Biophys Res Commun 321:462–467PubMedGoogle Scholar
  42. 42.
    Palmer AE, Jin C, Reed JC, Tsien RY (2004) Bcl-2-mediated alterations in endoplasmic reticulum Ca2+ analyzed with an improved genetically encoded fluorescent sensor. Proc Natl Acad Sci USA 101:17404–17409PubMedGoogle Scholar
  43. 43.
    Xu L, Kong D, Zhu L, Zhu W, Andrews DW, Kuo TH (2006) Suppression of IP3-mediated calcium release and apoptosis by Bcl-2 involves the participation of protein phosphatase 1. Mol Cell BiochemGoogle Scholar
  44. 44.
    Nakayama T, Hattori M, Uchida K et al (2004) The regulatory domain of the inositol 1,4,5-trisphosphate receptor is necessary to keep the channel domain closed: possible physiological significance of specific cleavage by caspase 3. Biochem J 377:299–307PubMedGoogle Scholar
  45. 45.
    Szlufcik K, Missiaen L, Parys JB, Callewaert G, De Smedt H (2006) Uncoupled IP3 receptor can function as a Ca2+-leak channel: cell biological and pathological consequences. Biol Cell 98:1–14PubMedGoogle Scholar
  46. 46.
    Harwood SM, Yaqoob MM, Allen DA (2005) Caspase and calpain function in cell death: bridging the gap between apoptosis and necrosis. Ann Clin Biochem 42:415–431PubMedGoogle Scholar
  47. 47.
    Magnusson A, Haug L, Walaas S, Ostvold A (1993) Calcium-induced degradation of the inositol (1,4,5)-trisphosphate receptor/Ca(2+)-channel. FEBS Lett 323:229–232PubMedGoogle Scholar
  48. 48.
    Wojcikiewicz RJH, Oberdorf JA (1996) Degradation of inositol 1,4,5-trisphosphate receptors during cell stimulation is a specific process mediated by cysteine protease. J Biol Chem 271:16652–16655PubMedGoogle Scholar
  49. 49.
    Chen M, He H, Zhan S, Krajewski S, Reed JC, Gottlieb RA (2001) Bid is cleaved by calpain to an active fragment in vitro and during myocardial ischemia/reperfusion. J Biol Chem 276:30724–30728PubMedGoogle Scholar
  50. 50.
    Shulga N, Pastorino JG (2006) Acyl coenzyme a binding protein augments bid induced mitochondrial damage and cell death by activating mu-calpain. J Biol ChemGoogle Scholar
  51. 51.
    Tan Y, Dourdin N, Wu C, De Veyra T, Elce JS, Greer PA (2006) Ubiquitous calpains promote caspase-12 and JNK activation during endoplasmic reticulum stress-induced apoptosis. J Biol Chem 281:16016–16024PubMedGoogle Scholar
  52. 52.
    Shioda N, Moriguchi S, Shirasaki Y, Fukunaga K (2006) Generation of constitutively active calcineurin by calpain contributes to delayed neuronal death following mouse brain ischemia. J Neurochem 98:310–320PubMedGoogle Scholar
  53. 53.
    Bano D, Young KW, Guerin CJ et al (2005) Cleavage of the plasma membrane Na+/Ca2+exchanger in excitotoxicity. Cell 120:275–285PubMedGoogle Scholar
  54. 54.
    Bezprozvanny I, Watras J, Ehrlich BE (1991) Bell-shaped calcium-response curves of Ins(1,4,5)P3- and calcium-gated channels from endoplasmic reticulum of cerebellum. Nature 351:751–754PubMedGoogle Scholar
  55. 55.
    Hajnoczky G, Hager R, Thomas AP (1999) Mitochondria suppress local feedback activation of inositol 1,4, 5-trisphosphate receptors by Ca2+. J Biol Chem 274:14157–14162PubMedGoogle Scholar
  56. 56.
    Jouaville LS, Ichas F, Holmuhamedov EL, Camacho P, Lechleiter JD (1995) Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes. Nature 377:438–441PubMedGoogle Scholar
  57. 57.
    Boehning D, van Rossum DB, Patterson RL, Snyder SH (2005) A peptide inhibitor of cytochrome c/inositol 1,4,5-trisphosphate receptor binding blocks intrinsic and extrinsic cell death pathways. Proc Natl Acad Sci USAGoogle Scholar
  58. 58.
    Taylor CW, da Fonseca PC, Morris EP (2004) IP(3) receptors: the search for structure. Trends Biochem Sci 29:210–219PubMedGoogle Scholar
  59. 59.
    Hamada K, Terauchi A, Mikoshiba K (2003) Three-dimensional rearrangements within inositol 1,4,5-trisphosphate receptor by calcium. J Biol Chem 278:52881–52889PubMedGoogle Scholar
  60. 60.
    Beresewicz M, Kowalczyk JE, Zablocka B (2006) Cytochrome c binds to inositol (1,4,5) trisphosphate and ryanodine receptors in vivo after transient brain ischemia in gerbils. Neurochem Int 48:568–571PubMedGoogle Scholar
  61. 61.
    Csordas G, Madesh M, Antonsson B, Hajnoczky G (2002) tcBid promotes Ca(2+) signal propagation to the mitochondria: control of Ca(2+) permeation through the outer mitochondrial membrane. EMBO J 21:2198–2206PubMedGoogle Scholar
  62. 62.
    Munoz-Pinedo C, Guio-Carrion A, Goldstein JC, Fitzgerald P, Newmeyer DD, Green DR (2006) Different mitochondrial intermembrane space proteins are released during apoptosis in a manner that is coordinately initiated but can vary in duration. Proc Natl Acad Sci USA 103:11573–11578PubMedGoogle Scholar
  63. 63.
    Sedlak TW, Snyder SH (2006) Messenger molecules and cell death: therapeutic implications. JAMA 295:81–89PubMedGoogle Scholar
  64. 64.
    Pinton P, Rizzuto R (2006) Bcl-2 and Ca2+ homeostasis in the endoplasmic reticulum. Cell Death Differ 13:1409–1418PubMedGoogle Scholar
  65. 65.
    Distelhorst CW, Shore GC (2004) Bcl-2 and calcium: controversy beneath the surface. Oncogene 23:2875–2880PubMedGoogle Scholar
  66. 66.
    Oakes SA, Opferman JT, Pozzan T, Korsmeyer SJ, Scorrano L (2003) Regulation of endoplasmic reticulum Ca2+ dynamics by proapoptotic BCL-2 family members. Biochem Pharmacol 66:1335–1340PubMedGoogle Scholar
  67. 67.
    Li C, Fox CJ, Master SR, Bindokas VP, Chodosh LA, Thompson CB (2002) Bcl-X(L) affects Ca(2+) homeostasis by altering expression of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci USA 99:9830–9835PubMedGoogle Scholar
  68. 68.
    Chen R, Valencia I, Zhong F et al (2004) Bcl-2 functionally interacts with inositol 1,4,5-trisphosphate receptors to regulate calcium release from the ER in response to inositol 1,4,5-trisphosphate. J Cell Biol 166:193–203PubMedGoogle Scholar
  69. 69.
    Pinton P, Ferrari D, Magalhaes P et al (2000) Reduced loading of intracellular Ca(2+) stores and downregulation of capacitative Ca(2+) influx in Bcl-2-overexpressing cells. J Cell Biol 148:857–862PubMedGoogle Scholar
  70. 70.
    Basset O, Boittin FX, Cognard C, Constantin B, Ruegg UT (2006) Bcl-2 overexpression prevents calcium overload and subsequent apoptosis in dystrophic myotubes. Biochem J 395:267–276PubMedGoogle Scholar
  71. 71.
    Oakes SA, Scorrano L, Opferman JT et al (2005) Proapoptotic BAX and BAK regulate the type 1 inositol trisphosphate receptor and calcium leak from the endoplasmic reticulum. Proc Natl Acad Sci USA 102:105–110PubMedGoogle Scholar
  72. 72.
    Schug ZT, Joseph SK (2006) The role of the S4–S5 linker and C-terminal tail in inositol 1,4,5-trisphosphate receptor function. J Biol Chem 281:24431–24440PubMedGoogle Scholar
  73. 73.
    Tang TS, Tu H, Wang Z, Bezprozvanny I (2003) Modulation of type 1 inositol (1,4,5)-trisphosphate receptor function by protein kinase a and protein phosphatase 1alpha. J Neurosci 23:403–415PubMedGoogle Scholar
  74. 74.
    Malissein E, Verdier M, Ratinaud MH, Troutaud D (2006) Activation of Bad trafficking is involved in the BCR-mediated apoptosis of immature B cells. Apoptosis 11:1003–1012PubMedGoogle Scholar
  75. 75.
    Erin N, Billingsley ML (2004) Domoic acid enhances Bcl-2-calcineurin-inositol-1,4,5-trisphosphate receptor interactions and delayed neuronal death in rat brain slices. Brain Res 1014:45–52PubMedGoogle Scholar
  76. 76.
    Fiebig AA, Zhu W, Hollerbach C, Leber B, Andrews DW (2006) Bcl-XL is qualitatively different from and ten times more effective than Bcl-2 when expressed in a breast cancer cell line. BMC Cancer 6:213PubMedGoogle Scholar
  77. 77.
    Yamamoto H, Maeda N, Niinobe M, Miyamoto E, Mikoshiba K (1989) Phosphorylation of P400 protein by cyclic AMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase II. J Neurochem 53:917–923PubMedGoogle Scholar
  78. 78.
    Soulsby MD, Wojcikiewicz RJ (2005) The type III inositol 1,4,5-trisphosphate receptor is phosphorylated by cAMP-dependent protein kinase at three sites. Biochem J 392:493–497PubMedGoogle Scholar
  79. 79.
    Wagner LE, Li WH, Yule DI (2003) Phosphorylation of type-1 inositol 1,4,5-trisphosphate receptors by cyclic nucleotide-dependent protein kinases: a mutational analysis of the functionally important sites in the S2+ and S2− splice variants. J Biol Chem 278:45811–45817PubMedGoogle Scholar
  80. 80.
    Wagner LE, Li WH, Joseph SK, Yule DI (2004) Functional consequences of phosphomimetic mutations at key cAMP-dependent protein kinase phosphorylation sites in the type 1 inositol 1,4,5-trisphosphate receptor. J Biol Chem 279:46242–46252PubMedGoogle Scholar
  81. 81.
    Schlossmann J, Ammendola A, Ashman K et al (2000) Regulation of intracellular calcium by a signalling complex of IRAG, IP3 receptor and cGMP kinase Ibeta. Nature 404:197–201PubMedGoogle Scholar
  82. 82.
    DeSouza N, Reiken S, Ondrias K, Yang YM, Matkovich S, Marks AR (2002) Protein kinase A and two phosphatases are components of the inositol 1,4,5-trisphosphate receptor macromolecular signaling complex. J Biol Chem 277:39397–39400PubMedGoogle Scholar
  83. 83.
    Tu H, Tang TS, Wang Z, Bezprozvanny I (2004) Association of type 1 inositol 1,4,5-trisphosphate receptor with AKAP9 (Yotiao) and protein kinase A. J Biol Chem 279:19375–19382PubMedGoogle Scholar
  84. 84.
    Scorrano L, Oakes SA, Opferman JT et al (2003) BAX and BAK regulation of endoplasmic reticulum Ca2+: a control point for apoptosis. Science 300:135–139PubMedGoogle Scholar
  85. 85.
    Zhong F, Davis MC, McColl KS, Distelhorst CW (2006) Bcl-2 differentially regulates Ca2+ signals according to the strength of T cell receptor activation. J Cell Biol 172:127–137PubMedGoogle Scholar
  86. 86.
    Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ (2004) Phosphorylation of BCL-2 regulates ER Ca2+ homeostasis and apoptosis. EMBO J 23:1207–1216PubMedGoogle Scholar
  87. 87.
    Mathai JP, Germain M, Shore GC (2005) BH3-only BIK regulates BAX,BAK-dependent release of Ca2+ from endoplasmic reticulum stores and mitochondrial apoptosis during stress-induced cell death. J Biol Chem 280:23829–23836PubMedGoogle Scholar
  88. 88.
    Breckenridge DG, Stojanovic M, Marcellus RC, Shore GC (2003) Caspase cleavage product of BAP31 induces mitochondrial fission through endoplasmic reticulum calcium signals, enhancing cytochrome c release to the cytosol. J Cell Biol 160:1115–1127PubMedGoogle Scholar
  89. 89.
    Shi J, Parada LF, Kernie SG (2005) Bax limits adult neural stem cell persistence through caspase and IP3 receptor activation. Cell Death DifferGoogle Scholar
  90. 90.
    Lindsten T, Golden JA, Zong WX, Minarcik J, Harris MH, Thompson CB (2003) The proapoptotic activities of Bax and Bak limit the size of the neural stem cell pool. J Neurosci 23:11112–11119PubMedGoogle Scholar
  91. 91.
    Bare DJ, Kettlun CS, Liang M, Bers DM, Mignery GA (2005) Cardiac type 2 inositol 1,4,5-trisphosphate receptor: interaction and modulation by calcium/calmodulin-dependent protein kinase II. J Biol Chem 280:15912–15920PubMedGoogle Scholar
  92. 92.
    Vermassen E, Fissore RA, Nadif KN et al (2004) Regulation of the phosphorylation of the inositol 1,4,5-trisphosphate receptor by protein kinase C. Biochem Biophys Res Commun 319:888–893PubMedGoogle Scholar
  93. 93.
    Malathi K, Li X, Krizanova O et al (2005) Cdc2/cyclin B1 interacts with and modulates inositol 1,4,5-trisphosphate receptor (type 1) functions. J Immunol 175:6205–6210PubMedGoogle Scholar
  94. 94.
    Bai GR, Yang LH, Huang XY, Sun FZ (2006) Inositol 1,4,5-trisphosphate receptor type 1 phosphorylation and regulation by extracellular signal-regulated kinase. Biochem Biophys Res Commun 348:1319–1327PubMedGoogle Scholar
  95. 95.
    Khan MT, Wagner L, Yule DI, Bhanumathy C, Joseph SK (2006) Akt kinase phosphorylation of inositol 1,4,5-trisphosphate receptors. J Biol Chem 281:3731–3737PubMedGoogle Scholar
  96. 96.
    Brazil DP, Yang ZZ, Hemmings BA (2004) Advances in protein kinase B signalling: AKTion on multiple fronts. Trends Biochem Sci 29:233–242PubMedGoogle Scholar
  97. 97.
    Kim D, Chung J (2002) Akt: versatile mediator of cell survival and beyond. J Biochem Mol Biol 35:106–115PubMedGoogle Scholar
  98. 98.
    Szlufcik K, Bultynck G, Callewaert G, Missiaen L, Parys JB, De Smedt H (2006) The suppressor domain of inositol 1,4,5-trisphosphate receptor plays an essential role in the protection against apoptosis. Cell Calcium 39:325–336PubMedGoogle Scholar
  99. 99.
    Tantral L, Malathi K, Kohyama S, Silane M, Berenstein A, Jayaraman T (2004) Intracellular calcium release is required for caspase-3 and -9 activation. Cell Biochem Funct 22:35–40PubMedGoogle Scholar
  100. 100.
    van Rossum DB, Patterson RL, Cheung KH et al (2006) DANGER: A novel regulatory protein of IP3-receptor activity. J Biol ChemGoogle Scholar
  101. 101.
    Mikoshiba K (2006) Inositol 1,4,5-trisphosphate IP(3) receptors and their role in neuronal cell function. J Neurochem 97:1627–1633PubMedGoogle Scholar
  102. 102.
    van Rossum DB, Patterson RL, Kiselyov K et al (2004) Agonist-induced Ca2+ entry determined by inositol 1,4,5-trisphosphate recognition. Proc Natl Acad Sci USA 101:2323–2327PubMedGoogle Scholar
  103. 103.
    Parekh AB, Putney JW, Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810PubMedGoogle Scholar
  104. 104.
    Dellis O, Dedos SG, Tovey SC, Taufiq UR, Dubel SJ, Taylor CW (2006) Ca2+ entry through plasma membrane IP3 receptors. Science 313:229–233PubMedGoogle Scholar
  105. 105.
    Greenway AL, Holloway G, McPhee DA, Ellis P, Cornall A, Lidman M (2003) HIV-1 Nef control of cell signalling molecules: multiple strategies to promote virus replication. J Biosci 28:323–335PubMedCrossRefGoogle Scholar
  106. 106.
    Manninen A, Saksela K (2002) HIV-1 Nef interacts with inositol trisphosphate receptor to activate calcium signaling in T cells. J Exp Med 195:1023–1032PubMedGoogle Scholar
  107. 107.
    Mattson MP, Haughey NJ, Nath A (2005) Cell death in HIV dementia. Cell Death Differ 12(Suppl 1):893–904Google Scholar
  108. 108.
    Haughey NJ, Holden CP, Nath A, Geiger JD (1999) Involvement of inositol 1,4,5-trisphosphate-regulated stores of intracellular calcium in calcium dysregulation and neuron cell death caused by HIV-1 protein tat. J Neurochem 73:1363–1374PubMedGoogle Scholar
  109. 109.
    Stutzmann GE (2005) Calcium dysregulation, IP3 signaling, and Alzheimer's disease. Neuroscientist 11:110–115PubMedGoogle Scholar
  110. 110.
    Smith IF, Green KN, Laferla FM (2005) Calcium dysregulation in Alzheimer's disease: recent advances gained from genetically modified animals. Cell Calcium 38:427–437PubMedGoogle Scholar
  111. 111.
    Stutzmann GE, Smith I, Caccamo A, Oddo S, Laferla FM, Parker I (2006) Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer's disease mice. J Neurosci 26:5180–5189PubMedGoogle Scholar
  112. 112.
    Tu H, Nelson O, Bezprozvanny A et al (2006) Presenilins form ER Ca(2+) leak channels, a function disrupted by familial alzheimer's disease-linked mutations. Cell 126:981–993PubMedGoogle Scholar
  113. 113.
    Kasri NN, Kocks SL, Verbert L et al (2006) Up-regulation of inositol 1,4,5-trisphosphate receptor type 1 is responsible for a decreased endoplasmic-reticulum Ca2+ content in presenilin double knock-out cells. Cell Calcium 40:41–51PubMedGoogle Scholar
  114. 114.
    Leissring MA, Parker I, Laferla FM (1999) Presenilin-2 mutations modulate amplitude and kinetics of inositol 1,4,5-trisphosphate-mediated calcium signals. J Biol Chem 274:32535–32538PubMedGoogle Scholar
  115. 115.
    Wolozin B, Iwasaki K, Vito P et al (1996) Participation of presenilin 2 in apoptosis: enhanced basal activity conferred by an Alzheimer mutation. Science 274:1710–1713PubMedGoogle Scholar
  116. 116.
    Cai C, Lin P, Cheung KH et al (2006) The presenilin-2 loop peptide perturbs intracellular Ca2+ homeostasis and accelerates apoptosis. J Biol Chem 281:16649–16655PubMedGoogle Scholar
  117. 117.
    Tang TS, Tu H, Chan EY et al (2003) Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39:227–239PubMedGoogle Scholar
  118. 118.
    Tang TS, Tu H, Orban PC, Chan EY, Hayden MR, Bezprozvanny I (2004) HAP1 facilitates effects of mutant huntingtin on inositol 1,4,5-trisphosphate-induced Ca release in primary culture of striatal medium spiny neurons. Eur J Neurosci 20:1779–1787PubMedGoogle Scholar
  119. 119.
    Tang TS, Slow E, Lupu V et al (2005) Disturbed Ca2+ signaling and apoptosis of medium spiny neurons in Huntington's disease. Proc Natl Acad Sci USA 102:2602–2607PubMedGoogle Scholar
  120. 120.
    Li Q, Verma IM (2002) NF-kappaB regulation in the immune system. Nat Rev Immunol 2:725–734PubMedGoogle Scholar
  121. 121.
    Karin M (2006) Nuclear factor-kappaB in cancer development and progression. Nature 441:431–436PubMedGoogle Scholar
  122. 122.
    Burstein E, Duckett CS (2003) Dying for NF-kappaB? Control of cell death by transcriptional regulation of the apoptotic machinery. Curr Opin Cell Biol 15:732–737PubMedGoogle Scholar
  123. 123.
    Glazner GW, Camandola S, Geiger JD, Mattson MP (2001) Endoplasmic reticulum D-myo-inositol 1,4,5-trisphosphate-sensitive stores regulate nuclear factor-kappaB binding activity in a calcium-independent manner. J Biol Chem 276:22461–22467PubMedGoogle Scholar
  124. 124.
    Liu X, Kim CN, Yang J, Jemmerson R, Wang X (1996) Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell 86:147–157PubMedGoogle Scholar
  125. 125.
    Green DR, Kroemer G (2004) The pathophysiology of mitochondrial cell death. Science 305:626–629PubMedGoogle Scholar
  126. 126.
    Haworth RA, Hunter DR (1979) The Ca2+-induced membrane transition in mitochondria. II. Nature of the Ca2+ trigger site. Arch Biochem Biophys 195:460–467PubMedGoogle Scholar
  127. 127.
    Szalai G, Krishnamurthy R, Hajnoczky G (1999) Apoptosis driven by IP(3)-linked mitochondrial calcium signals. EMBO J 18:6349–6361PubMedGoogle Scholar
  128. 128.
    Pinton P, Ferrari D, Rapizzi E, Di Virgilio F, Pozzan T, Rizzuto R (2001) The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: Significance for the molecular mechanism of Bcl-2 action. EMBO J 20:2690–2701PubMedGoogle Scholar
  129. 129.
    Ichas F, Jouaville LS, Sidash SS, Mazat JP, Holmuhamedov EL (1994) Mitochondrial calcium spiking: A transduction mechanism based on calcium-induced permeability transition involved in cell calcium signalling. FEBS Lett 348:211–215PubMedGoogle Scholar
  130. 130.
    Kroner H (1986) Ca2+ ions, an allosteric activator of calcium uptake in rat liver mitochondria. Arch Biochem Biophys 251:525–535PubMedGoogle Scholar
  131. 131.
    Csordas G, Hajnoczky G (2003) Plasticity of mitochondrial calcium signaling. J Biol Chem 278:42273–42282PubMedGoogle Scholar
  132. 132.
    Hajnoczky G, Davies E, Madesh M (2003) Calcium signaling and apoptosis. Biochem Biophys Res Commun 304:445–454PubMedGoogle Scholar
  133. 133.
    Simpson PB, Mehotra S, Lange GD, Russell JT (1997) High density distribution of endoplasmic reticulum proteins and mitochondria at specialized Ca2+ release sites in oligodendrocyte processes. J Biol Chem 272:22654–22661PubMedGoogle Scholar
  134. 134.
    Csordas G, Hajnoczky G (2001) Sorting of calcium signals at the junctions of endoplasmic reticulum and mitochondria. Cell Calcium 29:249–262PubMedGoogle Scholar
  135. 135.
    Arnaudeau S, Frieden M, Nakamura K, Castelbou C, Michalak M, Demaurex N (2002) Calreticulin differentially modulates calcium uptake and release in the endoplasmic reticulum and mitochondria. J Biol Chem 277:46696–46705PubMedGoogle Scholar
  136. 136.
    Csordas G, Thomas AP, Hajnoczky G (1999) Quasi-synaptic calcium signal transmission between endoplasmic reticulum and mitochondria. EMBO J 18:96–108PubMedGoogle Scholar
  137. 137.
    Lin X, Varnai P, Csordas G et al (2005) Control of calcium signal propagation to the mitochondria by inositol 1,4,5-trisphosphate-binding proteins. J Biol Chem 280:12820–12832PubMedGoogle Scholar
  138. 138.
    Zhu L, Ling S, Yu XD et al (1999) Modulation of mitochondrial Ca(2+) homeostasis by Bcl-2. J Biol Chem 274:33267–33273PubMedGoogle Scholar
  139. 139.
    Park MK, Ashby MC, Erdemli G, Petersen OH, Tepikin AV (2001) Perinuclear, perigranular and sub-plasmalemmal mitochondria have distinct functions in the regulation of cellular calcium transport. EMBO J 20:1863–1874PubMedGoogle Scholar
  140. 140.
    Collins TJ, Lipp P, Berridge MJ, Bootman MD (2001) Mitochondrial Ca(2+) uptake depends on the spatial and temporal profile of cytosolic Ca(2+) signals. J Biol Chem 276:26411–26420PubMedGoogle Scholar
  141. 141.
    Rizzuto R, Pinton P, Carrington W et al (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766PubMedGoogle Scholar
  142. 142.
    Nicholls DG (2005) Mitochondria and calcium signaling. Cell Calcium 38:311–317PubMedGoogle Scholar
  143. 143.
    Putney JW, Jr., Thomas AP (2006) Calcium signaling: double duty for calcium at the mitochondrial uniporter. Curr Biol 16:R812–R815PubMedGoogle Scholar
  144. 144.
    Gunter TE, Yule DI, Gunter KK, Eliseev RA, Salter JD (2004) Calcium and mitochondria. FEBS Lett 567:96–102PubMedGoogle Scholar
  145. 145.
    Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747PubMedGoogle Scholar
  146. 146.
    Neher E (1998) Usefulness and limitations of linear approximations to the understanding of Ca++ signals. Cell Calcium 24:345–357PubMedGoogle Scholar
  147. 147.
    Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364PubMedGoogle Scholar
  148. 148.
    Csordas G, Renken C, Varnai P et al (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174:915–921PubMedGoogle Scholar
  149. 149.
    Frieden M, James D, Castelbou C, Danckaert A, Martinou JC, Demaurex N (2004) Ca(2+) homeostasis during mitochondrial fragmentation and perinuclear clustering induced by hFis1. J Biol Chem 279:22704–22714PubMedGoogle Scholar
  150. 150.
    Rutter GA (2006) Moving Ca2+ from the endoplasmic reticulum to mitochondria: is spatial intimacy enough? Biochem Soc Trans 34:351–355PubMedGoogle Scholar
  151. 151.
    Shore GC, Tata JR (1977) Two fractions of rough endoplasmic reticulum from rat liver. I. Recovery of rapidly sedimenting endoplasmic reticulum in association with mitochondria. J Cell Biol 72:714–725PubMedGoogle Scholar
  152. 152.
    Mannella CA, Buttle K, Rath BK, Marko M (1998) Electron microscopic tomography of rat-liver mitochondria and their interaction with the endoplasmic reticulum. Biofactors 8:225–828PubMedGoogle Scholar
  153. 153.
    Maeda N, Niinobe M, Inoue Y, Mikoshiba K (1989) Developmental expression and intracellular location of P400 protein. Dev Biol 133:67–76PubMedGoogle Scholar
  154. 154.
    Szabadkai G, Bianchi K, Varnai P et al (2006) Chaperone mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell BiolGoogle Scholar
  155. 155.
    Rapizzi E, Pinton P, Szabadkai G et al (2002) Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J Cell Biol 159:613–624PubMedGoogle Scholar
  156. 156.
    Furuichi T, Kohda K, Miyawaki A, Mikoshiba K (1994) Intracellular channels. Curr Opin Neurobiol 4:294–303PubMedGoogle Scholar
  157. 157.
    Bosanac I, Yamazaki H, Matsu-ura T, Michikawa T, Mikoshiba K, Ikura M (2005) Crystal structure of the ligand binding suppressor domain of type 1 inositol 1,4,5-trisphosphate receptor. Mol Cell 17:193–203PubMedGoogle Scholar
  158. 158.
    Pitts KR, Yoon Y, Krueger EW, McNiven MA (1999) The dynamin-like protein DLP1 is essential for normal distribution and morphology of the endoplasmic reticulum and mitochondria in mammalian cells. Mol Biol Cell 10:4403–4417PubMedGoogle Scholar
  159. 159.
    Varadi A, Cirulli V, Rutter GA (2004) Mitochondrial localization as a determinant of capacitative Ca2+ entry in HeLa cells. Cell Calcium 36:499–508PubMedGoogle Scholar
  160. 160.
    Wang HJ, Guay G, Pogan L, Sauve R, Nabi IR (2000) Calcium regulates the association between mitochondria and a smooth subdomain of the endoplasmic reticulum. J Cell Biol 150:1489–1498PubMedGoogle Scholar
  161. 161.
    Simmen T, Aslan JE, Blagoveshchenskaya AD et al (2005) PACS-2 controls endoplasmic reticulum-mitochondria communication and Bid-mediated apoptosis. EMBO J 24:717–729PubMedGoogle Scholar
  162. 162.
    Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R (2004) Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell 16:59–68PubMedGoogle Scholar
  163. 163.
    Germain M, Mathai JP, McBride HM, Shore GC (2005) Endoplasmic reticulum BIK initiates DRP1-regulated remodelling of mitochondrial cristae during apoptosis. EMBO J 24:1546–1556PubMedGoogle Scholar
  164. 164.
    Frank S, Gaume B, Bergmann-Leitner ES et al (2001) The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 1:515–525PubMedGoogle Scholar
  165. 165.
    Karbowski M, Lee YJ, Gaume B et al (2002) Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 159:931–938PubMedGoogle Scholar
  166. 166.
    Szabadkai G, Simoni AM, Bianchi K et al (2006) Mitochondrial dynamics and Ca2+ signaling. Biochim Biophys Acta 1763:442–449PubMedGoogle Scholar
  167. 167.
    Hollenbeck PJ, Saxton WM (2005) The axonal transport of mitochondria. J Cell Sci 118:5411–5419PubMedGoogle Scholar
  168. 168.
    Shibata Y, Voeltz GK, Rapoport TA (2006) Rough sheets and smooth tubules. Cell 126:435–439PubMedGoogle Scholar
  169. 169.
    Yi M, Weaver D, Hajnoczky G (2004) Control of mitochondrial motility and distribution by the calcium signal: a homeostatic circuit. J Cell Biol 167:661–672PubMedGoogle Scholar
  170. 170.
    Rintoul GL, Filiano AJ, Brocard JB, Kress GJ, Reynolds IJ (2003) Glutamate decreases mitochondrial size and movement in primary forebrain neurons. J Neurosci 23:7881–7888PubMedGoogle Scholar
  171. 171.
    Brough D, Schell MJ, Irvine RF (2005) Agonist-induced regulation of mitochondrial and endoplasmic reticulum motility. Biochem J 392:291–297PubMedGoogle Scholar
  172. 172.
    Rintoul GL, Bennett VJ, Papaconstandinou NA, Reynolds IJ (2006) Nitric oxide inhibits mitochondrial movement in forebrain neurons associated with disruption of mitochondrial membrane potential. J Neurochem 97:800–806PubMedGoogle Scholar
  173. 173.
    Boldogh IR, Pon LA (2006) Interactions of mitochondria with the actin cytoskeleton. Biochim Biophys Acta 1763:450–462PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Pathology & Cell BiologyThomas Jefferson UniversityPhiladelphiaUSA

Personalised recommendations