Advertisement

Apoptosis

, Volume 12, Issue 5, pp 877–885 | Cite as

Cardiolipin: Setting the beat of apoptosis

  • François Gonzalvez
  • Eyal Gottlieb
Article

Abstract

Cardiolipin (CL) is a mitochondria-specific phospholipid which is known to be intimately linked with the mitochondrial bioenergetic machinery. Accumulating evidence now suggests that this unique lipid also has active roles in several of the mitochondria-dependant steps of apoptosis. CL is closely associated with cytochrome c at the outer leaflet of the mitochondrial inner membrane. This interaction makes the process of cytochrome c release from mitochondria more complex than previously assumed, requiring more than pore formation in the mitochondrial outer membrane. While CL peroxidation could be crucial for enabling cytochrome c dissociation from the mitochondrial inner membrane, cytochrome c itself catalyzes CL peroxidation. Moreover, peroxy-CL directly activates the release of cytochrome c and other apoptogenic factors from the mitochondria. CL is also directly involved in mitochondrial outer membrane permeabilization by enabling docking and activation of pro-apoptotic Bcl-2 proteins. It appears therefore that CL has multiple roles in apoptosis and that CL metabolism contributes to the complexity of the apoptotic process.

Keywords

Mitochondria Apoptosis Cardiolipin 

References

  1. 1.
    Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116:205–219PubMedCrossRefGoogle Scholar
  2. 2.
    Newmeyer DD, Ferguson-Miller S (2003) Mitochondria: releasing power for life and unleashing the machineries of death. Cell 112:481–490PubMedCrossRefGoogle Scholar
  3. 3.
    Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933PubMedGoogle Scholar
  4. 4.
    Kuida K, Haydar TF, Kuan CK et al (1998) Reduced apoptosis and cytochrome c-mediated caspase activation in mice lacking caspase 9. Cell 94:325–337PubMedCrossRefGoogle Scholar
  5. 5.
    Kuida K, Zheng TS, Na S et al (1996) Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–372PubMedCrossRefGoogle Scholar
  6. 6.
    Li K, Li Y, Shelton JM et al (2000) Cytochrome c deficiency causes embryonic lethality and attenuates stress-induced apoptosis. Cell 101:389–399PubMedCrossRefGoogle Scholar
  7. 7.
    Yoshida H, Kong YY, Yoshida R et al (1998) Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94:739–750PubMedCrossRefGoogle Scholar
  8. 8.
    Garrido C, Galluzzi L, Brunet M et al (2006) Mechanisms of cytochrome c release from mitochondria. Cell Death Differ 13:1423–1433PubMedCrossRefGoogle Scholar
  9. 9.
    van Loo G, Saelens X, van Gurp M et al (2002) The role of mitochondrial factors in apoptosis: a Russian roulette with more than one bullet. Cell Death Differ 9:1031–1042PubMedCrossRefGoogle Scholar
  10. 10.
    Fadok VA, Voelker DR, Campbell PA et al (1992) Exposure of phophatidylserine on the surface of apoptotic lymphocytes triggers specific recognition and removal by macrophages. J Immunol 148:2207–2216PubMedGoogle Scholar
  11. 11.
    Siskind LJ (2005) Mitochondrial ceramide and the induction of apoptosis. J Bioenerg Biomembr 37:143–153PubMedCrossRefGoogle Scholar
  12. 12.
    Hauff KD, Hatch GM (2006) Cardiolipin metabolism and Barth Syndrome. Prog Lipid Res 45:91–101PubMedCrossRefGoogle Scholar
  13. 13.
    Schlame M, Rua D, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39:257–288PubMedCrossRefGoogle Scholar
  14. 14.
    Houtkooper RH, Akbari H, van Lenthe H et al (2006) Identification and characterization of human cardiolipin synthase. FEBS Lett 580:3059–3064PubMedCrossRefGoogle Scholar
  15. 15.
    Hoch FL (1992) Cardiolipins and biomembrane function. Biochim Biophys Acta 1113:71–133PubMedGoogle Scholar
  16. 16.
    Schlame M, Ren M, Xu Y, Greenberg ML, Haller I (2005) Molecular symmetry in mitochondrial cardiolipins. Chem Phys Lipids 138:38–49PubMedCrossRefGoogle Scholar
  17. 17.
    Rustow B, Schlame M, Rabe H, Reichmann G, Kunze D (1989) Species pattern of phosphatidic acid, diacylglycerol, CDP-diacylglycerol and phosphatidylglycerol synthesized de novo in rat liver mitochondria. Biochim Biophys Acta 1002:261–263PubMedGoogle Scholar
  18. 18.
    Schlame M, Rustow B (1990) Lysocardiolipin formation and reacylation in isolated rat liver mitochondria. Biochem J 272:589–595PubMedGoogle Scholar
  19. 19.
    Xu Y, Kelley RI, Blanck TJ, Schlame M (2003) Remodeling of cardiolipin by phospholipid transacylation. J Biol Chem 278:51380–51385PubMedCrossRefGoogle Scholar
  20. 20.
    Barth PG, Scholte HR, Berden JA et al (1983) An X-linked mitochondrial disease affecting cardiac muscle, skeletal muscle and neutrophil leucocytes. J Neurol Sci 62:327–355PubMedCrossRefGoogle Scholar
  21. 21.
    Kelley RI, Cheatham JP, Clark BJ et al (1991) X-linked dilated cardiomyopathy with neutropenia, growth retardation, and 3-methylglutaconic aciduria. J Pediatr 119:738–747PubMedCrossRefGoogle Scholar
  22. 22.
    Bione S, D’Adamo P, Maestrini E et al (1996) A novel X-linked gene, G4.5. is responsible for Barth syndrome. Nat Genet 12:385–389PubMedCrossRefGoogle Scholar
  23. 23.
    Neuwald AF (1997) Barth syndrome may be due to an acyltransferase deficiency. Curr Biol 7:R465–R466PubMedCrossRefGoogle Scholar
  24. 24.
    Schlame M, Kelley RI, Feigenbaum A et al (2003) Phospholipid abnormalities in children with Barth syndrome. J Am Coll Cardiol 42:1994–1999PubMedCrossRefGoogle Scholar
  25. 25.
    Valianpour F, Mitsakos V, Schlemmer D et al (2005) Monolysocardiolipins accumulate in Barth syndrome but do not lead to enhanced apoptosis. J Lipid Res 46:1182–1195PubMedCrossRefGoogle Scholar
  26. 26.
    Krebs JJ, Hauser H, Carafoli E (1979) Asymmetric distribution of phospholipids in the inner membrane of beef heart mitochondria. J Biol Chem 254:5308–5316PubMedGoogle Scholar
  27. 27.
    Ardail D, Privat JP, Egret-Charlier M et al (1990) Mitochondrial contact sites. Lipid composition and dynamics. J Biol Chem 265:18797–18802PubMedGoogle Scholar
  28. 28.
    de Kroon AI, Dolis D, Mayer A, Lill R, de Kruijff B (1997) Phospholipid composition of highly purified mitochondrial outer membranes of rat liver and Neurospora crassa. Is cardiolipin present in the mitochondrial outer membrane? Biochim Biophys Acta 1325:108–116PubMedCrossRefGoogle Scholar
  29. 29.
    Hovius R, Lambrechts H, Nicolay K, de Kruijff B (1990) Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochim Biophys Acta 1021:217–226PubMedCrossRefGoogle Scholar
  30. 30.
    Cullis PR, Verkleij AJ, Ververgaert PH (1978) Polymorphic phase behaviour of cardiolipin as detected by 31P NMR and freeze-fracture techniques. Effects of calcium, dibucaine and chlorpromazine. Biochim Biophys Acta 513:11–20PubMedCrossRefGoogle Scholar
  31. 31.
    Van Venetie R, Verkleij AJ (1982) Possible role of non-bilayer lipids in the structure of mitochondria. A freeze-fracture electron microscopy study. Biochim Biophys Acta 692:397–405PubMedCrossRefGoogle Scholar
  32. 32.
    Eble KS, Coleman WB, Hantgan RR, Cunningham CC (1990) Tightly associated cardiolipin in the bovine heart mitochondrial ATP synthase as analyzed by 31P nuclear magnetic resonance spectroscopy. J Biol Chem 265:19434–19440PubMedGoogle Scholar
  33. 33.
    Fry M, Green DE (1981) Cardiolipin requirement for electron transfer in complex I and III of the mitochondrial respiratory chain. J Biol Chem 256:1874–1880PubMedGoogle Scholar
  34. 34.
    Sedlak E, Panda M, Dale MP, Weintraub ST, Robinson NC (2006) Photolabeling of cardiolipin binding subunits within bovine heart cytochrome c oxidase. Biochemistry 45:746–754PubMedCrossRefGoogle Scholar
  35. 35.
    Yue WH, Zou YP, Yu L, Yu CA (1991) Crystallization of mitochondrial ubiquinol-cytochrome c reductase. Biochemistry 30:2303–2306PubMedCrossRefGoogle Scholar
  36. 36.
    Yankovskaya V, Horsefield R, Tornroth S et al (2003) Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704PubMedCrossRefGoogle Scholar
  37. 37.
    Bisaccia F, Palmieri F (1984) Specific elution from hydroxylapatite of the mitochondrial phosphate carrier by cardiolipin. Biochim Biophys Acta 766:386–394PubMedCrossRefGoogle Scholar
  38. 38.
    Hoffmann B, Stockl A, Schlame M, Beyer K, Klingenberg M (1994) The reconstituted ADP/ATP carrier activity has an absolute requirement for cardiolipin as shown in cysteine mutants. J Biol Chem 269:1940–1944PubMedGoogle Scholar
  39. 39.
    Nalecz KA, Bolli R, Wojtczak L, Azzi A (1986) The monocarboxylate carrier from bovine heart mitochondria: partial purification and its substrate-transporting properties in a reconstituted system. Biochim Biophys Acta 851:29–37PubMedCrossRefGoogle Scholar
  40. 40.
    Noel H, Pande SV (1986) An essential requirement of cardiolipin for mitochondrial carnitine acylcarnitine translocase activity. Lipid requirement of carnitine acylcarnitine translocase. Eur J Biochem 155:99–102PubMedCrossRefGoogle Scholar
  41. 41.
    Ohtsuka T, Nishijima M, Akamatsu Y (1993) A somatic cell mutant defective in phosphatidylglycerophosphate synthase, with impaired phosphatidylglycerol and cardiolipin biosynthesis. J Biol Chem 268:22908–22913PubMedGoogle Scholar
  42. 42.
    Ohtsuka T, Nishijima M, Suzuki K, Akamatsu Y (1993) Mitochondrial dysfunction of a cultured Chinese hamster ovary cell mutant deficient in cardiolipin. J Biol Chem 268:22914-22919PubMedGoogle Scholar
  43. 43.
    Jiang F, Rizavi HS, Greenberg ML (1997) Cardiolipin is not essential for the growth of Saccharomyces cerevisiae on fermentable or non-fermentable carbon sources. Mol Microbiol 26:481–491PubMedCrossRefGoogle Scholar
  44. 44.
    Jiang F, Ryan MT, Schlame M et al (2000) Absence of cardiolipin in the crd1 null mutant results in decreased mitochondrial membrane potential and reduced mitochondrial function. J Biol Chem 275:22387–22394PubMedCrossRefGoogle Scholar
  45. 45.
    Koshkin V, Greenberg ML (2000) Oxidative phosphorylation in cardiolipin-lacking yeast mitochondria. Biochem J 347(Pt 3):687–691PubMedCrossRefGoogle Scholar
  46. 46.
    Koshkin V, Greenberg ML (2002) Cardiolipin prevents rate-dependent uncoupling and provides osmotic stability in yeast mitochondria. Biochem J 364:317–322PubMedGoogle Scholar
  47. 47.
    Bernardi P, Azzone GF (1981) Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes. J Biol Chem 256:7187–7192PubMedGoogle Scholar
  48. 48.
    Scorrano L, Ashiya M, Buttle K et al (2002) A distinct pathway remodels mitochondrial cristae and mobilizes cytochrome c during apoptosis. Dev Cell 2:55–67PubMedCrossRefGoogle Scholar
  49. 49.
    Nicholls P (1974) Cytochrome c binding to enzymes and membranes. Biochim Biophys Acta 346:261–310PubMedGoogle Scholar
  50. 50.
    Rytomaa M, Mustonen P, Kinnunen PK (1992) Reversible, nonionic, and pH-dependent association of cytochrome c with cardiolipin-phosphatidylcholine liposomes. J Biol Chem 267:22243–22248PubMedGoogle Scholar
  51. 51.
    Kawasaki K, Kuge O, Chang SC et al (1999) Isolation of a chinese hamster ovary (CHO) cDNA encoding phosphatidylglycerophosphate (PGP) synthase, expression of which corrects the mitochondrial abnormalities of a PGP synthase-defective mutant of CHO-K1 cells. J Biol Chem 274:1828–1834PubMedCrossRefGoogle Scholar
  52. 52.
    Choi SY, Gonzalvez F, Jenkins GM et al (2006) Cardiolipin deficiency releases cytochrome c from the inner mitochondrial membrane and accelerates stimuli-elicited apoptosis. Cell Death Differ advance online publication, doi:10.1038/sj.cdd.4402020Google Scholar
  53. 53.
    Chang SC, Heacock PN, Mileykovskaya E, Voelker DR, Dowhan W (1998) Isolation and characterization of the gene (CLS1) encoding cardiolipin synthase in Saccharomyces cerevisiae. J Biol Chem 273:14933–14941PubMedCrossRefGoogle Scholar
  54. 54.
    Paradies G, Petrosillo G, Pistolese M et al (1999) Lipid peroxidation and alterations to oxidative metabolism in mitochondria isolated from rat heart subjected to ischemia and reperfusion. Free Radic Biol Med 27:42–50PubMedCrossRefGoogle Scholar
  55. 55.
    Paradies G, Ruggiero FM, Petrosillo G, Quagliariello E (1997) Age-dependent decline in the cytochrome c oxidase activity in rat heart mitochondria: role of cardiolipin. FEBS Lett 406:136–138PubMedCrossRefGoogle Scholar
  56. 56.
    Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2000) The effect of reactive oxygen species generated from the mitochondrial electron transport chain on the cytochrome c oxidase activity and on the cardiolipin content in bovine heart submitochondrial particles. FEBS Lett 466:323–326PubMedCrossRefGoogle Scholar
  57. 57.
    Paradies G, Petrosillo G, Pistolese M, Ruggiero FM (2002) Reactive oxygen species affect mitochondrial electron transport complex I activity through oxidative cardiolipin damage. Gene 286:135–141PubMedCrossRefGoogle Scholar
  58. 58.
    Kagan VE, Tyurin VA, Jiang J et al (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1:223-232PubMedCrossRefGoogle Scholar
  59. 59.
    Kirkland RA, Adibhatla RM, Hatcher JF, Franklin JL (2002) Loss of cardiolipin and mitochondria during programmed neuronal death: evidence of a role for lipid peroxidation and autophagy. Neuroscience 115:587–602PubMedCrossRefGoogle Scholar
  60. 60.
    Ushmorov A, Ratter F, Lehmann V et al (1999) Nitric-oxide-induced apoptosis in human leukemic lines requires mitochondrial lipid degradation and cytochrome c release. Blood 93:2342–2352PubMedGoogle Scholar
  61. 61.
    Hardy S, El-Assaad W, Przybytkowski E et al (2003) Saturated fatty acid-induced apoptosis in MDA-MB-231 breast cancer cells. A role for cardiolipin. J Biol Chem 278:31861–31870PubMedCrossRefGoogle Scholar
  62. 62.
    Ostrander DB, Sparagna GC, Amoscato AA, McMillin JB, Dowhan W (2001) Decreased cardiolipin synthesis corresponds with cytochrome c release in palmitate-induced cardiomyocyte apoptosis. J Biol Chem 276:38061–38067PubMedCrossRefGoogle Scholar
  63. 63.
    Rytomaa M, Kinnunen PK (1995) Reversibility of the binding of cytochrome c to liposomes. Implications for lipid-protein interactions. J Biol Chem 270:3197–3202PubMedCrossRefGoogle Scholar
  64. 64.
    Gorbenko GP (1999) Structure of cytochrome c complexes with phospholipids as revealed by resonance energy transfer. Biochim Biophys Acta 1420:1–13PubMedCrossRefGoogle Scholar
  65. 65.
    Cortese JD, Voglino AL, Hackenbrock CR (1995) Persistence of cytochrome c binding to membranes at physiological mitochondrial intermembrane space ionic strength. Biochim Biophys Acta 1228:216–228PubMedCrossRefGoogle Scholar
  66. 66.
    Pereverzev MO, Vygodina TV, Konstantinov AA, Skulachev VP (2003) Cytochrome c, an ideal antioxidant. Biochem Soc Trans 31:1312–1315PubMedCrossRefGoogle Scholar
  67. 67.
    Nomura K, Imai H, Koumura T, Kobayashi T, Nakagawa Y (2000) Mitochondrial phospholipid hydroperoxide glutathione peroxidase inhibits the release of cytochrome c from mitochondria by suppressing the peroxidation of cardiolipin in hypoglycaemia-induced apoptosis. Biochem J 351:183–193PubMedCrossRefGoogle Scholar
  68. 68.
    Shidoji Y, Hayashi K, Komura S, Ohishi N, Yagi K (1999) Loss of molecular interaction between cytochrome c and cardiolipin due to lipid peroxidation. Biochem Biophys Res Commun 264:343–347PubMedCrossRefGoogle Scholar
  69. 69.
    Ott M, Robertson JD, Gogvadze V, Zhivotovsky B, Orrenius S (2002) Cytochrome c release from mitochondria proceeds by a two-step process. Proc Natl Acad Sci USA 99:1259–1263PubMedCrossRefGoogle Scholar
  70. 70.
    Gottlieb E (2006) OPA1 and PARL keep a lid on apoptosis. Cell 126:27–29PubMedCrossRefGoogle Scholar
  71. 71.
    Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326PubMedCrossRefGoogle Scholar
  72. 72.
    Li H, Zhu H, Xu CJ, Yuan J (1998) Cleavage of BID by caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 94:491–501PubMedCrossRefGoogle Scholar
  73. 73.
    Luo X, Budihardjo I, Zou H, Slaughter C, Wang X (1998) Bid, a bcl-2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface receptors. Cell 94:481–490.PubMedCrossRefGoogle Scholar
  74. 74.
    Cartron PF, Gallenne T, Bougras G et al (2004) The first alpha helix of Bax plays a necessary role in its ligand-induced activation by the BH3-only proteins Bid and PUMA. Mol Cell 16:807–818PubMedCrossRefGoogle Scholar
  75. 75.
    Lutter M, Fang M, Luo X et al (2000) Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol 2:754–761PubMedCrossRefGoogle Scholar
  76. 76.
    Garcia-Saez AJ, Mingarro I, Perez-Paya E, Salgado J (2004) Membrane-insertion fragments of Bcl-xL, Bax, and Bid. Biochemistry 43:10930–10943PubMedCrossRefGoogle Scholar
  77. 77.
    Lutter M, Perkins GA, Wang X (2001) The pro-apoptotic Bcl-2 family member tBid localizes to mitochondrial contact sites. BMC Cell Biol 2:22PubMedCrossRefGoogle Scholar
  78. 78.
    Epand RF, Martinou JC, Fornallaz-Mulhauser M, Hughes DW, Epand RM (2002) The apoptotic protein tBid promotes leakage by altering membrane curvature. J Biol Chem 277:32632–32639PubMedCrossRefGoogle Scholar
  79. 79.
    Esposti MD, Cristea IM, Gaskell SJ, Nakao Y, Dive C (2003) Proapoptotic bid binds to monolysocardiolipin, a new molecular connection between mitochondrial membranes and cell death. Cell Death Differ 10:1300–1309PubMedCrossRefGoogle Scholar
  80. 80.
    Kim TH, Zhao Y, Ding WX et al (2004) Bid-cardiolipin interaction at mitochondrial contact site contributes to mitochondrial cristae reorganization and cytochrome c release. Mol Biol Cell 15:3061–3072PubMedCrossRefGoogle Scholar
  81. 81.
    Liu J, Durrant D, Yang HS et al (2005) The interaction between tBid and cardiolipin or monolysocardiolipin. Biochem Biophys Res Commun 330:865–870PubMedCrossRefGoogle Scholar
  82. 82.
    Liu J, Weiss A, Durrant D, Chi NW, Lee RM (2004) The cardiolipin-binding domain of Bid affects mitochondrial respiration and enhances cytochrome c release. Apoptosis 9:533–541PubMedCrossRefGoogle Scholar
  83. 83.
    Zha J, Weiler S, Oh KJ, Wei MC, Korsmeyer SJ (2000) Posttranslational N-myristoylation of BID as a molecular switch for targeting mitochondria and apoptosis. Science 290:1761–1765PubMedCrossRefGoogle Scholar
  84. 84.
    Gonzalvez F, Bessoule JJ, Rocchiccioli F, Manon S, Petit PX (2005) Role of cardiolipin on tBid and tBid/Bax synergistic effects on yeast mitochondria. Cell Death Differ 12:659–667PubMedCrossRefGoogle Scholar
  85. 85.
    Gonzalvez F, Pariselli F, Dupaigne P et al (2005) tBid interaction with cardiolipin primarily orchestrates mitochondrial dysfunctions and subsequently activates Bax and Bak. Cell Death Differ 12:614–626PubMedCrossRefGoogle Scholar
  86. 86.
    Garcia Fernandez M, Troiano L, Moretti L et al (2002) Early changes in intramitochondrial cardiolipin distribution during apoptosis. Cell Growth Differ 13:449–455PubMedGoogle Scholar
  87. 87.
    Aguilar L, Ortega-Pierres G, Campos B et al (1999) Phospholipid membranes form specific nonbilayer molecular arrangements that are antigenic. J Biol Chem 274:25193–25196PubMedCrossRefGoogle Scholar
  88. 88.
    Esposti MD, Erler JT, Hickman JA, Dive c (2001) Bid, a widely expressed proapoptotic protein of the Bcl-2 family, displays lipid transfer activity. Mol Cell Biol 21:7268–7276PubMedCrossRefGoogle Scholar
  89. 89.
    Sorice M, Circella A, Cristea IM et al (2004) Cardiolipin and its metabolites move from mitochondria to other cellular membranes during death receptor-mediated apoptosis. Cell Death Differ 11:1133–1145PubMedCrossRefGoogle Scholar
  90. 90.
    Kuwana T, Mackey MR, Perkins G et al (2002) Bid, bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 111:331–342PubMedCrossRefGoogle Scholar
  91. 91.
    Iverson SL, Enoksson M, Gogvadze V, Ott M, Orrenius S (2004) Cardiolipin is not required for Bax-mediated cytochrome c release from yeast mitochondria. J Biol Chem 279:1100–1107PubMedCrossRefGoogle Scholar
  92. 92.
    Polcic P, Su X, Fowlkes J et al (2005) Cardiolipin and phosphatidylglycerol are not required for the in vivo action of Bcl-2 family proteins. Cell Death Differ 12:310–312PubMedCrossRefGoogle Scholar
  93. 93.
    Rytomaa M, Kinnunen PK (1994) Evidence for two distinct acidic phospholipid-binding sites in cytochrome c. J Biol Chem 269:1770–1774PubMedGoogle Scholar
  94. 94.
    Kagan VE, Tyurina YY, Bayir H et al (2006) The “pro-apoptotic genies” get out of mitochondria: oxidative lipidomics and redox activity of cytochrome c/cardiolipin complexes. Chem Biol Interact 163:15–28PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, LLC 2007

Authors and Affiliations

  1. 1.Cancer Research UKThe Beatson Institute for Cancer ResearchGlasgowUnited Kingdom

Personalised recommendations