Advertisement

Apoptosis

, Volume 13, Issue 3, pp 437–447 | Cite as

BLOC1S2 interacts with the HIPPI protein and sensitizes NCH89 glioblastoma cells to apoptosis

  • Georg Gdynia
  • Judith Lehmann-Koch
  • Sebastian Sieber
  • Katrin E. Tagscherer
  • Anne Fassl
  • Hanswalter Zentgraf
  • Shu-Ichi Matsuzawa
  • John C. Reed
  • Wilfried RothEmail author
Original Paper

Abstract

The HIPPI (HIP-1 protein interactor) protein is a multifunctional protein that is involved in the regulation of apoptosis. The interaction partners of HIPPI include HIP-1 (Huntingtin-interacting protein-1), Apoptin, Homer1c, Rybp/DEDAF, and BAR (bifunctional apoptosis regulator). In search for other binding partners of HIPPI, we performed a yeast two hybrid screen and identified BLOC1S2 (Biogenesis of lysosome-related organelles complex-1 subunit 2) as a novel HIPPI-interacting protein. In co-immunoprecipitation assays, BLOC1S2 specifically associates with HIPPI, but not with HIP-1. To study the expression of BLOC1S2 on the protein level, we generated a mouse monoclonal antibody specific for BLOC1S2 and a multiple tissue array comprising 70 normal and cancer tissue samples of diverse origin. BLOC1S2 protein is widely expressed in normal tissue as well as in malignant tumors with a tendency towards lower expression levels in certain subtypes of tumors. On the subcellular level, BLOC1S2 is expressed in an organellar-like pattern and co-localizes with mitochondria. Over-expression of BLOC1S2 in the presence or absence of HIPPI does not induce apoptosis. However, BLOC1S2 and HIPPI sensitize NCH89 glioblastoma cells to the pro-apoptotic actions of staurosporine and the death ligand TRAIL by enhancing caspase activation, cytochrome c release, and disruption of the mitochondrial membrane potential. Given its interaction with HIPPI and its pro-apoptotic activity, BLOC1S2 might play an important functional role in cancer and neurodegenerative diseases.

Keywords

Apoptosis Mitochondria Cancer Huntington’s disease Lysosomes Cilia 

Notes

Acknowledgments

This work was supported by a grant from the Deutsche Krebshilfe to W.R. (German Cancer Aid, Max Eder Program), a fellowship from the Heinrich F.C. Behr Foundation to G.G., the Tissue Bank of the National Center for Tumor Diseases (NCT) Heidelberg, and grants from the National Institutes of Health, CA69381 and AG15393, to J.C.R. We thank Sarah Messnard for expert technical assistance, Christel Herold-Mende for providing NCH89 glioblastoma cells, and Frank Stenner-Liewen for generation of the pcDNA3-FLAG-HIPPI plasmid.

References

  1. 1.
    Gervais FG, Singaraja R, Xanthoudakis S et al (2002) Recruitment and activation of caspase-8 by the Huntingtin-interacting protein Hip-1 and a novel partner Hippi. Nat Cell Biol 4:95–105PubMedCrossRefGoogle Scholar
  2. 2.
    Wanker EE (2002) Hip1 and Hippi participate in a novel cell death-signaling pathway. Dev Cell 2:126–128PubMedCrossRefGoogle Scholar
  3. 3.
    Cheng CM, Huang SP, Chang YF, Chung WY, Yuo CY (2003) The viral death protein Apoptin interacts with Hippi, the protein interactor of Huntingtin-interacting protein 1. Biochem Biophys Res Commun 305:359–364PubMedCrossRefGoogle Scholar
  4. 4.
    Sakamoto K, Yoshida S, Ikegami K et al (2007) Homer1c interacts with Hippi and protects striatal neurons from apoptosis. Biochem Biophys Res Commun 352:1–5PubMedCrossRefGoogle Scholar
  5. 5.
    Stanton SE, Blanck JK, Locker J, Schreiber-Agus N (2007) Rybp interacts with Hippi and enhances Hippi-mediated apoptosis. Apoptosis 12:2197–2206PubMedCrossRefGoogle Scholar
  6. 6.
    Roth W, Kermer P, Krajewska M et al (2003) Bifunctional apoptosis inhibitor (BAR) protects neurons from diverse cell death pathways. Cell Death Differ 10:1178–1187PubMedCrossRefGoogle Scholar
  7. 7.
    Majumder P, Chattopadhyay B, Sukanya S et al (2007) Interaction of HIPPI with putative promoter sequence of caspase-1 in vitro and in vivo. Biochem Biophys Res Commun 353:80–85PubMedCrossRefGoogle Scholar
  8. 8.
    Baker SA, Freeman K, Luby-Phelps K, Pazour GJ, Besharse JC (2003) IFT20 links kinesin II with a mammalian intraflagellar transport complex that is conserved in motile flagella and sensory cilia. J Biol Chem 278:34211–34218PubMedCrossRefGoogle Scholar
  9. 9.
    Haycraft CJ, Schafer JC, Zhang Q, Taulman PD, Yoder BK (2003) Identification of CHE-13, a novel intraflagellar transport protein required for cilia formation. Exp Cell Res 284:251–263PubMedCrossRefGoogle Scholar
  10. 10.
    Houde C, Dickinson RJ, Houtzager VM et al (2006) Hippi is essential for node cilia assembly and Sonic hedgehog signaling. Dev Biol 300:523–533PubMedCrossRefGoogle Scholar
  11. 11.
    Matsuzawa S, Takayama S, Froesch BA, Zapata JM, Reed JC (1998) p53-inducible human homologue of Drosophila seven in absentia (Siah) inhibits cell growth: suppression by BAG-1. The EMBO J 17:2736–2747CrossRefGoogle Scholar
  12. 12.
    Matsuzawa SI, Reed JC (2001) Siah-1, SIP, and Ebi collaborate in a novel pathway for beta-catenin degradation linked to p53 responses. Mol Cell 7:915–926PubMedCrossRefGoogle Scholar
  13. 13.
    Karcher S, Steiner HH, Ahmadi R et al (2006) Different angiogenic phenotypes in primary and secondary glioblastomas. Int J Cancer 118:2182–2189PubMedCrossRefGoogle Scholar
  14. 14.
    Schultze K, Bock B, Eckert A et al (2006) Troglitazone sensitizes tumor cells to TRAIL-induced apoptosis via down-regulation of FLIP and Survivin. Apoptosis 11:1503–1512PubMedCrossRefGoogle Scholar
  15. 15.
    Kohler G, Milstein C (1975) Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497PubMedCrossRefGoogle Scholar
  16. 16.
    Eckert A, Bock BC, Tagscherer KE et al (2007) The PEA-15/PED protein protects glioblastoma cells from glucose deprivation-induced apoptosis via the ERK/MAP kinase pathway. Oncogene [Epub ahead of print]Google Scholar
  17. 17.
    Starcevic M, Dell’Angelica EC (2004) Identification of snapin and three novel proteins (BLOS1, BLOS2, and BLOS3/reduced pigmentation) as subunits of biogenesis of lysosome-related organelles complex-1 (BLOC-1). J Biol Chem 279:28393–28401PubMedCrossRefGoogle Scholar
  18. 18.
    Wang Z, Wei H, Yu Y et al (2004) Characterization of Ceap-11 and Ceap-16, two novel splicing-variant-proteins, associated with centrosome, microtubule aggregation and cell proliferation. J Mol Biol 343:71–82PubMedCrossRefGoogle Scholar
  19. 19.
    Dell’Angelica EC (2004) The building BLOC(k)s of lysosomes and related organelles. Curr Opin Cell Biol 16:458–464PubMedCrossRefGoogle Scholar
  20. 20.
    Di Pietro SM, Falcon-Perez JM, Dell’Angelica EC (2004) Characterization of BLOC-2, a complex containing the Hermansky-Pudlak syndrome proteins HPS3, HPS5 and HPS6. Traffic 5:276–283PubMedCrossRefGoogle Scholar
  21. 21.
    Falcon-Perez JM, Romero-Calderon R, Brooks ES, Krantz DE, Dell’Angelica EC (2007) The Drosophila pigmentation gene pink (p) encodes a homologue of human Hermansky-Pudlak syndrome 5 (HPS5). Traffic 8:154–168PubMedCrossRefGoogle Scholar
  22. 22.
    Huizing M, Parkes JM, Helip-Wooley A, White JG, Gahl WA (2007) Platelet alpha granules in BLOC-2 and BLOC-3 subtypes of Hermansky-Pudlak syndrome. Platelets 18:150–157PubMedCrossRefGoogle Scholar
  23. 23.
    Felten A, Leister P, Burgdorf S, Uhlmann L, Scheidtmann KH (2007) Characterization of rat BLOS2/Ceap, a putative yeast She3 homolog, as interaction partner of apoptosis antagonizing transcription factor/Che-1. Biol Chem 388:569–582PubMedCrossRefGoogle Scholar
  24. 24.
    Majumder P, Chattopadhyay B, Mazumder A, Das P, Bhattacharyya NP (2006) Induction of apoptosis in cells expressing exogenous Hippi, a molecular partner of huntingtin-interacting protein Hip1. Neurobiol Dis 22:242–256PubMedCrossRefGoogle Scholar
  25. 25.
    Scaffidi C, Fulda S, Srinivasan A et al (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J 17:1675–1687PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Georg Gdynia
    • 1
    • 2
  • Judith Lehmann-Koch
    • 1
    • 2
  • Sebastian Sieber
    • 3
  • Katrin E. Tagscherer
    • 1
  • Anne Fassl
    • 1
  • Hanswalter Zentgraf
    • 4
  • Shu-Ichi Matsuzawa
    • 5
  • John C. Reed
    • 5
  • Wilfried Roth
    • 1
    • 2
    Email author
  1. 1.Molecular Neuro-OncologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
  2. 2.Institute of PathologyUniversity of HeidelbergHeidelbergGermany
  3. 3.Pharmaceutical BiologyGerman Cancer Research CenterHeidelbergGermany
  4. 4.Electron Microcopy GroupGerman Cancer Research CenterHeidelbergGermany
  5. 5.Burnham Institute for Medical ResearchLa JollaUSA

Personalised recommendations