Apoptosis

, Volume 13, Issue 3, pp 413–422 | Cite as

A high-content chemical screen identifies ellipticine as a modulator of p53 nuclear localization

  • G. Wei Xu
  • Imtiaz A. Mawji
  • Chloe J. Macrae
  • C. Anne Koch
  • Alessandro Datti
  • Jeffrey L. Wrana
  • James W. Dennis
  • Aaron D. Schimmer
Original Paper

Abstract

p53 regulates apoptosis and the cell cycle through actions in the nucleus and cytoplasm. Altering the subcellular localization of p53 can alter its biological function. Therefore, small molecules that change the localization of p53 would be useful chemical probes to understand the influence of subcellular localization on the function of p53. To identify such molecules, a high-content screen for compounds that increased the localization of p53 to the nucleus or cytoplasm was developed, automated, and conducted. With this image-based assay, we identified ellipticine that increased the nuclear localization of GFP-mutant p53 protein but not GFP alone in Saos-2 osteosarcoma cells. In addition, ellipticine increased the nuclear localization of endogenous p53 in HCT116 colon cancer cells with a resultant increase in the transactivation of the p21 promoter. Increased nuclear p53 after ellipticine treatment was not associated with an increase in DNA double stranded breaks, indicating that ellipticine shifts p53 to the nucleus through a mechanism independent of DNA damage. Thus, a chemical biology approach has identified a molecule that shifts the localization of p53 and enhances its nuclear activity.

Keywords

High-throughput screen p53 Ellipticine 

Abbreviations

HCS

High-content screening

SDS-PAGE

SDS-polyacrylamide gel electrophoresis

Supplementary material

References

  1. 1.
    Horn HF, Vousden KH (2007) Coping with stress: multiple ways to activate p53. Oncogene 26(9):1306–1316PubMedCrossRefGoogle Scholar
  2. 2.
    Helton ES, Chen X (2007) p53 modulation of the DNA damage response. J Cell Biochem 100(4):883–896PubMedCrossRefGoogle Scholar
  3. 3.
    Chipuk JE, Green DR (2006) Dissecting p53-dependent apoptosis. Cell Death Differ 13(6):994–1002PubMedCrossRefGoogle Scholar
  4. 4.
    Speidel D, Helmbold H, Deppert W (2006) Dissection of transcriptional and non-transcriptional p53 activities in the response to genotoxic stress. Oncogene 25(6):940–953PubMedCrossRefGoogle Scholar
  5. 5.
    Chipuk JE, Maurer U, Green DR, Schuler M (2003) Pharmacologic activation of p53 elicits Bax-dependent apoptosis in the absence of transcription. Cancer Cell 4(5):371–381PubMedCrossRefGoogle Scholar
  6. 6.
    Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M et al (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303(5660):1010–1014PubMedCrossRefGoogle Scholar
  7. 7.
    O’Brate A, Giannakakou P (2003) The importance of p53 location: nuclear or cytoplasmic zip code? Drug Resist Updat 6(6):313–322PubMedCrossRefGoogle Scholar
  8. 8.
    Nikolaev AY, Li M, Puskas N, Qin J, Gu W (2003) Parc: a cytoplasmic anchor for p53. Cell 112(1):29–40PubMedCrossRefGoogle Scholar
  9. 9.
    Kawaguchi Y, Ito A, Appella E, Yao TP (2006) Charge modification at multiple C-terminal lysine residues regulates p53 oligomerization and its nucleus-cytoplasm trafficking. J Biol Chem 281(3):1394–1400PubMedCrossRefGoogle Scholar
  10. 10.
    Tewey KM, Chen GL, Nelson EM, Liu LF (1984) Intercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J Biol Chem 259(14):9182–9187PubMedGoogle Scholar
  11. 11.
    Huff AC, Kreuzer KN (1990) Evidence for a common mechanism of action for antitumor and antibacterial agents that inhibit type II DNA topoisomerases. J Biol Chem 265(33):20496–20505PubMedGoogle Scholar
  12. 12.
    Mawji IA, Simpson CD, Hurren R, Gronda M, Williams MA, Filmus J et al (2007) Critical role for Fas-associated death domain-like interleukin-1-converting enzyme-like inhibitory protein in anoikis resistance and distant tumor formation. JNCI 99(10):811–822PubMedGoogle Scholar
  13. 13.
    Schimmer AD, Thomas MP, Hurren R, Gronda M, Pellecchia M, Pond GR et al (2006) Identification of small molecules that sensitize resistant tumor cells to tumor necrosis factor-family death receptors. Cancer Res 66(4):2367–2375PubMedCrossRefGoogle Scholar
  14. 14.
    Carter BZ, Gronda M, Wang Z, Welsh K, Pinilla C, Andreeff M et al (2005) Small-molecule XIAP inhibitors derepress downstream effector caspases and induce apoptosis of acute myeloid leukemia cells. Blood 105(10):4043–4050PubMedCrossRefGoogle Scholar
  15. 15.
    Gangopadhyay S, Jalali F, Reda D, Peacock J, Bristow RG, Benchimol S (2002) Expression of different mutant p53 transgenes in neuroblastoma cells leads to different cellular responses to genotoxic agents. Exp Cell Res 275(1):122–131PubMedCrossRefGoogle Scholar
  16. 16.
    Sakurai T, Itoh K, Liu Y, Higashitsuji H, Sumitomo Y, Sakamaki K et al (2005) Low temperature protects mammalian cells from apoptosis initiated by various stimuli in vitro. Exp Cell Res 309(2):264–272PubMedCrossRefGoogle Scholar
  17. 17.
    Karni-Schmidt O, Friedler A, Zupnick A, McKinney K, Mattia M, Beckerman R et al (2007) Energy-dependent nucleolar localization of p53 in vitro requires two discrete regions within the p53 carboxyl terminus. Oncogene 26:3878–3891PubMedCrossRefGoogle Scholar
  18. 18.
    Pokrovskaja K, Mattsson K, Kashuba E, Klein G, Szekely L (2001) Proteasome inhibitor induces nucleolar translocation of Epstein-Barr virus-encoded EBNA-5. J Gen Virol 82(Pt 2):345–358PubMedGoogle Scholar
  19. 19.
    Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73PubMedCrossRefGoogle Scholar
  20. 20.
    Fritsche M, Haessler C, Brandner G (1993) Induction of nuclear accumulation of the tumor-suppressor protein p53 by DNA-damaging agents. Oncogene 8(2):307–318PubMedGoogle Scholar
  21. 21.
    Kuo PL, Hsu YL, Chang CH, Lin CC (2005) The mechanism of ellipticine-induced apoptosis and cell cycle arrest in human breast MCF-7 cancer cells. Cancer Lett 223(2):293–301PubMedCrossRefGoogle Scholar
  22. 22.
    Kuo YC, Kuo PL, Hsu YL, Cho CY, Lin CC (2006) Ellipticine induces apoptosis through p53-dependent pathway in human hepatocellular carcinoma HepG2 cells. Life Sci 78(22):2550–2557PubMedCrossRefGoogle Scholar
  23. 23.
    Peng Y, Li C, Chen L, Sebti S, Chen J (2003) Rescue of mutant p53 transcription function by ellipticine. Oncogene 22(29):4478–4487PubMedCrossRefGoogle Scholar
  24. 24.
    Zhu Q, Wani G, Yao J, Patnaik S, Wang QE, El-Mahdy MA et al (2007) The ubiquitin-proteasome system regulates p53-mediated transcription at p21(waf1) promoter. Oncogene 26:4199–4208PubMedCrossRefGoogle Scholar
  25. 25.
    Li Q, Falsey RR, Gaitonde S, Sotello V, Kislin K, Martinez JD (2007) Genetic analysis of p53 nuclear importation. Oncogene 26(57):7885–7893PubMedCrossRefGoogle Scholar
  26. 26.
    Middeler G, Zerf K, Jenovai S, Thulig A, Tschodrich-Rotter M, Kubitscheck U et al (1997) The tumor suppressor p53 is subject to both nuclear import and export, and both are fast, energy-dependent and lectin-inhibited. Oncogene 14(12):1407–1417PubMedCrossRefGoogle Scholar
  27. 27.
    Liang SH, Clarke MF (1999) The nuclear import of p53 is determined by the presence of a basic domain and its relative position to the nuclear localization signal. Oncogene 18(12):2163–2166PubMedCrossRefGoogle Scholar
  28. 28.
    Liang SH, Clarke MF (1999) A bipartite nuclear localization signal is required for p53 nuclear import regulated by a carboxyl-terminal domain. J Biol Chem 274(46):32699–32703PubMedCrossRefGoogle Scholar
  29. 29.
    Stommel J, Marchenko N, Jimenez G, Moll U, Hope T, Wahl G (1999) A leucine-rich nuclear export signal in the p53 tetramerization domain: regulation of subcellular localization and p53 activity by NES masking. EMBO J 18(6):1660–1672PubMedCrossRefGoogle Scholar
  30. 30.
    Nie L, Sasaki M, Maki CG (2007) Regulation of p53 nuclear export through sequential changes in conformation and ubiquitination. J Biol Chem 282(19):14616–14625PubMedCrossRefGoogle Scholar
  31. 31.
    Li M, Brooks CL, Wu-Baer F, Chen D, Baer R, Gu W (2003) Mono- versus polyubiquitination: differential control of p53 fate by Mdm2. Science 302(5652):1972–1975PubMedCrossRefGoogle Scholar
  32. 32.
    Shieh SY, Ikeda M, Taya Y, Prives C (1997) DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334PubMedCrossRefGoogle Scholar
  33. 33.
    Schneiderhan N, Budde A, Zhang Y, Brune B (2003) Nitric oxide induces phosphorylation of p53 and impairs nuclear export. Oncogene 22(19):2857–2868PubMedCrossRefGoogle Scholar
  34. 34.
    Kuo PL, Hsu YL, Kuo YC, Chang CH, Lin CC (2005) The anti-proliferative inhibition of ellipticine in human breast mda-mb-231 cancer cells is through cell cycle arrest and apoptosis induction. Anticancer Drugs 16(7):789–795PubMedCrossRefGoogle Scholar
  35. 35.
    Ohashi M, Sugikawa E, Nakanishi N (1995) Inhibition of p53 protein phosphorylation by 9-hydroxyellipticine: a possible anticancer mechanism. Jpn J Cancer Res 86(9):819–827PubMedGoogle Scholar
  36. 36.
    Hubert A, Paris S, Piret JP, Ninane N, Raes M, Michiels C (2006) Casein kinase 2 inhibition decreases hypoxia-inducible factor-1 activity under hypoxia through elevated p53 protein level. J Cell Sci 119(Pt 16):3351–3362PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • G. Wei Xu
    • 1
  • Imtiaz A. Mawji
    • 1
  • Chloe J. Macrae
    • 1
  • C. Anne Koch
    • 1
  • Alessandro Datti
    • 2
  • Jeffrey L. Wrana
    • 2
  • James W. Dennis
    • 2
  • Aaron D. Schimmer
    • 1
  1. 1.Ontario Cancer InstitutePrincess Margaret HospitalTorontoCanada
  2. 2.Samuel Lunenfeld Research InstituteMt. Sinai HospitalTorontoCanada

Personalised recommendations