, Volume 12, Issue 11, pp 2115–2133

Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic cell death of human myeloid leukemia HL-60 cells by a dietary compound withaferin A with concomitant protection by N-acetyl cysteine

  • Fayaz Malik
  • Ajay Kumar
  • Shashi Bhushan
  • Sheema Khan
  • Aruna Bhatia
  • Krishan Avtar Suri
  • Ghulam Nabi Qazi
  • Jaswant Singh
Original Paper


Induction of apoptosis in cancer cells has become the major focus of anti-cancer therapeutics development. WithaferinA, a major chemical constituent of Withania somnifera, reportedly shows cytotoxicity in a variety of tumor cell lines while its molecular mechanisms of action are not fully understood. We observed that withaferinA primarily induces oxidative stress in human leukemia HL-60 cells and in several other cancer cell lines. The withanolide induced early ROS generation and mitochondrial membrane potential (Δψmt) loss, which preceded release of cytochrome c, translocation of Bax to mitochondria and apoptosis inducing factor to cell nuclei. These events paralleled activation of caspases −9, −3 and PARP cleavage. WA also activated extrinsic pathway significantly as evidenced by time dependent increase in caspase-8 activity vis-à-vis TNFR-1 over expression. WA mediated decreased expression of Bid may be an important event for cross talk between intrinsic and extrinsic signaling. Furthermore, withaferinA inhibited DNA binding of NF-κB and caused nuclear cleavage of p65/Rel by activated caspase-3. N-acetyl-cysteine rescued all these events suggesting thereby a pro-oxidant effect of withaferinA. The results of our studies demonstrate that withaferinA induced early ROS generation and mitochondrial dysfunction in cancer cells trigger events responsible for mitochondrial -dependent and -independent apoptosis pathways.


Withaferin A ROS NAC AIF NF-κB Caspases Apoptosis 



Apoptosis inducing factor


Dichlorofluorescein diacetate


Electrophoretic mobility shift assay


High Performance Liquid Chromatography


Infra red




Nuclear factor κB


Propidium iodide


Reactive oxygen species


Tumor necrosis factor receptor


Withaferin A


  1. 1.
    Hu W, Kavanagh JJ (2003) Anticancer therapy targeting the apoptotic pathway. Lancet Oncol 4:721–729PubMedCrossRefGoogle Scholar
  2. 2.
    Lee KH (1999) Anticancer drug design based on plant-derived natural products. J Biomed Sci 6:236–250PubMedGoogle Scholar
  3. 3.
    Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Ann Rev Biochem 68:383–424PubMedCrossRefGoogle Scholar
  4. 4.
    Jiang X, Wang X (2000) Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J Biol Chem 275:31199–31203PubMedCrossRefGoogle Scholar
  5. 5.
    Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR (1999) Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem 274:2225–2233PubMedCrossRefGoogle Scholar
  6. 6.
    Borner C (2006) In memoriam of a prominent composer of the Bcl-2 family symphony. Cell Death Differ 13:1248–1249PubMedCrossRefGoogle Scholar
  7. 7.
    Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312PubMedCrossRefGoogle Scholar
  8. 8.
    Choi BM, Pae HO, Jang SI, Kim YM, Chung HT (2002) Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J Biochem Mol Biol 35:116–126PubMedGoogle Scholar
  9. 9.
    Shen HM, Liu ZG (2006) JNK signaling pathway is a key modulator in cell death mediated by reactive oxygen and nitrogen species. Free Radic Biol Med 40:928–939PubMedCrossRefGoogle Scholar
  10. 10.
    Capasso F, Gaginella T, Grandolini G, Izzo A (2003) A quick reference of herbal medicine. Phytotherapy. Springer-Verlag, HeidelbergGoogle Scholar
  11. 11.
    Kapoor LD (2000) Handbook of ayurvedic medicinal plants. CRC Press, Boca RatonGoogle Scholar
  12. 12.
    Diwanay S, Chitre D, Patwardhan B (2004) Immunoprotection by botanical drugs in cancer chemotherapy. J Ethnopharm 90:49–55CrossRefGoogle Scholar
  13. 13.
    Jayaprakasam B, Zhang Y, Seeram NP, Nair MG (2003) Growth inhibition of human tumor cell lines by withanolides from Withania somnifera leaves. Life Sci 74:125–132PubMedCrossRefGoogle Scholar
  14. 14.
    Mohan R, Hammers HJ, Bargagna MP, Zhan XH, Herbstritt CJ, Ruiz A, Zhang L, Hanson AD, Conner BP, Rougas J, Pribluda VS (2004) Withaferin A is a potent inhibitor of angiogenesis. Angiogenesis 7:115–122PubMedCrossRefGoogle Scholar
  15. 15.
    Ichikawa H, Takada Y, Shishodia S, Jayaprakasam B, Nair MG, Aggarwal BB (2006) Withanolides potentiate apoptosis, inhibit invasion, and abolish osteoclastogenesis through suppression of nuclear factor-kappaB (NF-kappaB) activation and NF-kappaB-regulated gene expression. Mol Cancer Ther 5:1434–4145PubMedCrossRefGoogle Scholar
  16. 16.
    Kaileh M, Vanden BW, Heyerick A, Horion J, Piette J, Libert C, De Keukeleire D, Essawi T, Haegeman G (2007) Withaferin a strongly elicits IkappaB kinase beta hyperphosphorylation concomitant with potent inhibition of its kinase activity. J Biol Chem 282:4253–4264PubMedCrossRefGoogle Scholar
  17. 17.
    Yang H, Shi G, Dou QP (2007) The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from “Indian winter cherry”. Mol Pharmacol 71:426–437PubMedCrossRefGoogle Scholar
  18. 18.
    Srinivasan S, Ranga R, Burikhanov R, Han S, Chendil D (2007) Par-4-dependent apoptosis by the dietary compound withaferin A in prostate cancer cells. Cancer Res 67:246–253PubMedCrossRefGoogle Scholar
  19. 19.
    Falsey RR, Marron MT, Gunaherath GM, Shirahatti N, Mahadevan D, Gunatilaka AA, Whitesell L (2006) Actin microfilament aggregation induced by withaferin A is mediated by annexin II. Nat Chem Biol 1:33–38CrossRefGoogle Scholar
  20. 20.
    Ueda S, Masutani H, Nakamura H, Tanaka T, Ueno M, Yodoi J (2002) Redox control of cell death. Antioxid Redox Signal 4:405–414PubMedCrossRefGoogle Scholar
  21. 21.
    Yokomizo A, Ono M, Nanri H, Makino Y, Ohga T, Wada M, Okamoto T, Yodoi J, Kuwano M, Kohno K (1995) Cellular levels of thioredoxin associated with drug sensitivity to cisplatin, mitomycin C, doxorubicin, and etoposide. Cancer Res 55:4293–4296PubMedGoogle Scholar
  22. 22.
    Lavie D, Glotter E, Shro Y (1965) Constituents of Withania somnifera. Dun IV. J Chem Soc 12:7517CrossRefGoogle Scholar
  23. 23.
    Khajuria RK, Suri KA, Gupta RK, Satti NK, Musarat A, Suri OP, Qazi GN (2004) Separation, identification and quantification of selected withanolides in plant extracts of Withania somnifera by HPLC-UV (DAD)-positive ion electrospray ionosation-mass spectroscopy. J Sep Sci 27:541–547PubMedCrossRefGoogle Scholar
  24. 24.
    Bhushan S, Singh J, Rao JM, Saxena AK, Qazi GN (2006) A novel lignan composition from Cedrus deodara induces apoptosis and early nitric oxide generation in human leukemia Molt-4 and HL-60 cells. Nitric Oxide 14:72–88Google Scholar
  25. 25.
    Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226PubMedCrossRefGoogle Scholar
  26. 26.
    Wang Z, Wang S, Dai Y, Grant S (2002) Bryostatin 1 increases 1-β-D-arabinofuranosylcytosine-induced cytochrome c release and apoptosis in human leukemia cells ectopically expressing Bcl-xL. J Pharm Exp Therap 301:568–577CrossRefGoogle Scholar
  27. 27.
    Han DC, Lee MY, Shin KD, Jeon SB, Kim JM, Son KH, Kim HC, Kim HM, Kwon BM (2004) 2′-benzoyloxycinnamaldehyde induces apoptosis in human carcinoma via reactive oxygen species. J Biol Chem 279:6911–6920PubMedCrossRefGoogle Scholar
  28. 28.
    Castrillo A, Heras B, Hortelano S, Rodriguez B, Villar A, Bosca L (2001) Inhibition of the nuclear factor kappa B (NF-kappa B) pathway by tetra cyclic kaurene diterpenes in macrophages. Specific effects on NF-kappa B-inducing kinase activity and on the coordinate activation of ERK and p38 MAPK. J Biol Chem 19:15854–15860CrossRefGoogle Scholar
  29. 29.
    Majumdar S, Lamothe B, Aggarwal BB (2002) Thalidomide suppresses NF-kappa B activation induced by TNF and H2O2, but not that activated by ceramide, lipopolysaccharides, or phorbol ester. J Immunol 168:2644–2651PubMedGoogle Scholar
  30. 30.
    Deneke SM (2000) Thiol-based antioxidants. Curr Top Cell Regul 36:151–180PubMedGoogle Scholar
  31. 31.
    Chipuk JE, Bouchier-Hayes L, Green DR (2006) Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario. Cell Death Differ 13:1396–1402PubMedCrossRefGoogle Scholar
  32. 32.
    Del Bino G, Darzynkiewicz Z, Degraef C, Mosselmans R, Fokan D, Galand P (1999) Comparison of methods based on annexin-V binding, DNA content or TUNEL for evaluating cell death in HL-60 and adherent MCF-7 cells. Cell Prolif 32:25–37PubMedCrossRefGoogle Scholar
  33. 33.
    Eskes R, Desagher S, Antonsson B, Martinou JC (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20:929–935PubMedCrossRefGoogle Scholar
  34. 34.
    Vahsen N, Cande C, Briere JJ, Benit P, Joza N, Larochette N, Mastroberardino PG, Pequignot MO, Casares N, Lazar V, Feraud O, Debili N, Wissing S, Engelhardt S, Madeo F, Piacentini M, Penninger JM, Schagger H, Rustin P, Kroemer G (2004) AIF deficiency compromises oxidative phosphorylation. EMBO J 23:4679–4689PubMedCrossRefGoogle Scholar
  35. 35.
    Apostolova N, Cervera AM, Victor VM, Cadenas S, Sanjuan-Pla A, Alvarez-Barrientos A, Esplugues JV, McCreath KJ (2006) Loss of apoptosis-inducing factor leads to an increase in reactive oxygen species, and an impairment of respiration that can be reversed by antioxidants. Cell Death Differ 13:354–357PubMedCrossRefGoogle Scholar
  36. 36.
    Denicourt C, Dowdy SF (2004) Medicine. Targeting apoptotic pathways in cancer cells. Science 305:1411–1413PubMedCrossRefGoogle Scholar
  37. 37.
    St-Pierre J, Buckingham JA, Roebuck SJ, Brand MD (2002) Topology of superoxide production from different sites in the mitochondrial electron transport chain. J Biol Chem 277:44784–44790PubMedCrossRefGoogle Scholar
  38. 38.
    Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281:1312–1316PubMedCrossRefGoogle Scholar
  39. 39.
    Kumar S (2007) Caspase function in programmed cell death. Cell Death Differ 14:32–43PubMedCrossRefGoogle Scholar
  40. 40.
    Kirkland RA, Windelborn JA, Kasprzak JM, Franklin JL (2002) A Bax-induced pro-oxidant state is critical for cytochrome c release during programmed neuronal death. J Neurosci 22:6480–6490PubMedGoogle Scholar
  41. 41.
    Zamzami N, Marzol I, Susin SA, Brenner C, Larochette N, Marchetti P, Reed J, Kofler R, Kroemer G (1998) The thiol crosslinking agent diamide overcomes the apoptosis-inhibitory effect of Bcl-2 by enforcing mitochondrial permeability transition. Oncogene 16:1055–1063PubMedCrossRefGoogle Scholar
  42. 42.
    Cahir-McFarland E, Davidson D, Schauer S, Duong J, Kieff E (2000) NF-κB inhibition causes spontaneous apoptosis in Epstein-Barr virus-transformed lymphoblastoid cells. PNAS 97:6055–6060PubMedCrossRefGoogle Scholar
  43. 43.
    Vander-Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB (1997) Bcl-xL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91:627–637PubMedCrossRefGoogle Scholar
  44. 44.
    Cande C, Vahsen N, Kouranti I, Schmitt E, Daugas E, Spahr C, Luban J, Kroemer RT, Giordanetto F, Garrido C, Penninger JM, Kroemer G (2004) AIF and cyclophilin A cooperate in apoptosis-associated chromatinolysis. Oncogene 23:1514–1521PubMedCrossRefGoogle Scholar
  45. 45.
    Chandra J, Samali A, Orrenius S (2000) Triggering and modulation of apoptosis by oxidative stress. Free Radical Biol Med 29:323–333CrossRefGoogle Scholar
  46. 46.
    Peter ME, Krammer PH (1998) Mechanisms of CD95 (APO-1/Fas)-mediated apoptosis. Curr Opin Immunol 10:545–551PubMedCrossRefGoogle Scholar
  47. 47.
    Karin M, Cao Y, Greten FR, Li ZW (2002) NF-kappaB in cancer: from innocent bystander to major culprit. Nat Rev Cancer 2:301–310PubMedCrossRefGoogle Scholar
  48. 48.
    Kang KH, Lee KH, Kim MY, Choi KH (2001) Caspase-3-mediated cleavage of the NF-kappa B subunit p65 at the NH2 terminus potentiates naphthoquinone analog-induced apoptosis. J Biol Chem 276:24638–24644PubMedCrossRefGoogle Scholar
  49. 49.
    Zafarullah M, Li WQ, Sylvester J, Ahmad M (2003) Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci 60:6–20PubMedCrossRefGoogle Scholar
  50. 50.
    Li WQ, Dehnade F, Zafarullah M (2000) Thiol antioxidant, N-acetylcysteine, activates extracellular signal-regulated kinase signaling pathway in articular chondrocytes. Biochem Biophys Res Commun 275:789–794PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Fayaz Malik
    • 1
  • Ajay Kumar
    • 1
  • Shashi Bhushan
    • 1
  • Sheema Khan
    • 1
  • Aruna Bhatia
    • 2
  • Krishan Avtar Suri
    • 1
  • Ghulam Nabi Qazi
    • 1
  • Jaswant Singh
    • 1
  1. 1.Division of Pharmacology, Indian Institute of Integrative MedicineCouncil of Scientific and Industrial ResearchJammu-TawiIndia
  2. 2.Department of BiotechnologyPunjabi UniversityPatialaIndia

Personalised recommendations