Advertisement

Apoptosis

, Volume 12, Issue 9, pp 1733–1742 | Cite as

Apoptosis by cisplatin requires p53 mediated p38α MAPK activation through ROS generation

  • Paloma Bragado
  • Alejandro Armesilla
  • Augusto Silva
  • Almudena Porras
Original Paper

Abstract

Cisplatin is one of the major chemotherapeutic weapons used against different human cancers, although its mechanism to induce apoptosis is not fully understood. The presence of wild type p53 has been suggested to be important for cisplatin cytotoxicity, hence we found that cisplatin induced apoptosis in cell lines with functional p53. Using the HCT116 colon carcinoma derived cell line we have established that the apoptotic activity of cisplatin requires the onset of a p53-mediated p38α MAPK pathway through generation of reactive oxygen species (ROS). HCT116 p53-deficient cells were much less sensitive to apoptosis by cisplatin than their p53wt counterparts, where apoptosis was strongly inhibited by antioxidants. Moreover, the presence of pifithrin-α, an inhibitor of p53 transcriptional activity, blocked cisplatin-induced apoptosis, reduced the generation of ROS produced upon cisplatin treatment. In addition, we have identified p38α as the isoform necessary for cisplatin-induced apoptosis, upon activation by p53-mediated ROS production. p38α MAPK contributes to further activation of p53, which leads to a positive feedback loop, p38α MAPK/p53. We conclude that the p53/ROS/p38α MAPK cascade is essential for cisplatin-induced cell death in HCT116 cells and the subsequent p38α/p53 positive feedback loop strongly enhances the initial p53 activation.

Keywords

p53 p38 MAPK Cisplatin Apoptosis ROS Signalling 

Notes

Acknowledgments

We thank Dr. P Aller for his help in ROS studies and P. Lastres, as responsible of cytometry facility. We are indebit to Prof. B. Vogelstein for the gift of HCT116-p53-deficient. P.B. and A.A. are recipient of pre-doctoral fellowships from the Ministry of Education and Science. This work has been supported by grants from FIS-PI 041131 and from SAF2003-0807.

References

  1. 1.
    Hollstein M, Hergenhahn M, Yang Q, Bartsch H, Wang ZQ, Hainaut P (1999) New approaches to understanding p53 gene tumor mutation spectra. Mutat Res 431:199–209PubMedGoogle Scholar
  2. 2.
    Laptenko O, Prives C (2006) Transcriptional regulation by p53: one protein, many possibilities. Cell Death Differ 13:951–961PubMedCrossRefGoogle Scholar
  3. 3.
    Xu Y (2003) Regulation of p53 responses by post-translational modifications. Cell Death Differ 10:400–403PubMedCrossRefGoogle Scholar
  4. 4.
    Fei P, El-Deiry WS (2003) P53 and radiation responses. Oncogene 22:5774–5783PubMedCrossRefGoogle Scholar
  5. 5.
    Alarcon-Vargas D, Ronai Z (2002) p53-Mdm2–the affair that never ends. Carcinogenesis 23:541–547PubMedCrossRefGoogle Scholar
  6. 6.
    Slee EA, O’Connor DJ, Lu X (2004) To die or not to die: how does p53 decide? Oncogene 23:2809–2818PubMedCrossRefGoogle Scholar
  7. 7.
    Brown JM, Attardi LD (2005) The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5:231–237PubMedCrossRefGoogle Scholar
  8. 8.
    Moll UM, Wolff S, Speidel D, Deppert W (2005) Transcription-independent pro-apoptotic functions of p53. Curr Opin Cell Biol 17:631–636PubMedCrossRefGoogle Scholar
  9. 9.
    Ding HF, Lin YL, McGill G, Juo P, Zhu H, Blenis J, Yuan J, Fisher DE (2000) Essential role for caspase-8 in transcription-independent apoptosis triggered by p53. J Biol Chem 275:38905–38911PubMedCrossRefGoogle Scholar
  10. 10.
    Caelles C, Helmberg A, Karin M (1994) p53-dependent apoptosis in the absence of transcriptional activation of p53-target genes. Nature 370:220–223PubMedCrossRefGoogle Scholar
  11. 11.
    Mihara M, Erster S, Zaika A, Petrenko O, Chittenden T, Pancoska P, Moll UM (2003) p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590PubMedCrossRefGoogle Scholar
  12. 12.
    Chao C, Saito S, Kang J, Anderson CW, Appella E, Xu Y (2000) p53 transcriptional activity is essential for p53-dependent apoptosis following DNA damage. Embo J 19:4967–4975PubMedCrossRefGoogle Scholar
  13. 13.
    Huang C, Ma WY, Maxiner A, Sun Y, Dong Z (1999) p38 kinase mediates UV-induced phosphorylation of p53 protein at serine 389. J Biol Chem 274:12229–12235PubMedCrossRefGoogle Scholar
  14. 14.
    Sanchez-Prieto R, Rojas JM, Taya Y, Gutkind JS (2000) A role for the p38 mitogen-acitvated protein kinase pathway in the transcriptional activation of p53 on genotoxic stress by chemotherapeutic agents. Cancer Res 60:2464–2472PubMedGoogle Scholar
  15. 15.
    Perfettini JL, Castedo M, Nardacci R, Ciccosanti F, Boya P, Roumier T, Larochette N, Piacentini M, Kroemer G (2005) Essential role of p53 phosphorylation by p38 MAPK in apoptosis induction by the HIV-1 envelope. J Exp Med 201:279–289PubMedCrossRefGoogle Scholar
  16. 16.
    Kishi H, Nakagawa K, Matsumoto M, Suga M, Ando M, Taya Y, Yamaizumi M (2001) Osmotic shock induces G1 arrest through p53 phosphorylation at Ser33 by activated p38 MAPK without phosphorylation at Ser15 and Ser20. J Biol Chem 276:39115–39122PubMedCrossRefGoogle Scholar
  17. 17.
    Bulavin DV, Phillips C, Nannenga B, Timofeev O, Donehower LA, Anderson CW, Appella E, Fornace AJ Jr (2004) Inactivation of the Wip1 phosphatase inhibits mammary tumorigenesis through p38 MAPK-mediated activation of the p16(Ink4a)-p19(Arf) pathway. Nat Genet 36:343–350PubMedCrossRefGoogle Scholar
  18. 18.
    Benhar M, Dalyot I, Engelberg D, Levitzki A (2001) Enhanced ROS production in oncogenically transformed cells potentiates c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activation and sensitization to genotoxic stress. Mol Cell Biol 21:6913–6926PubMedCrossRefGoogle Scholar
  19. 19.
    Jeong HG, Cho HJ, Chang IY, Yoon SP, Jeon YJ, Chung MH, You HJ (2002) Rac1 prevents cisplatin-induced apoptosis through down-regulation of p38 activation in NIH3T3 cells. FEBS Lett 518:129–134PubMedCrossRefGoogle Scholar
  20. 20.
    Porras A, Fernandez M, Benito M (1989) Adrenergic regulation of the uncoupling protein expression in foetal rat brown adipocytes in primary culture. Biochem Biophys Res Commun 163:541–547PubMedCrossRefGoogle Scholar
  21. 21.
    Losa JH, Parada Cobo C, Viniegra JG, Sanchez-Arevalo Lobo VJ, Ramon y Cajal S, Sanchez-Prieto R (2003) Role of the p38 MAPK pathway in cisplatin-based therapy. Oncogene 22:3998–4006PubMedCrossRefGoogle Scholar
  22. 22.
    Bae IH, Kang SW, Yoon SH, Um HD (2006) Cellular components involved in the cell death induced by cisplatin in the absence of p53 activation. Oncol Rep 15:1175–1180PubMedGoogle Scholar
  23. 23.
    Jiang M, Wei Q, Wang J, Du Q, Yu J, Zhang L, Dong Z (2006) Regulation of PUMA-alpha by p53 in cisplatin-induced renal cell apoptosis. Oncogene 25:4056–4066PubMedCrossRefGoogle Scholar
  24. 24.
    Chipuk JE, Kuwana T, Bouchier-Hayes L, Droin NM, Newmeyer DD, Schuler M, Green DR (2004) Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis. Science 303:1010–1014PubMedCrossRefGoogle Scholar
  25. 25.
    Zhao J, Miao J, Zhao B, Zhang S (2005) Upregulating of Fas, integrin beta4 and P53 and depressing of PC-PLC activity and ROS level in VEC apoptosis by safrole oxide. FEBS Lett 579:5809–5813PubMedGoogle Scholar
  26. 26.
    Schweyer S, Soruri A, Heintze A, Radzun HJ, Fayyazi A (2004) The role of reactive oxygen species in cisplatin-induced apoptosis in human malignant testicular germ cell lines. Int J Oncol 25:1671–1676PubMedGoogle Scholar
  27. 27.
    Pillaire MJ, Nebreda AR, Darbon JM (2000) Cisplatin and UV radiation induce activation of the stress-activated protein kinase p38gamma in human melanoma cells. Biochem Biophys Res Commun 278:724–728PubMedCrossRefGoogle Scholar
  28. 28.
    Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11:1306–1313PubMedCrossRefGoogle Scholar
  29. 29.
    Matoba S, Kang JG, Patino WD, Wragg A, Boehm M, Gavrilova O, Hurley PJ, Bunz F, Hwang PM (2006) p53 regulates mitochondrial respiration. Science 312:1650–1653PubMedCrossRefGoogle Scholar
  30. 30.
    Jung MS, Jin DH, Chae HD, Kang S, Kim SC, Bang YJ, Choi TS, Choi KS, Shin DY (2004) Bcl-xL and E1B-19K proteins inhibit p53-induced irreversible growth arrest and senescence by preventing reactive oxygen species-dependent p38 activation. J Biol Chem 279:17765–17771PubMedCrossRefGoogle Scholar
  31. 31.
    Macip S, Igarashi M, Berggren P, Yu J, Lee SW, Aaronson SA (2003) Influence of induced reactive oxygen species in p53-mediated cell fate decisions. Mol Cell Biol 23:8576–8585PubMedCrossRefGoogle Scholar
  32. 32.
    Tergaonkar V, Pando M, Vafa O, Wahl G, Verma I (2002) p53 stabilization is decreased upon NFkappaB activation: a role for NFkappaB in acquisition of resistance to chemotherapy. Cancer Cell 1:493–503PubMedCrossRefGoogle Scholar
  33. 33.
    Goto S, Ihara Y, Urata Y, Izumi S, Abe K, Koji T, Kondo T (2001) Doxorubicin-induced DNA intercalation and scavenging by nuclear glutathione S-transferase pi. Faseb J 15:2702–2714PubMedCrossRefGoogle Scholar
  34. 34.
    Witte AB, Anestal K, Jerremalm E, Ehrsson H, Arner ES (2005) Inhibition of thioredoxin reductase but not of glutathione reductase by the major classes of alkylating and platinum-containing anticancer compounds. Free Radic Biol Med 39:696–703PubMedCrossRefGoogle Scholar
  35. 35.
    Reinhardt HC, Aslanian AS, Lees JA, Yaffe MB (2007) p53-deficient cells rely on ATM- and ATR-mediated checkpoint signaling through the p38 MAPK/MK2 pathway for survival after DNA damage. Cancer Cell 11:175–189PubMedCrossRefGoogle Scholar
  36. 36.
    Dolado I, Swat A, Ajenjo N, De Vita G, Cuadrado A, Nebreda AR (2007) p38alpha MAP kinase as a sensor of reactive oxygen species in tumorigenesis. Cancer Cell 11:191–205PubMedCrossRefGoogle Scholar
  37. 37.
    Fujino G, Noguchi T, Takeda K, Ichijo H (2006) Thioredoxin and protein kinases in redox signaling. Semin Cancer Biol 16:427–435PubMedCrossRefGoogle Scholar
  38. 38.
    Bulavin DV, Saito S, Hollander MC, Sakaguchi K, Anderson CW, Appella E, Fornace AJ Jr (1999) Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. Embo J 18:6845–6854PubMedCrossRefGoogle Scholar
  39. 39.
    Chouinard N, Valerie K, Rouabhia M, Huot J (2002) UVB-mediated activation of p38 mitogen-activated protein kinase enhances resistance of normal human keratinocytes to apoptosis by stabilizing cytoplasmic p53. Biochem J 365:133–145PubMedCrossRefGoogle Scholar
  40. 40.
    Mayo LD, Seo YR, Jackson MW, Smith ML, Rivera Guzman J, Korgaonkar CK, Donner DB (2005) Phosphorylation of human p53 at serine 46 determines promoter selection and whether apoptosis is attenuated or amplified. J Biol Chem 280:25953–25959PubMedCrossRefGoogle Scholar
  41. 41.
    Mukherjee JJ, Sikka HC (2006) Attenuation of BPDE-induced p53 accumulation by TPA is associated with a decrease in stability and phosphorylation of p53 and downregulation of NFkappaB activation: role of p38 MAP kinase. Carcinogenesis 27:631–638PubMedCrossRefGoogle Scholar
  42. 42.
    Thompson T, Tovar C, Yang H, Carvajal D, Vu BT, Xu Q, Wahl GM, Heimbrook DC, Vassilev LT (2004) Phosphorylation of p53 on key serines is dispensable for transcriptional activation and apoptosis. J Biol Chem 279:53015–53022PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Paloma Bragado
    • 1
    • 2
  • Alejandro Armesilla
    • 1
  • Augusto Silva
    • 1
  • Almudena Porras
    • 2
  1. 1.Centro de Investigaciones Biológicas, CSICMadridSpain
  2. 2.Departamento de Bioquímica y Biología Molecular II, Facultad de FarmaciaUCMMadridSpain

Personalised recommendations